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Outline of Lecture 2:

e Intersections of Brownian Motions

— Proof in the critical case d =4
— Proof in the subcritical case d < 3

e A problem on images
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Intersections of Brownian Motions

In order to see how one can use multiparameter
processes, let us isolate a concrete problem:

Theorem. [Dvoretzky et al (1950)] Let B and B
be two independent BM’s in R¢ with B(0) = B'(0) = 0.
Then B((0,0))NB'((0,)) £ @ iffd < 3.

The “usual” proof: By Kakutani (1944) [see also
Dvoretzky et al (1950)]: For all nonrandom G C R¢,

P{B((O,oo))ﬂG#@} >0 < Cap, ,(G) > 0.

Therefore, it suffices to prove that

:=Capy_(G)

\

E{@apd_z(B'((o,oo)S)} >0 o d<3.

And this is what most proofs do, after some fashion.
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Alternatively, define A to be the additive Brownian
motion,

A(s,t) :=B(s) —B'(1).
And note that

B((0,0))NB'((0,0)) # 2 < 0€A((0,)%).

So the problem is to prove that

‘ A hits zero iff d < 3. I

There is now a simple proof of this fact (Kh. 2003).
The hardest part is d = 4 which | start with. [This
proves also the case that d > 5, by projection.]
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Proof in the Critical Case d =4

Let d =4, and A(s,t) := B(s) — B'(¢) be additive BM.

Step 1. E|A([0,1]2)| = 0.
Step 2. 0 Z A([1,2]%).
Step 3. 0 ZA((0,=)?) a.s.

Step 3 follows fairly easily from Steps 1 and 2, and
scaling. Step 2 is also easy: Let

F(x) :=P{x € A([0,1]*)} x e R

Step 1 = F =0a.e. = because A(1,1) ~ N(0,4I),

PLOcA([1,2P)) = (47) 2 /R Fx)e A dx=o,

= Step 2. Suffices to prove Step 1.

— Typeset by FoilTX — 4



Recall A(s,t) = B(s) — B'(t). We wish to show that
EJA([0, 1]%)| = 0 when [ d = 4

Observation:
EIA([0,2]%)] <EJA([0, 1] x[0,2])|+EJA([1,2] x [0,2])].

By scaling, the left-hand side = 4E|A([0,1]?)|. The
right-hand side terms are equal (stationarity of
inc’s). Thus,

2EJA([0, 1%)] < EJA([0, 1] % [0,2]) .
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2EJA([0, 1]%)] < EJA([0, 1] x [0,2])].

But RHS =

EIA([0,1]%)[+EJA([0,1] x [1,2])]
_E |A([o, 1]2) mA([o, 1] x [1 ,2])

— 2E|A([0, 1)~ E ‘A([O, 1]2) mA(

Compare with the previous display:

0,1] % [1,2])‘.

E|A([o,1]2) mA([o,l] x [1,2])| —0.
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E‘A([O,l]z) mA([o,l] x [1,2])| —0
IS the same as

E ‘(3[0,1] —B’[o,l]) N (B[O,l] —B’[l,z])| —0

:ZZ

Thus for almost all w € R?,

E [Z ‘ B'(1) :w} —0.
Given {B'(1) =w}, B'|0,1] and B'[1,2] are conditionally
independent, both with the same law as the range

of BM started at w. Because “Leb” is translation
invariant,

E ‘ (B[O, 11— B0, 1]) N (B[O, 11— B"[0, 1]) ‘ —0.
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Recall:
E ‘ (B[o, 11— B0, 1]) a (B[O, 11— B"[0, 1]) ‘ ~0.

Conditionally on B0, 1], the two setsin (---) are i.i.d.
copies of A([0,1]?). Therefore,

E UR4 (P{xeA([O,l]z) ‘ B[O,l]})zdx] —0.

= For almost-all x e R*, P{x € A([0,1]*)} =0
= E|A([0,1])| =0

= Step 1.
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Proof in the Subcritical Case d < 3

Proof a la Kahane (1983): Define

o(F) = / / e (A(s, 1)) dsdL.

Then o € Z(A(R%)) a.s., and

6(8) = //e_s_te’g'A(S’t) dsdt.
R2

Easy computation:

E( 6(5)|2) _ (1+ »:;2||2)2.

Therefore, when d < 3, E|6]? < o

L?(R9)
Plancherel, o is a.s. absolutely continuous.
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A Problem on Images

Let {X(¢)},>0 be a Lévy process in RY, and F C
R, a nonrandom compact set. Blumenthal and
Getoor (1961) asked: (i) Is dim, X (F) a constant
a.s.; and (i) can one represent it in terms of the

Lévy exponent ¥? Kh. and Xiao (2005) proved,
“YeS_”
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Define
Xe(x) = ¢~ P (sgn(x)s) xeR, &€ R?.
Also,
Ge(w) = [[ xe(e= ) ld) u(dy).

Then we have

Theorem. [Kh. and Xiao (2005)] For all nonrando
Borel sets F C Ry, dim_ X (F) is a.s. equal to

dg
sup{ﬁE(O,d) ue{%f( é"g( )Hélld 3 }
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In the symmetric case this simplifies further. Define

fr(x) = /Rdex"*'@Hcé—iy "ye (0,d), xR

And
3w = [ flx=y)uidx) pay).

Theorem. [Kh. and Xiao (2005)] Suppose X s
symmetric. For all nonrandom Borel sets F C R,
dim, X (F') is a.s. equal to

sup{ﬁ € (0,d): uei;f(F)Jd_B(u) < 00}.
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Useful Bounds

Recall

fy(x) == /de—xl‘”é‘) ds "ye(0,d), xeR.
R

[HE
Define
o o log fy_p(r) ..
I(F) .—sup{ﬁe(md). lllfljglp log(1/r) <d1mHF},
o L log fa_p(r) _ .
J(F) .—mf{ﬁE(O,d). hrrnjélp log(1/r) >d1mHF}.

Corollary. [Kh. and Xiao (2005)] Suppose X s
symmetric. For all nonrandom Borel sets F C R,

I(F) < dim, X (F) < J(F).
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Contours of ALPs

Now suppose X, ..., Xy are independent [symmetricj

Lévy processes in RY. Assume 2" :=X,®--- B Xy iS
absolutely continuous:

/ eI gE <00 Yu>0.
R4

Define the gauge function
. — YN Y v
D(t) := /Rde L1 li¥56) g teRY.

Kh. and Xiao (2005) proved that
P{Z'{0}H)#2} >0 & &L, (RY).

In fact, we know exactly when 2 ~1({0})NF # .
There are also bounds on dim, .2 ~'({0}) that held

with positive probability(!).
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Recall that

Theorem. [Kh., Xiao, and Shieh, 2006] A/most
surely on {2 ~1({0}) +# o},

dim, 2 ~'({0}) =sup< ¢ >0 / P(t) —— < o0 5.

There is a fairly explicit formula for dim,, 2™ ~!({0}) N
F, in fact.
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Example 1

If X; = i.i.d. symmetric stable-(¢ ,...,a;). Then,
o (t) = [[¢]|Zim /),

Hence, ® € L), .(RY) < Y9_,(1/a;) < N. Therefore,

loc

P{Z7'({0}) #2} >0 Zd"%<N.

And a.s. on {2771({0}) # @1,

dim, 2" ({0}) = (1—201@) |

J=1
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Example 2

Suppose X, = iso. stable-a; for 1 < j < N. Without
loss of generality, we may assume that

220> >0y > 0.

Define

(
k(o) ::min{ISESN: Zocj>d},

j=l1
where min@ := oo, [k(ar) = o0 iff ¥ &; < d.] Then:
P{2'({0}) #9} >0 & Kk(a) <.

If k() < o0, then a.s. on {2 ~1({0}) # o},

dim, 2 ~'({0}) = N — k() + [i ajd].

1
Ok (o)
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