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Introduction

Some Terminology

o An “(N,d) random field” X has N parameters and takes values in
RY (Adler, 1981);
i.e., X(t)eRIforallt:=(t,...,ty) € RN.
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Introduction

Some Terminology

An “(N ,d) random field” X has N parameters and takes values in
RY (Adler, 1981);

i.e., X(t)eRIforallt:=(t,...,ty) € RN.

Could have RY in place of RN, etc.

X1, ..., Xy independent Brownian motions in RY.
“Additive Brownian motion”:

X(t) :=Xq(tg) +--- +Xn(ty)  forallt=(tg,...,ty) €RY.

Likewise, can have “additive stable,” “additive Lévy,” etc.
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Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

W := white noise on RY.
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Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

W := white noise on RY. I.e., Gaussian, and

If ANB = @ then W (A) and W (B) are indept.
EW (A) = 0 and VarW (A) = meas(A).

Lemma

If A1, Ay, ... are nonrandom and disjoint then a.s.,

W (fj An) = 3 W(A),
n=1 1

n=

as long as meas(An) < oo for all n.
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Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

> (N, 1) “Brownian sheet” B := the dF of W i.e.,

B(t) ;=W ([0,t] x --- x [0,ty]) forallt=(ty,...,ty) €RY.
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Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

(N, 1) “Brownian sheet” B := the dF of W i.e.,
B(t) ;=W ([0,t] x --- x [0,ty]) forallt=(ty,...,ty) €RY.

Could also index B by RN, etc.
B is the noise in many SPDEs.
In many cases, “SPDEs look like B.” [Girsanov]

(N ,d) Brownian sheet B(t) := (By(t),...,Bq4(t)), where
B1,...,Bq are indept. (N, 1) Brownian sheets.
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Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

(2,1) Brownian sheet
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Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

o Let B(ty ,t,) denote 2-parameter Brownian sheet in RY.
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Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

o Let B(ty ,t,) denote 2-parameter Brownian sheet in RY.
O Bty +e,tp+0) =W (H)+W( )+ W(m)+W(r)

1+
[

t, t,+¢
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Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

o Let B(ty ,t,) denote 2-parameter Brownian sheet in RY.
O Bty +e,tp+0) =W (H)+W( )+ W(m)+W(r)

1+

l
o all four independent
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o Y(§):=W( )= BM

t, t,+¢

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle '06 6/20



Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

> Let B(ty,tp) denote 2-parameter Brownlan sheet in RY.
B(t1+€ ty+6) =W (M) +W( )+W(m)+W(")

L,+9d
l

o all four independent

' X(€) :=W (W)= BM

Y(0) :=W( )= BM

Z(€,0) :=W(")=BS

t, t,+¢
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Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

W () W (B)+W( )=ABM W ()=BS
— — —
B(l+e€,1+0)—B(1,1) = X(e)+Y () + Z(e,9)

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle '06 7120



Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

W () W (B)+W( )=ABM W ()=BS
— — —
B(l+e€,1+0)—B(1,1) = X(e)+Y () + Z(e,9)

ABM + indept BS

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle '06 7120



Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

W () W (B)+W( )=ABM W ()=BS
— — —
B(l+e€,1+0)—B(1,1) = X(e)+Y () + Z(e,9)

= ABM + indept BS
Var(X(e)+Y(d)) = €e+6

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle '06 7120



Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

W () W (B)+W( )=ABM W ()=BS
— — —
B(l+e€,1+0)—B(1,1) = X(e)+Y () + Z(e,9)

ABM + indept BS
Var(X(e)+Y(d)) = €e+6
VarZ(e,0) = €d

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle '06 7120



Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

W () W (B)+W( )=ABM W ()=BS
— — —
B(l+e€,1+0)—B(1,1) = X(e)+Y () + Z(e,9)

ABM + indept BS
Var(X(e) +Y(d) = e+
VarZ(e,d) = e < e+ 6 forsmalle,d

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle '06 7120



Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

W () W (B)+W( )=ABM W ()=BS
— — —
B(l+e€,1+0)—B(1,1) = X(e)+Y () + Z(e,9)

ABM + indept BS
Var(X(e) +Y(d) = e+
VarZ (e, 6) €6 <K e+ ¢ for small €, 6
B(1+e€,1+0)—B(1,1) ~ ABM for small ¢,§.
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Local Dynamics of the Brownian Sheet

ABM and the Local Dynamics of Brownian Sheet

W () W (B)+W( )=ABM W ()=BS
— — —
B(l+e€,1+0)—B(1,1) = X(e)+Y () + Z(e,9)

= ABM + indept BS
Var(X(e) +Y(d) = e+
VarZ(e,d) = ed < e+6forsmalle,d
B(1+e€,1+0)—B(1,1) ~ ABM for small ¢,§.

References: Orey and Pruitt (1973), Kendall (1980), Ehm (1981),
Dalang and Walsh (1992; 1993; 1996), Kh. (1995; 1999; 2003),
Dalang and Mountford (1996; 1997; 2001), Kh. and Shi (1999), Kh.
Xiao (2005), Kh. Xiao, and Wu (2006) .. ..
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A Theorem of W. Kendall

First Application: Contours of Brownian Sheet
Kendall’s Theorem

Let B =(2,1) BS; choose and fix s,t > 0.
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A Theorem of W. Kendall

First Application: Contours of Brownian Sheet

Kendall's Theorem

Let B =(2,1) BS; choose and fix s,t > 0.

Theorem (Kendall, 1980)

The connected component of {(u,v): B(u,v) = B(s,t)} that contains
(s,t)isas. {(s,t)}.

“A.e. point in a.e. level-set is totally disconnected from the rest.”
WLOGs=t=1.
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A Theorem of W. Kendall

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

o C(r):={(x,y)€R?: |[x —1|V]y —1|<r}.
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A Theorem of W. Kendall

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

o C(rn):={(x,y)eR®: [x =1|V]y = 1] <r}.

0 J(r) :=={B(1,1) > supyc(B}.

o Goal: liminf, o P(J(r)) > 0.

> 0-1 law (Orey and Pruitt, 1973): J(r) infinitely oftenr | 0 a.s.
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A Theorem of W. Kendall

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

o C(r):={(x,y)€R?: [x—1|V]y —1| <r}.

o J(r):={B(1,1) > supyc()B}-

o Goal: liminf, o P(J(r)) > 0.

> 0-1 law (Orey and Pruitt, 1973): J(r) infinitely oftenr | 0 a.s.

» 1 will sketch the proof of a slightly weaker variant. [In fact it is
equivalent.]
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A Theorem of W. Kendall

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

> C'(r) =1 +r}x[1,r)U(L,r] x{1+r1}).
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A Theorem of W. Kendall

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

> C'(r):=({1+r}x[1,r)U(L,r] x {1+r1}).
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A Theorem of W. Kendall

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

> C'(r) =1 +r}x[1,r)U(L,r] x{1+r1}).
- J'(r) :=={B(1,1) > supc/()B}.

» Goal: lim; o P(J'(r)) > 0.

» Local dynamics + scaling =

PW'(r))—P {X(1)+Y(1) > sup (X(u)+Y(v))} > 0.
(u,v)eC’(1)
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A Theorem of W. Kendall

The Zero-Set of B

Kendall’'s theorem holds for “most” points in the zero-set too.
Can you see it?

D. Khoshnevisan (Salt Lake City, Utah) ICSAA, Seattle '06 11/20



A Theorem of W. Kendall

The Zero-Set of B

Kendall’'s theorem holds for “most” points in the zero-set too.
Can you see it?

(Kh., Révész, and Shi, 2005)
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A Theorem of A. Dvoretzky, P. Erdds, and S. Kakutani

Second Application: Intersections of Brownian Motions

The Dvoretzky—Erdés—Kakutani Theorem

X and Y = independent BMs in RY. Then:
“Two BM paths can cross only in dim < 3.
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A Theorem of A. Dvoretzky, P. Erdds, and S. Kakutani

Second Application: Intersections of Brownian Motions

The Dvoretzky—Erdés—Kakutani Theorem

X and Y = independent BMs in RY. Then:
“Two BM paths can cross only in dim < 3.

Theorem (Dvoretzky, Erdos, and Kakutani, 1950)
TFAE:

X((0,00))NY((0,00)) # ;

d <3.
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A Theorem of A. Dvoretzky, P. Erdds, and S. Kakutani

Second Application: Intersections of Brownian Motions

The Dvoretzky—Erdés—Kakutani Theorem, Continued

Equivalently, TFAE:
X([1,2)NY([1,2]) #2 <« d<3. 1)
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The Dvoretzky—Erdés—Kakutani Theorem, Continued

Equivalently, TFAE:
X([1,2)NY([1,2]) #2 <« d<3. 1)

There are now several proofs; most involve potential theory and/or
PDEs. | will describe a relatively recent, very elementary, proof that is
based on ABM (Kh., 2003).
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A Theorem of A. Dvoretzky, P. Erdds, and S. Kakutani

Second Application: Intersections of Brownian Motions

The Dvoretzky—Erdés—Kakutani Theorem, Continued

Equivalently, TFAE:

X(1,2)NY(1,2)£2 < d<3. (1)

There are now several proofs; most involve potential theory and/or

PDEs. | will describe a relatively recent, very elementary, proof that is
based on ABM (Kh., 2003).

Key idea: X([1,2])NY([1,2]) # 2 <
A(s t)=ABM

—
X(s) — Y (t) =0 for some (s,t) € [1,2]?,
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A Theorem of A. Dvoretzky, P. Erdds, and S. Kakutani

Second Application: Intersections of Brownian Motions

The Dvoretzky—Erdés—Kakutani Theorem, Continued

Equivalently, TFAE:

X(1,2)NY(1,2)£2 < d<3. (1)

There are now several proofs; most involve potential theory and/or

PDEs. | will describe a relatively recent, very elementary, proof that is
based on ABM (Kh., 2003).

Key idea: X([1,2])NY([1,2]) # 2 <
A(s t)=ABM

—
X(s) — Y (t) =0 for some (s,t) € [1,2]?,

OEA([l,Z]Z).
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A Theorem of A. Dvoretzky, P. Erdds, and S. Kakutani

Second Application: Intersections of Brownian Motions

The Dvoretzky—Erdés—Kakutani Theorem, Continued

» When d < 3 one can directly construct a “local time.” This is an
a.s.-nontrivial random measure on the set
A-1{0} = {(s,t) € [1,2]%2: X(s) = Y (t)}. Therefore,
0€A([1,2)?) as.
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A Theorem of A. Dvoretzky, P. Erdds, and S. Kakutani

Second Application: Intersections of Brownian Motions

The Dvoretzky—Erdés—Kakutani Theorem, Continued

» When d < 3 one can directly construct a “local time.” This is an

a.s.-nontrivial random measure on the set
A0} = {(s,t) € [1,2]?: X(s) = Y (t)}. Therefore,
0c€A([1,2]?) as.

o We prove that if d > 5 then A(s,t) = X(s) — Y (t) # 0O for all
s,t € [1,2]. This proof can be pushed through when d = 4 but
needs more care; see the original paper (Kh., Expos. Math.,
2003).
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A Theorem of A. Dvoretzky, P. Erdds, and S. Kakutani

Second Application: Intersections of Brownian Motions

The Dvoretzky—Erdés—Kakutani Theorem, Continued

When d < 3 one can directly construct a “local time.” This is an
a.s.-nontrivial random measure on the set

A0} = {(s,t) € [1,2]?: X(s) = Y (t)}. Therefore,
0c€A([1,2]?) as.

We prove that if d > 5 then A(s,t) = X(s) — Y (t) # O for all

s,t € [1,2]. This proof can be pushed through when d = 4 but
needs more care; see the original paper (Kh., Expos. Math.,
2003).

Exercise

Prove that A([1,2]%) = A(1,1) + A([0, 1]?), where A is a copy of A,
independent of A(1,1),anda+S ={a+s:scS}forallacRY and
S c RY.
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A Theorem of A. Dvoretzky, P. Erdds, and S. Kakutani

Second Application: Intersections of Brownian Motions

The Dvoretzky—Erdés—Kakutani Theorem, Continued

Let A(s,t) := X(s) — Y(t), d > 5; m := Leb. meas. on RY.
By the Exercise,

P{06A<[1,2]2>}
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A Theorem of A. Dvoretzky, P. Erdds, and S. Kakutani

Second Application: Intersections of Brownian Motions

The Dvoretzky—Erdés—Kakutani Theorem, Continued

Let A(s,t) := X(s) — Y(t), d > 5; m := Leb. meas. on RY.
By the Exercise,
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A Theorem of A. Dvoretzky, P. Erdds, and S. Kakutani

Second Application: Intersections of Brownian Motions

The Dvoretzky—Erdés—Kakutani Theorem, Continued

Let A(s,t) := X(s) — Y(t), d > 5; m := Leb. meas. on RY.
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We know:
m(A([0,27)) < m(A([0,1?)) +m(A([0,1] x [1,2])
+m(A([1,2] X [0,1])) + m (A ([1,2]2>).
By the Exercise,

- m((1.27)) £m (A (. 37)).

Same with the other terms in the first display.
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A Theorem of A. Dvoretzky, P. Erdds, and S. Kakutani

Second Application: Intersections of Brownian Motions

The Dvoretzky—Erdés—Kakutani Theorem, Continued

Thus,

Em (A ([o : 2]2)) < 4Em (A ([o ; 1]2))
24/2Em (A ([0 : 1]2)) < 4Em (A ([o , 1]2)) .
d > 5= Em(A([0,1]?)) = 0, as desired.

Exercise
Prove that Em(A([0, 1]?) < cc.
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