Tutorial on Additive Lévy Processes

Lecture #1

Davar Khoshnevisan

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

International Conference on Stochastic Analysis and Its Applications August 7–11, 2006

 An "(N, d) random field" X has N parameters and takes values in R^d (Adler, 1981);

i.e.,
$$X(\mathbf{t}) \in \mathbf{R}^d$$
 for all $\mathbf{t} := (t_1, \dots, t_N) \in \mathbf{R}^N$.

 An "(N, d) random field" X has N parameters and takes values in R^d (Adler, 1981);

i.e.,
$$X(\mathbf{t}) \in \mathbf{R}^d$$
 for all $\mathbf{t} := (t_1, \dots, t_N) \in \mathbf{R}^N$.

Could have R^N₊ in place of R^N, etc.

• An "(N, d) random field" X has N parameters and takes values in \mathbb{R}^d (Adler, 1981);

i.e.,
$$X(\mathbf{t}) \in \mathbf{R}^d$$
 for all $\mathbf{t} := (t_1, \dots, t_N) \in \mathbf{R}^N$.

- Could have R^N₊ in place of R^N, etc.
- X₁,..., X_N independent Brownian motions in R^d.
 "Additive Brownian motion":

$$X(\mathbf{t}) := X_1(t_1) + \dots + X_N(t_N)$$
 for all $\mathbf{t} = (t_1, \dots, t_N) \in \mathbf{R}_+^N$.

An "(N, d) random field" X has N parameters and takes values in R^d (Adler, 1981);

i.e.,
$$X(\mathbf{t}) \in \mathbf{R}^d$$
 for all $\mathbf{t} := (t_1, \dots, t_N) \in \mathbf{R}^N$.

- Could have R^N₊ in place of R^N, etc.
- X₁,..., X_N independent Brownian motions in R^d.
 "Additive Brownian motion":

$$X(\mathbf{t}) := X_1(t_1) + \dots + X_N(t_N)$$
 for all $\mathbf{t} = (t_1, \dots, t_N) \in \mathbf{R}_+^N$.

Likewise, can have "additive stable," "additive Lévy," etc.

 $\dot{W} := \text{white noise on } \mathbf{R}_{+}^{N}.$

 $\dot{W} :=$ white noise on \mathbf{R}_{+}^{N} . I.e., Gaussian, and

• If $A \cap B = \emptyset$ then $\dot{W}(A)$ and $\dot{W}(B)$ are indept.

 $\dot{W} :=$ white noise on \mathbf{R}_{+}^{N} . I.e., Gaussian, and

- If $A \cap B = \emptyset$ then W(A) and W(B) are indept.
- $E\dot{W}(A) = 0$ and $Var\dot{W}(A) = meas(A)$.

 $\dot{W} :=$ white noise on \mathbf{R}_{+}^{N} . I.e., Gaussian, and

- If $A \cap B = \emptyset$ then W(A) and W(B) are indept.
- $E\dot{W}(A) = 0$ and $Var\dot{W}(A) = meas(A)$.

 $\dot{W} :=$ white noise on \mathbf{R}_{+}^{N} . I.e., Gaussian, and

- If $A \cap B = \emptyset$ then W(A) and W(B) are indept.
- $E\dot{W}(A) = 0$ and $Var\dot{W}(A) = meas(A)$.

Lemma

If A_1, A_2, \ldots are nonrandom and disjoint then a.s.,

$$\dot{W}\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}\dot{W}(A_{n}),$$

as long as meas(A_n) $< \infty$ for all n.

• (N,1) "Brownian sheet" $B := \text{the dF of } \dot{W}$; i.e.,

$$B(\mathbf{t}) := \dot{W}([0, t_1] \times \cdots \times [0, t_N])$$
 for all $\mathbf{t} = (t_1, \dots, t_N) \in \mathbf{R}_+^N$.

• (N,1) "Brownian sheet" B :=the dF of \dot{W} ; i.e.,

$$B(\mathbf{t}) := \dot{W}([0,t_1] \times \cdots \times [0,t_N])$$
 for all $\mathbf{t} = (t_1,\ldots,t_N) \in \mathbf{R}_+^N$.

Could also index B by R^N, etc.

• (N,1) "Brownian sheet" B :=the dF of \dot{W} ; i.e.,

$$B(\mathbf{t}) := \dot{W}([0, t_1] \times \cdots \times [0, t_N])$$
 for all $\mathbf{t} = (t_1, \dots, t_N) \in \mathbf{R}_+^N$.

- Could also index B by R^N, etc.
- B is the noise in many SPDEs.

• (N,1) "Brownian sheet" $B := \text{the dF of } \dot{W}$; i.e.,

$$B(\mathbf{t}) := \dot{W}([0, t_1] \times \cdots \times [0, t_N])$$
 for all $\mathbf{t} = (t_1, \dots, t_N) \in \mathbf{R}_+^N$.

- Could also index B by R^N, etc.
- B is the noise in many SPDEs.
- In many cases, "SPDEs look like B." [Girsanov]

• (N,1) "Brownian sheet" $B := \text{the dF of } \dot{W}$; i.e.,

$$B(\mathbf{t}) := \dot{W}([0, t_1] \times \cdots \times [0, t_N])$$
 for all $\mathbf{t} = (t_1, \dots, t_N) \in \mathbf{R}_+^N$.

- Could also index B by R^N, etc.
- B is the noise in many SPDEs.
- In many cases, "SPDEs look like B." [Girsanov]
- (N, d) Brownian sheet $B(\mathbf{t}) := (B_1(\mathbf{t}), \dots, B_d(\mathbf{t}))$, where B_1, \dots, B_d are indept. (N, 1) Brownian sheets.

(2,1) Brownian sheet

• Let $B(t_1, t_2)$ denote 2-parameter Brownian sheet in \mathbf{R}^d .

• Let $B(t_1, t_2)$ denote 2-parameter Brownian sheet in \mathbb{R}^d .

•
$$B(t_1 + \epsilon, t_2 + \delta) = \dot{W}(\blacksquare) + \dot{W}(\blacksquare) + \dot{W}(\blacksquare) + \dot{W}(\blacksquare)$$

• Let $B(t_1, t_2)$ denote 2-parameter Brownian sheet in \mathbb{R}^d .

$$\bullet \ B(t_1 + \epsilon, t_2 + \delta) = \dot{W}(\blacksquare) + \dot{W}(\blacksquare) + \dot{W}(\blacksquare) + \dot{W}(\blacksquare)$$

all four independent

• Let $B(t_1, t_2)$ denote 2-parameter Brownian sheet in \mathbb{R}^d .

$$\bullet \ B(t_1 + \epsilon, t_2 + \delta) = \dot{W}(\blacksquare) + \dot{W}(\blacksquare) + \dot{W}(\blacksquare) + \dot{W}(\blacksquare)$$

all four independent

$$\circ X(\epsilon) := \dot{W}(\blacksquare) = BM$$

• Let $B(t_1, t_2)$ denote 2-parameter Brownian sheet in \mathbb{R}^d .

$$\bullet \ B(t_1 + \epsilon, t_2 + \delta) = \dot{W}(\blacksquare) + \dot{W}(\blacksquare) + \dot{W}(\blacksquare) + \dot{W}(\blacksquare)$$

- all four independent
- \bullet $X(\epsilon) := \dot{W}(\blacksquare) = BM$

$$Y(\delta) := \dot{W}() = BM$$

• Let $B(t_1, t_2)$ denote 2-parameter Brownian sheet in \mathbb{R}^d .

$$\bullet \ B(t_1 + \epsilon, t_2 + \delta) = \dot{W}(\blacksquare) + \dot{W}(\blacksquare) + \dot{W}(\blacksquare) + \dot{W}(\blacksquare)$$

- all four independent
- \bullet $X(\epsilon) := \dot{W}(\blacksquare) = BM$
- \bullet $Y(\delta) := \dot{W}(-) = BM$

$$\circ$$
 $Z(\epsilon, \delta) := \dot{W}(\blacksquare) = BS$

$$B(1+\epsilon,1+\delta) - \overbrace{B(1,1)}^{\dot{W}(\blacksquare)} = \underbrace{\dot{W}(\blacksquare) + \dot{W}(\blacksquare) = \mathsf{ABM}}_{\dot{X}(\epsilon) + \dot{Y}(\delta)} + \underbrace{\dot{Z}(\epsilon,\delta)}_{\dot{Z}(\epsilon,\delta)}$$

$$B(1+\epsilon,1+\delta) - \overbrace{B(1,1)}^{\dot{W}(\blacksquare)} = \underbrace{X(\epsilon) + Y(\delta)}^{\dot{W}(\blacksquare) + \dot{W}(\blacksquare) = \mathsf{BS}} + \underbrace{Z(\epsilon,\delta)}^{\dot{W}(\blacksquare) = \mathsf{BS}}$$

$$= \mathsf{ABM} + \mathsf{indept} \; \mathsf{BS}$$

$$B(1+\epsilon,1+\delta) - \overbrace{B(1,1)}^{\dot{W}(\blacksquare)} = \underbrace{X(\epsilon) + Y(\delta)}^{\dot{W}(\blacksquare) + \dot{W}(\blacksquare) = \mathsf{BS}}_{} + \underbrace{Z(\epsilon,\delta)}_{} + \underbrace{Z(\epsilon,\delta)}_{}$$

$$= \mathsf{ABM} + \mathsf{indept} \; \mathsf{BS}$$

$$\mathsf{Var}(X(\epsilon) + Y(\delta)) = \epsilon + \delta$$

$$B(1+\epsilon,1+\delta) - \widetilde{B(1,1)} = (\lambda(\epsilon) + \lambda(\epsilon)) + \lambda(\epsilon) + \lambda(\epsilon) = BS$$

$$E(1+\epsilon,1+\delta) - \widetilde{B(1,1)} = (\lambda(\epsilon) + \lambda(\epsilon)) + \lambda(\epsilon) + \lambda(\epsilon)$$

$$= ABM + indept BS$$

$$Var(X(\epsilon) + Y(\delta)) = \epsilon + \delta$$

$$VarZ(\epsilon,\delta) = \epsilon \delta$$

$$B(1 + \epsilon, 1 + \delta) - B(1, 1) = W(\bullet) + W(\bullet) = ABM \quad W(\bullet) = BS$$

$$= X(\epsilon) + Y(\delta) + Z(\epsilon, \delta)$$

$$= ABM + \text{indept BS}$$

$$Var(X(\epsilon) + Y(\delta)) = \epsilon + \delta$$

$$VarZ(\epsilon, \delta) = \epsilon \delta \ll \epsilon + \delta \text{ for small } \epsilon, \delta$$

$$B(1+\epsilon,1+\delta) - \overbrace{B(1,1)}^{\dot{W}(\blacksquare)} = ABM \quad \dot{W}(\blacksquare) = BS$$

$$= ABM + \text{indept BS}$$

$$Var(X(\epsilon) + Y(\delta)) = \epsilon + \delta$$

$$VarZ(\epsilon,\delta) = \epsilon \delta \ll \epsilon + \delta \text{ for small } \epsilon, \delta$$

$$B(1+\epsilon,1+\delta) - B(1,1) \approx ABM \text{ for small } \epsilon, \delta.$$

References: Orey and Pruitt (1973), Kendall (1980), Ehm (1981), Dalang and Walsh (1992; 1993; 1996), Kh. (1995; 1999; 2003), Dalang and Mountford (1996; 1997; 2001), Kh. and Shi (1999), Kh. Xiao (2005), Kh. Xiao, and Wu (2006)

Kendall's Theorem

Let B = (2,1) BS; choose and fix s, t > 0.

Kendall's Theorem

Let B = (2,1) BS; choose and fix s, t > 0.

Theorem (Kendall, 1980)

The connected component of $\{(u, v) : B(u, v) = B(s, t)\}$ that contains (s,t) is a.s. $\{(s,t)\}.$

Kendall's Theorem

Let B = (2,1) BS; choose and fix s, t > 0.

Theorem (Kendall, 1980)

The connected component of $\{(u,v): B(u,v) = B(s,t)\}$ that contains (s,t) is a.s. $\{(s,t)\}$.

o "A.e. point in a.e. level-set is totally disconnected from the rest."

Kendall's Theorem

Let B = (2,1) BS; choose and fix s, t > 0.

Theorem (Kendall, 1980)

The connected component of $\{(u,v): B(u,v) = B(s,t)\}$ that contains (s,t) is a.s. $\{(s,t)\}$.

- o "A.e. point in a.e. level-set is totally disconnected from the rest."
- WLOG s = t = 1.

Kendall's Theorem, Continued

•
$$C(r) := \{(x, y) \in \mathbb{R}^2 : |x - 1| \lor |y - 1| \le r\}.$$

Kendall's Theorem, Continued

- $C(r) := \{(x,y) \in \mathbb{R}^2 : |x-1| \lor |y-1| \le r\}.$
- $J(r) := \{B(1,1) > \sup_{\partial C(r)} B\}.$

Kendall's Theorem, Continued

- $C(r) := \{(x,y) \in \mathbb{R}^2 : |x-1| \lor |y-1| \le r\}.$
- $J(r) := \{B(1,1) > \sup_{\partial C(r)} B\}.$
- Goal: $\liminf_{r\downarrow 0} P(J(r)) > 0$.

- $C(r) := \{(x,y) \in \mathbb{R}^2 : |x-1| \lor |y-1| \le r\}.$
- $J(r) := \{B(1,1) > \sup_{\partial C(r)} B\}.$
- Goal: $\liminf_{r\downarrow 0} P(J(r)) > 0$.
- 0–1 law (Orey and Pruitt, 1973): J(r) infinitely often $r \downarrow 0$ a.s.

- $C(r) := \{(x,y) \in \mathbb{R}^2 : |x-1| \lor |y-1| \le r\}.$
- $J(r) := \{B(1,1) > \sup_{\partial C(r)} B\}.$
- Goal: $\liminf_{r\downarrow 0} P(J(r)) > 0$.
- 0–1 law (Orey and Pruitt, 1973): J(r) infinitely often $r \downarrow 0$ a.s.
- I will sketch the proof of a slightly weaker variant. [In fact it is equivalent.]

•
$$C'(r) := (\{1+r\} \times [1,r]) \cup ([1,r] \times \{1+r\}).$$

•
$$C'(r) := (\{1+r\} \times [1,r]) \cup ([1,r] \times \{1+r\}).$$

Kendall's Theorem, Continued

•
$$C'(r) := (\{1+r\} \times [1,r]) \cup ([1,r] \times \{1+r\}).$$

10/20

- $C'(r) := (\{1+r\} \times [1,r]) \cup ([1,r] \times \{1+r\}).$
- $J'(r) := \{B(1,1) > \sup_{C'(r)} B\}.$

- $C'(r) := (\{1+r\} \times [1,r]) \cup ([1,r] \times \{1+r\}).$
- $J'(r) := \{B(1,1) > \sup_{C'(r)} B\}.$
- Goal: $\lim_{r \to 0} P(J'(r)) > 0$.

- $C'(r) := (\{1+r\} \times [1,r]) \cup ([1,r] \times \{1+r\}).$
- $J'(r) := \{B(1,1) > \sup_{C'(r)} B\}.$
- Goal: $\lim_{r \to 0} P(J'(r)) > 0$.
- Local dynamics + scaling ⇒

$$P(J'(r)) \to P\left\{X(1) + Y(1) > \sup_{(u,v) \in C'(1)} (X(u) + Y(v))\right\} > 0.$$

The Zero-Set of B

Kendall's theorem holds for "most" points in the zero-set too. Can you see it?

The Zero-Set of B

Kendall's theorem holds for "most" points in the zero-set too. Can you see it?

(Kh., Révész, and Shi, 2005)

The Dvoretzky-Erdős-Kakutani Theorem

X and Y = independent BMs in \mathbb{R}^d . Then: "Two BM paths can cross only in dim ≤ 3 ."

The Dvoretzky-Erdős-Kakutani Theorem

X and Y = independent BMs in \mathbb{R}^d . Then: "Two BM paths can cross only in dim < 3."

Theorem (Dvoretzky, Erdős, and Kakutani, 1950)

TFAE:

The Dvoretzky-Erdős-Kakutani Theorem

X and Y = independent BMs in \mathbb{R}^d . Then: "Two BM paths can cross only in dim < 3."

Theorem (Dvoretzky, Erdős, and Kakutani, 1950)

TFAE:

 $\bigcirc X((0,\infty)) \cap Y((0,\infty)) \neq \emptyset;$

The Dvoretzky-Erdős-Kakutani Theorem

X and Y = independent BMs in \mathbb{R}^d . Then: "Two BM paths can cross only in dim < 3."

Theorem (Dvoretzky, Erdős, and Kakutani, 1950)

TFAE:

- \bigcirc $X((0,\infty)) \cap Y((0,\infty)) \neq \emptyset;$
- $0 d \leq 3$.

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Equivalently, TFAE:

$$X([1,2]) \cap Y([1,2]) \neq \emptyset \Leftrightarrow d \leq 3.$$
 (1)

The Dvoretzky–Erdős–Kakutani Theorem, Continued

Equivalently, TFAE:

$$X([1,2]) \cap Y([1,2]) \neq \emptyset \Leftrightarrow d \leq 3.$$
 (1)

There are now several proofs; most involve potential theory and/or PDEs. I will describe a relatively recent, very elementary, proof that is based on ABM (Kh., 2003).

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Equivalently, TFAE:

$$X([1,2]) \cap Y([1,2]) \neq \emptyset \Leftrightarrow d \leq 3.$$
 (1)

There are now several proofs; most involve potential theory and/or PDEs. I will describe a relatively recent, very elementary, proof that is based on ABM (Kh., 2003).

Key idea: $X([1,2]) \cap Y([1,2]) \neq \emptyset \Leftrightarrow$

$$X(s,t) = ABM$$
 $X(s) - Y(t) = 0$ for some $(s,t) \in [1,2]^2$,

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Equivalently, TFAE:

$$X([1,2]) \cap Y([1,2]) \neq \emptyset \quad \Leftrightarrow \quad d \leq 3.$$
 (1)

There are now several proofs; most involve potential theory and/or PDEs. I will describe a relatively recent, very elementary, proof that is based on ABM (Kh., 2003).

Key idea: $X([1,2]) \cap Y([1,2]) \neq \emptyset \Leftrightarrow$

$$X(s,t) = ABM$$
 $X(s) - Y(t) = 0$ for some $(s,t) \in [1,2]^2$,

$$0 \in A\left([1,2]^2\right)$$
.

The Dvoretzky-Erdős-Kakutani Theorem, Continued

• When $d \le 3$ one can directly construct a "local time." This is an a.s.-nontrivial random measure on the set $A^{-1}\{0\} = \{(s,t) \in [1,2]^2 : X(s) = Y(t)\}$. Therefore, $0 \in A([1,2]^2)$ a.s.

The Dvoretzky-Erdős-Kakutani Theorem, Continued

- When $d \le 3$ one can directly construct a "local time." This is an a.s.-nontrivial random measure on the set $A^{-1}\{0\} = \{(s,t) \in [1,2]^2 : X(s) = Y(t)\}$. Therefore, $0 \in A([1,2]^2)$ a.s.
- We prove that if $d \ge 5$ then $A(s,t) = X(s) Y(t) \ne 0$ for all $s, t \in [1,2]$. This proof can be pushed through when d = 4 but needs more care; see the original paper (Kh., *Expos. Math.*, 2003).

The Dvoretzky-Erdős-Kakutani Theorem, Continued

- When $d \le 3$ one can directly construct a "local time." This is an a.s.-nontrivial random measure on the set $A^{-1}\{0\} = \{(s,t) \in [1,2]^2 : X(s) = Y(t)\}$. Therefore, $0 \in A([1,2]^2)$ a.s.
- We prove that if $d \ge 5$ then $A(s,t) = X(s) Y(t) \ne 0$ for all $s, t \in [1,2]$. This proof can be pushed through when d = 4 but needs more care; see the original paper (Kh., *Expos. Math.*, 2003).

The Dvoretzky-Erdős-Kakutani Theorem, Continued

- When $d \le 3$ one can directly construct a "local time." This is an a.s.-nontrivial random measure on the set $A^{-1}\{0\} = \{(s,t) \in [1,2]^2 : X(s) = Y(t)\}$. Therefore, $0 \in A([1,2]^2)$ a.s.
- We prove that if $d \ge 5$ then $A(s,t) = X(s) Y(t) \ne 0$ for all $s,t \in [1,2]$. This proof can be pushed through when d=4 but needs more care; see the original paper (Kh., *Expos. Math.*, 2003).

Exercise

Prove that $A([1,2]^2) = A(1,1) + \bar{A}([0,1]^2)$, where \bar{A} is a copy of A, independent of A(1,1), and $a+S=\{a+s:s\in S\}$ for all $a\in \mathbb{R}^d$ and $S\subset \mathbb{R}^d$.

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let A(s,t) := X(s) - Y(t), $d \ge 5$; m := Leb. meas. on \mathbf{R}^d . By the Exercise,

$$P\left\{0\in A\left([1\,,2]^2\right)\right\}$$

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let A(s,t) := X(s) - Y(t), $d \ge 5$; m := Leb. meas. on \mathbf{R}^d . By the Exercise,

$$P\left\{0\in A\left([1\,,2]^2\right)\right\} \quad = \quad \int_{\mathbf{R}^d} P\left\{x\in A\left([0\,,1]^2\right)\right\} \underbrace{P\left\{A(1\,,1)\in -dx\right\}}_{}$$

The Dvoretzky–Erdős–Kakutani Theorem, Continued

Let $A(s,t) := X(s) - Y(t), d \ge 5$; m := Leb. meas. on \mathbb{R}^d . By the Exercise,

$$P\left\{0\in A\left([1,2]^2\right)\right\} = \int_{\mathbb{R}^d} P\left\{x\in A\left([0,1]^2\right)\right\} \underbrace{P\left\{A(1,1)\in -dx\right\}}_{=\varphi(x)dx,\ \varphi>0}$$

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let A(s,t) := X(s) - Y(t), $d \ge 5$; m := Leb. meas. on \mathbb{R}^d . By the Exercise,

$$\begin{split} P\left\{0\in A\left([1\,,2]^2\right)\right\} &= \int_{\mathbf{R}^d} P\left\{x\in A\left([0\,,1]^2\right)\right\} \underbrace{P\left\{A(1\,,1)\in -dx\right\}}_{=\varphi(x)dx,\;\varphi>0} \\ &\asymp \int_{\mathbf{R}^d} P\left\{x\in A\left([0\,,1]^2\right)\right\}\,dx \end{split}$$

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let A(s,t) := X(s) - Y(t), $d \ge 5$; m := Leb. meas. on \mathbf{R}^d . By the Exercise,

$$P\left\{0 \in A\left([1,2]^{2}\right)\right\} = \int_{\mathbb{R}^{d}} P\left\{x \in A\left([0,1]^{2}\right)\right\} \underbrace{P\left\{A(1,1) \in -dx\right\}}_{=\varphi(x)dx, \ \varphi>0}$$

$$\approx \int_{\mathbb{R}^{d}} P\left\{x \in A\left([0,1]^{2}\right)\right\} dx$$

$$= E\left\{m\left(A\left([0,1]^{2}\right)\right)\right\}.$$

(Lévy, 1940; Kahane, 1983) " $a \approx b$ " means " $a > 0 \Leftrightarrow b > 0$."

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let
$$A(s,t) := X(s) - Y(t)$$
, $d \ge 5$; $m :=$ Leb. meas. on \mathbb{R}^d .

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let
$$A(s,t) := X(s) - Y(t)$$
, $d \ge 5$; $m :=$ Leb. meas. on \mathbb{R}^d . Goal: $Em(A([0,1]^2)) = 0$.

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let
$$A(s,t) := X(s) - Y(t)$$
, $d \ge 5$; $m :=$ Leb. meas. on \mathbb{R}^d . Goal: $Em(A([0,1]^2)) = 0$.

$$A([0,2]^2)$$

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let
$$A(s,t) := X(s) - Y(t)$$
, $d \ge 5$; $m :=$ Leb. meas. on \mathbb{R}^d . Goal: $Em(A([0,1]^2)) = 0$.

$$\underbrace{A([0,2]^2)}_{\sim X(2s)-Y(2t)}$$

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let
$$A(s,t) := X(s) - Y(t)$$
, $d \ge 5$; $m :=$ Leb. meas. on \mathbb{R}^d . Goal: $Em(A([0,1]^2)) = 0$.

$$\underbrace{A([0,2]^2)}_{\sim X(2s)-Y(2t)} \stackrel{\mathcal{D}}{=} \sqrt{2}A([0,1]^2)$$

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let
$$A(s,t) := X(s) - Y(t)$$
, $d \ge 5$; $m :=$ Leb. meas. on \mathbb{R}^d . Goal: $Em(A([0,1]^2)) = 0$.

$$\underbrace{A([0,2]^2)}_{\sim X(2s)-Y(2t)} \stackrel{\mathscr{D}}{=} \sqrt{2}A([0,1]^2)$$

$$\Leftrightarrow m(A([0,2]^2) \stackrel{\mathscr{D}}{=} 2^{d/2} m(A[0,1]^2)$$

The Dvoretzky–Erdős–Kakutani Theorem, Continued

Let
$$A(s,t) := X(s) - Y(t)$$
, $d \ge 5$; $m :=$ Leb. meas. on \mathbb{R}^d . Goal: $Em(A([0,1]^2)) = 0$.

$$\begin{array}{ll}
A([0,2]^2) & \stackrel{\mathscr{D}}{=} \sqrt{2}A([0,1]^2) \\
& \stackrel{\times}{\sim} X(2s) - Y(2t) \\
\Leftrightarrow & m(A([0,2]^2) \stackrel{\mathscr{D}}{=} 2^{d/2}m(A[0,1]^2) \\
& \Leftrightarrow & Em(A([0,2]^2) = 2^{d/2}Em(A([0,1]^2).
\end{array}$$

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let A(s,t) := X(s) - Y(t), $d \ge 5$; m := Leb. meas. on \mathbb{R}^d .

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let A(s,t) := X(s) - Y(t), $d \ge 5$; m := Leb. meas. on \mathbb{R}^d . We know: $Em(A([0,2]^2) = 2^{d/2}Em(A([0,1]^2).$

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let A(s, t) := X(s) - Y(t), $d \ge 5$; m := Leb. meas. on \mathbb{R}^d .

We know: $Em(A([0,2]^2) = 2^{d/2}Em(A([0,1]^2).$

We want: $Em(A([0,1]^2) = 0$.

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let A(s,t) := X(s) - Y(t), $d \ge 5$; m := Leb. meas. on \mathbb{R}^d .

We know: $Em(A([0,2]^2) = 2^{d/2}Em(A([0,1]^2).$

We want: $Em(A([0,1]^2) = 0.$

Note that

$$A([0,2]^2) = A([0,1]^2) \cup A([0,1] \times [1,2])$$
$$\cup A([1,2] \times [0,1]) \cup A([1,2]^2).$$

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let A(s,t) := X(s) - Y(t), $d \ge 5$; m := Leb. meas. on \mathbf{R}^d .

We know: $Em(A([0,2]^2) = 2^{d/2}Em(A([0,1]^2).$

We want: $Em(A([0,1]^2) = 0.$

Note that

$$A([0,2]^2) = A([0,1]^2) \cup A([0,1] \times [1,2])$$
$$\cup A([1,2] \times [0,1]) \cup A([1,2]^2).$$

Therefore,

$$m(A([0,2]^2)) \le m(A([0,1]^2)) + m(A([0,1] \times [1,2])) + m(A([1,2] \times [0,1])) + m(A([1,2]^2))$$

The Dvoretzky-Erdős-Kakutani Theorem, Continued

We know:

$$m(A([0,2]^2)) \le m(A([0,1]^2)) + m(A([0,1] \times [1,2])) + m(A([1,2] \times [0,1])) + m(A([1,2]^2)).$$

The Dvoretzky-Erdős-Kakutani Theorem, Continued

We know:

$$m\left(A\left([0,2]^2\right)\right) \le m\left(A\left([0,1]^2\right)\right) + m(A([0,1] \times [1,2])) + m(A([1,2] \times [0,1])) + m\left(A\left([1,2]^2\right)\right).$$

By the Exercise,

$$\Rightarrow m\left(A\left([1,2]^2\right)\right) \stackrel{\mathscr{D}}{=} m\left(A\left([0,1]^2\right)\right).$$

Same with the other terms in the first display.

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Thus,

$$Em\left(A\left([0,2]^2\right)\right) \leq 4Em\left(A\left([0,1]^2\right)\right)$$

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Thus,

$$\textit{Em}\left(\textit{A}\left([0\,,2]^2\right)\right) \leq 4\textit{Em}\left(\textit{A}\left([0\,,1]^2\right)\right)$$

 \Rightarrow

$$2^{d/2} Em\left(A\left([0,1]^2\right)\right)$$

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Thus,

$$\textit{Em}\left(\textit{A}\left([0\,,2]^2\right)\right) \leq 4\textit{Em}\left(\textit{A}\left([0\,,1]^2\right)\right)$$

 \Rightarrow

$$2^{d/2} \textit{Em}\left(\textit{A}\left([0\,,1]^2\right)\right) \leq 4 \textit{Em}\left(\textit{A}\left([0\,,1]^2\right)\right).$$

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Thus,

$$Em\left(A\left([0\,,2]^2\right)\right) \leq 4Em\left(A\left([0\,,1]^2\right)\right)$$

 \Rightarrow

$$2^{d/2}\textit{Em}\left(\textit{A}\left([0\,,1]^2\right)\right) \leq 4\textit{Em}\left(\textit{A}\left([0\,,1]^2\right)\right).$$

 $d \ge 5 \Rightarrow Em(A([0,1]^2)) = 0$, as desired.

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Thus,

$$\textit{Em}\left(\textit{A}\left([0\,,2]^2\right)\right) \leq 4\textit{Em}\left(\textit{A}\left([0\,,1]^2\right)\right)$$

 \Rightarrow

$$2^{d/2} \textit{Em}\left(\textit{A}\left([0\,,1]^2\right)\right) \leq 4 \textit{Em}\left(\textit{A}\left([0\,,1]^2\right)\right).$$

$$d \ge 5 \Rightarrow Em(A([0,1]^2)) = 0$$
, as desired.

Exercise

Prove that $Em(A([0,1]^2) < \infty$.

In Memory of Ron Pyke (1931–2005)

