
Sketches of a Lecture on Random Numbers

Davar Khoshnevisan∗

July 3, 2004

Abstract

This note describes the essence of a lecture that was
delivered on the 28th of June, 2004 at the University
of Utah. It is recorded for possible future use.

1 Randomness is Everywhere!

Despite the crude apostrophe, this section ti-
tle is not an exaggeration. To further this
point of view, a few minutes ago (11:58 p.m.
Mountain time), as I was typing this docu-
ment I looked at the RSMAS weather database
on the web (http://www.rsmas.miami.edu/
enviroNewtonent/wx/) from where Figure 1 is
borrowed illicitly.

Consider the first of the three plots in Figure 1. It
shows Miami’s temperature on the day of writing
this document (July 3, 2004). The said temperature
is plotted as a function of the time of day.

You will notice that the general pattern of the
plot is a natural one: The day starts out nearly at
its coolest. Then it gets warmer progressively until
around 6:00 p.m. when the cooler evening tempera-
tures start to make a showing. This weather-pattern
is entirely predictable.

However, if you look more closely at the plot you
may notice a myriad of small ”wiggles,” or “fluctu-
ations,” around the said pattern. [The third graph in
Figure 1 exhibits an even more pronounced instance
of similar this fluctuation phenomenon.] These wig-
gles seem to be completely random, and are proba-

∗This work has received partial support from a generous grant
from the National Science Foundation.

Figure 1: 2000 seemingly-random numbers

1

bly caused by various measurement/instrument er-
rors. Similar random wiggles occur in a vastly-
differing number of experimental as well as theoret-
ical works.

This lecture is an attempt to help the student think
about randomness. To this end, I will describe two
examples, one from dynamical systems, and one
from analytic/metric number theory. The point of
commonality of these examples is the inevitable way
in which randomness creeps into the problem at
hand.

2 What does “Random” Mean?

Let us consider the following thought experiment:
There is a machine in the corner of a room. If you
put in a quarter, then the machine will spew out a
number at random. Now imagine that I put in my
quarter, and the machine’s output was, “0.521.” Is
this number “random”?

Surely there is nothing random about the num-
ber 0.521. By this I mean that any procedure
that says, “0.521,” will do so again and again, un-
failingly and without surprise. [For that matter,
0.098123459082349825 is not random.] What seems
to be “random” is the procedure that produced the
number 0.521. That procedure is the collection of all
of the contortions the machine had to go through be-
fore it produced the number “0.521.”

And so, a random variable is an acronym for the
procedure that produces difficult-to-guess numbers.
Instead of formally defining random variables, etc.,
let us plunge ahead and have a look at Figure 2. This
figure is based on a certain algorithm that we will
study shortly. For now, let us call the mentioned al-
gorithm Newton.

Every time we invoke Newton it returns a num-
ber between − 1

2 and 1
2 . Figure 2 shows the result

of 2000 iterations of Newton: On the x-axis we find
the iteration number; the y-axis contains the number
that Newton returned on that iteration.

At first sight it may seem as if Newton is generat-
ing completely random numbers between − 1

2 and
1
2 . But this is not the case. In fact, Newton is plot-
ting the completely non-random (though very com-

Figure 2: 2000 seemingly-random numbers

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

plicated) function that is plotted in Figure 4. Figure 2
is merely evaluating the value of that complicated
function F at every integer between 1 and 2000. But
F is not just any complicated function. It has the in-
teresting property of being “chaotic.” To understand
this we need to first know F .

3 Newton’s Method

Newton’s method is a numerical algorithm that
finds the root of a nice function f . We are interested
in finding a number xroot that satisfies f(xroot) = 0.
In the case that f has several roots we only wish to
find one.

The newton method suggests the following:

1. Start with an initial guess for the root. Call it x0

(the ”seed”).

2. We now improve our initial guess x0 to a bet-
ter guess x1. To do this, plot the line that is
tangent to the plot of f over x0. Then x1 is
the root of the said tangent line. A little calcu-
lus shows us that if f is a “nice” function, then
x1 = x0−f(x0)/f ′(x0), where f ′(x0) is the slope
of the tangent to f at the point (x0, f(x0)).

3. Start with the guess x1 and improve it by drop-
ping in the tangent over the point x1. The root

2

Figure 3: First Step of Newton’s method for f(x) =
sin(x) with x0 = 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

of that tangent line is our next improvement,
x2. That is, x2 = x1 − f(x1)/f ′(x1), where
f ′(x1) is the slope of the tangent to f at the point
(x1, f(x1)).

...

n. Proceed in like manner, and iteratively define

xn = xn−1 −
f(xn−1)
f ′(xn−1)

, n = 2, 3

If f is a “nice” function, then xroot = limn→∞ xn ex-
ists and f(xroot) = 0; i.e., xroot is a root of f .

Figue 3 shows the first step in root-finding for
f(x) = sin(x) where x0 = 1. In other words, suppose
x0 = 1 is our first guess for a zero of the sine function
[plotted with a thick line]. The newton method’s
first step is to first find the line that is tangent to
sine at x0 = 1 [plotted with a dashed line]. Then
it sets x1 to be the zero of the said tangent line [here,
x1 ≈ −0.5774]. Then x1 is a second guess for a zero
of the sine function. Now proceed by performing
the same operations but with x1 in place of x0 ev-
erywhere. And so on.

3.1 A First Example

Consider f(x) = x2. Then it turns out that f ′(x) =
2x for all x, so that the nth stage in the newton algo-
rithm’s update is:

xn = xn−1 −
x2

n−1

2xn−1
=

xn−1

2
.

Because the preceding holds for all n we can iterate
to compute xn in terms of the seed. That is,

xn =
xn−1

2
=

xn−2

4
=

xn−3

8
= · · · = x0

2n
.

So indeed xn converges to xroot, and rapidly.

Question. What does the newton method do to
f(x) = x2−1? This f has two roots (x = ±1). Which
root does the newton method pick up?

3.2 Another Example

Now we turn to the slightly more complicated ex-
ample, f(x) = sin(x). The first step of the Newton
method is depicted by Figure 3.

Suppose, as we did earlier, that x0 = 1. It turns
out that f ′(x) = cos(x). Therefore, the nth step in
the newton method is

xn = xn−1 −
sin(xn−1)
cos(xn−1)

= xn−1 − tan(xn−1).

In particular, x1 = 1− tan(1) ≈ −0.5774; cf. the root
of the dotted line in Figure 3. Going further, we suc-
cessively obtain: x2 = x1 − tan(x1) ≈ 0.0659; x3 =
x2 − tan(x2) ≈ −0.0001; x4 = x3 − tan(x3) ≈ 0.0000.
So in about four steps we have found that sin(0) = 0.
This fact itself is not surprising. The point is that
usually Newton’s method is very efficient.

3.3 A Chaotic Example

We can also apply the newton method to a function
that is nice but has no roots. Such an application is
not in the original spirit of Newton’s method. Nev-
ertheless, it can produce nice effects.

It is not hard to construct nice functions that have
no roots. For instance, consider f(x) = 1+x2. Before

3

Figure 4: 2000 runs of Newton’s method

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

we resort to numerical computations let us first ex-
plain/predict what happens by relying only on pure
though. We start with some x0; say x0 � 0. Then,
after a few iterations of the newton-method, we ob-
tain some xn ≈ 0. At this point, the slope of f is
f ′(xn) = 2xn ≈ 0. This means that xn+1 is either a
very large number, or a very small negative number.
We continue on in this way; again after a few runs
we come back near zero, get thrown far away from
zero, come in, get thrown out, etc.

Of course, we do not expect this process to go any-
where. After all, f(x) = 1 + x2 has no zeros. But
what is interesting is that if you change x0 by a little
bit, then a small positive could become a small neg-
ative one. So instead of begin kicked out to a very
large positive xn+1, all of a sudden the next iteration
kicks us out to a very small negative number. This
is called chaos; it is an emulation of what one might
wish to call “randomness.”

To demonstrate the thought process of the preced-
ing paragraphs I have run 2000 iterations of the new-
ton method on the computer with f(x) = 1+x2 and
x0 = 0.1. This produces a sequence x0, x1, x2, . . .
which is supposed to have many of the properties
of a “random sequence” that takes values between
− ∞ and ∞. In order to obtain a random-looking

sequence with values between − 1
2 and 1

2 from this

let
zn =

1
π

arctan(xn) n = 1, 2,

Figure 4 shows a linear interpolation of the se-
quence z0, z1, . . . when x0 = 0.1 (so that z0 =
(1/π) arctan(0.1) ≈ 0.03173). Figure 1 depicts the
same sequence but does not linearly interpolate. The
interesting feature of this particular example is this:
The newton method is producing a completely non-
random sequence (Fig. 4). But this sequence is so
complicated that if we merely plotted the points
(Fig. 2) without recording the order in which they
came, then the sequence will seem to be random.

4 Normal Numbers

If x is a number between 0 and 1, then we can write
in, in decimal form, as

x = 0.x1x2x3 . . . ,

where the xj ’s are integers between 0 and 9.
A number x = 0.x1x2 . . . is said to be (simply) nor-

mal if 1
10 th of the xj ’s are zeros, 1

10 th are ones, . . .,
and 1

10 th are nines. More precisely put, x is normal
if for every integer a = 0 . . . , 9,

lim
n→∞

{1 ≤ j ≤ n : xj = a}
n

=
1
10

.

It is easy to see that such numbers exist. For in-
stance, x = 0.012345678901234 · · · is normal. Other
similar equi-distributed patterns of 0, . . . , 9 will also
work. But what about other, less trivial, examples?
For instance,

Are the digits of π normal?

In other words, is x = (π/10) normal? You might
find it amusing that this 100-year old problem has
not been solved [despite repeated attempts].

I know of one non-trivial normal number. Here is
the statement:1

1This was found by a Cambridge (undergraduate) student
by the name of David Gowen Champernowne. He wrote this
paper in order to obtain a Fellowship at a College at Cam-
bridge. D. G. Champernowne went on to become a well-known
economist.

4

Theorem 1 (Champernown, 1933) The number x =
0.0123456789101112131415 · · · is normal.

So by now you might be thinking that normal num-
bers are so hard to find because there are not many
normal numbers. Émile Borel showed that nothing
is further from the truth.

Theorem 2 (Borel, 1909) LetN denote the collection of
all normal numbers that are between zero and one. Then
the complement of N has length zero.

It turns out that Theorem 2 is, in fact, a theorem of
probability. It can be rephrased as follows:

Theorem 3 (Theorem 2, rephrased) If we pick a
number X uniformly at random between zero and one,
then X is a normal number with probability one.

To see this, write X in decimal form, X =
0.X1X2X3 · · · . Then it turns out that each of the Xj ’s
takes on the values 0, . . . , 9 with equal probability
1/10. Moreover, the Xj ’s are “statistically indepen-
dent.” Roughly speaking, this means that known
one or more of the Xj ’s does not alter the probabil-
ities for the remaining X’s. The remainder of Theo-
rem 2 then follows from the law of large numbers of
probability theory.2

It turns out that the argument that I have sketched
here is more useful than Theorem 2 itself. One way
to view this argument is this: If X = 0.X1X2X3 . . .
is chosen uniformly at random from [0, 1], then the
Xi’s must be statistically independent random vari-
ables that take the values 0, . . . , 9 with probabilities
1/10 each. Therefore, if we have a random num-
ber generator that generates numbers uniformly at
random from [0, 1], then it must be the case that the
digits of the random number must form a truly ran-
dom sequence with equal probabilities for 0, . . . , 9.
This observation may seem simple, but is at the very
heart of nearly all statistical tests of random number
generators.

2 The law of large numbers, in its full generality, is due to
A. N. Kolmogorov (1930).

5

