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1. The General Linear Model

Let Y be the response variable and X1, . . . ,Xm be the explanatory vari-
ables. The following is the linear model of interest to us:

(1) Y = β1X1 + · · ·+ βmXm + ε,

where β1, . . . , βm are unknown parameters, and ε is “noise.”
Now we take a sample Y1, . . . , Yn. The linear model becomes

(2) Yi = β1Xi1 + · · · + βmXim + εi i = 1, . . . n.

Define

(3) X =




X11 · · · X1m
...

. . .
...

Xn1 · · · Xnm


 β =




β1
...

βm


 .

Note that

(4) Xβ =




β1X11 + · · · + βmX1m
...

βmXn1 + · · ·+ βmXnm


 .

Therefore, the linear model (2) can be written more neatly as

(5) Y = Xβ + ε,

where ε = (ε1, . . . , εn)′. To be sure, Y is n× 1, X is n×m, β is m× 1, and
ε is n× 1.

The matrix X is treated as if it were non-random; it is called the “design
matrix” or the “regression matrix.”

2. Least Squares

Let θ = Xβ, and minimize, over all β, the following quantity:

‖Y − θ‖2 = (Y − θ)′(Y − θ) = ε′ε =
n∑

i=1

ε2
i .(6)

Note that

(7) θ = β1X1 + · · ·+ βmXm,
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Figure 1. The projection θ̂ of Y onto the subspace C (X)

where X i denotes the ith column of the matrix X. That is, θ ∈ C (X)—the
column space of X. So our problem has become: Minimize ‖Y − θ‖ over
all θ ∈ C (X).

A look at Figure 1 will convince you that the closest point θ̂ ∈ C (X)
is the projection of Y onto the subspace C (X). To find a formula for this
projection we first work more generally.

3. Some Geometry

Let S be a subspace of Rn. Recall that this means that:
(1) If x, y ∈ S and α, β ∈ R, then αx + βy ∈ S; and
(2) 0 ∈ S.

Suppose v1, . . . ,vk forms a basis for S; that is, any x ∈ S can be represented
as a linear combination of the vi’s. Define V to be the matrix whose ith
column is vi; that is,

(8) V = [v1, . . . ,vk].

Then any x ∈ Rn is orthogonal to S if and only if x is orthogonal to every vi;
that is, x′vi = 0. Equivalently, x is orthogonal to S if and only if x′V = 0.
In summary,

(9) x ⊥ S ⇐⇒ x′V = 0.

Now the question is: If x ∈ Rn then how can we find its projection u
onto S? Consider Figure 3. From this it follwos that u has two properties.

(1) First of all, u is perpendicular S, so that (u − x)′V = 0. Equiva-
lently, u′V = x′V .
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(2) Secondly, u ∈ S, so there exist α1, . . . , αk ∈ Rk such that u =
α1v1 + · · · + αkvk. Equivalently,

(10) u = V α.

Plug (2) into (1) to find that α′V ′V = x′V . Therefore, if V ′V is invertible,
then α′ = (x′V )(V ′V )−1. Equivalently,

(11) u = V (V ′V )−1V x.

Define

(12) PS = V (V ′V )−1V ′.

Then, u = PSx is the projection of x onto the subspace S.
Note that PS is idempotent (i.e., P2

S = PS) and symmetric (PS = P′
S).

4. Application to Linear Models

Let S = C (X) be the subspace spanned by the columns of X—this is
the column space of X. Then, provided that X ′X is invertible,

(13) PC (X) = X(X ′X)−1X ′.

Therefore, the LSE θ̂ of θ is given by

(14) θ̂ = PC (X)Y = X(X ′X)−1X ′Y .

This is equal to X ′β̂. So X ′Xβ̂ = X ′Y . Equivalently,

(15) β̂ = (X ′X)−1X ′Y .


