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1 Probabilities

Let F be a collection of sets. A probability P is a function, on F, that has the
following properties:

1.
2.

oro W

2

P(@) =0 and P(Q2) = 1;

If A C B then P(A) < P(B);

(Finite additivity). If A and B are disjoint then P(AUB) = P(A4) + P(B);
For all A,B € F,P(AUB) =P(A)+P(B) - P(AN B);

(Countable Additivity). If Ay, As, ... € F are disjoint, then P(U2, A;) =
i1 P(A).

Distribution Functions

Let X denote a random variable. It distribution function is the function

Fa) = P{X <z}, (1)

defined for all real numbers x. It has the following properties:

1.
2.
3.
4.

5.

lim,_,_o F(z) = 0;
lim, o F(x) =1;
F' is right-continuous; i.e., lim,|, F(z) = F(y), for all real y;

F has left-limits; i.e., F'(y—) := lim,, F'(z) exists for all real y. In fact,
Fly=) = P{X <y};

F' is non-decreasing; i.e., F\(z) < F(y) whenever z < y.

It is possible to prove that (1)—(5) are always valid for all what random variables
X. There is also a converse. If F is a function that satisfies (1)—(5), then there
exists a random variable X whose distribution function is F'.



2.1 Discrete Random Variables

We will mostly study two classes of random variables: discrete, and continuous.
We say that X is a discrete random variable if its possible values form a count-
able or finite set. In other words, X is discrete if and only if there exist x1, zo, . ..
such that: P{X = z; for some ¢ > 1} = 1. In this case, we are interested in the
mass function of X, defined as the function p such that

ple) =P{X =z} (i>1). (2)

Implicitly, this means that p(z) = 0 if z # x; for some i. By countable additivity,
Sooeyp(z;) = >, p(z) = 1. By countable additivity, the distribution function
of F' can be computed via the following: For all x,

F(z) =) p(y) (3)

y<z

Occasionally, there are several random variables around and we identify the
mass function of X by px to make the structure clear.

2.2 Continuous Random Variables

A random variable is said to be (absolutely) continuous if there exists a non-
negative function f such that P{X € A} = [, f(x)dzx for all A. The function
f is said to be the density function of X, and has the properties that:

1. f(x) >0 for all x;
2. ffooo f(z)dx = 1.

The distribution function of F' can be computed via the following: For all z,

ﬂ@:/mﬂw@~ (4)

By the fundamental theorem of calculus,

dF
o o)
Occasionally, there are several random variables around and we identify the
density function of X by fx to make the structure clear.
Continuous random variables have the peculiar property that P{X =z} =0
for all x. Equivalently, F(z) = F(x—), so that F' is continuous (not just right-
continuous with left-limits).



3 Expectations

The (mathematical) expectation of a discrete random variable X is defined as
EX =) ap(x), (6)

where p is the mass function. Of course, this is well defined only if ) |z|p(z) <
0o. In this case, we say that X is integrable. Occasionally, EX is also called the
moment, first moment, or the mean of X.

Proposition 1 For all functions g,
Eg(X) =) g()p(x), (7)

provided that g(X) is integrable, and/or Y |g(z)|p(x) < co.

This is not a trivial result if you read things carefully, which you should.
Indeed, the definition of expectation implies that

Eg(X) =Y yP{g(X) =y} = > upyx)(v)- (8)

The (mathematical) expectation of a continuous random variable X is defined
as

EX = /_Oo of () dx, )

where f is the density function. This is well defined when [ _|z|f(z)dz is
finite. In this case, we say that X is integrable. Some times, we write E[X]
and/or E{X} in place of EX.

Proposition 2 For all functions g,

Bg(x) = [ " g(@)f () d, (10)

— 00

provided that g(X) is integrable, and/or [~ _|g(z)|f(z)dx < oco.

oo

As was the case in the discrete setting, this is not a trivial result if you read
things carefully. Indeed, the definition of expectation implies that

Bg(x) = [ " yheo ) dy. (1)

Here is a result that is sometimes useful, and not so well-known to students
of probability:



Proposition 3 Let X be a non-negative integrable random variable with distri-
bution function F. Then,

EX = /000(1 — F(z))dz. (12)

Proof. Let us prove it for continuous random variables. The discrete case is
proved similarly. We have

/000(1 — F(z))dz = /ODO P{X > z}ldr = /OOO (/:o f(y) dy) dr.  (13)

Change the order of integration to find that

/Ooo(l_F(x))da:/Om (/Oy dx) f(y)dy:/oooyf(y)dy. (14)

Because f(y) = 0 for all y < 0, this proves the result. O

It is possible to prove that for all integrable random variables X and Y, and
for all reals a and b,
ElaX +bY] = «EX + DEY. (15)

This justifies the buzz-phrase, “expectation is a linear operation.”

3.1 Moments

Note that any random variable X is integrable if and only if E|X| < co. For all
r > 0, the rth moment of X is E{X"}, provided that the rth absolute moment
E{|X|"} is finite.

In the discrete case,

E[X"] =) a"p(a), (16)

and in the continuous case,
o0
E[X"] = / 2" f(X) dx. (17)
—0o0
When it makes sense, we can consider negative moments as well. For instance,

if X > 0, then E[X"] makes sense for r < 0 as well, but it may be infinite.

Proposition 4 Ifr > 0 and X is a non-negative random variable with E[X"] <
oo, then

B[X"] = r /OOO 21— F(z)) da. (18)



Proof. When r = 1 this is Proposition 3. The proof works similarly. For
instance, when X is continuous,

E[XT]/OOOfo(z)dx/OOO <7’/Owyrldy> f(z)dzx

= r/ y (/ f(x) dm) dy = r/ y"P{X >y} dy.
0 Yy 0
This verifies the proposition in the continuous case. O
A quantity of interest to us is the variance of X. If is defined as
VMX:E“X—EXﬂ, (20)
and is equal to
VarX = E[X?] — (EX)”. (21)

Variance is finite if and only if X has two finite moments.

3.2 A (Very) Partial List of Discrete Distributions

You are expected to be familar with the following discrete distributions:

1. Binomial (n,p). Here, 0 <p <1 and n=1,2,... are fixed, and the mass
function is

p(z) = (me —p)"T ifr=0,...,n. (22)

e EX =np and VarX = np(1 — p).

e The binomial (1,p) distribution is also known as Bernoulli (p).
2. Poisson (A). Here, A > 0 is fixed, and the mass function is:

—AAw
p(m):ex' 2=0,1,2,.... (23)

e EX = X and VarX = \.

3. Negative binomial (n,p). Here, 0 <p <1 and n =1,2,... are fixed, and
the mass function is:

p(z) = <2_i>pn(1p)x” z=nn+1,.... (24)

e EX =n/pand VarX = n(1 — p)/p>.



3.3 A (Very) Partial List of Continuous Distributions

You are expected to be familar with the following continuous distributions:

1. Uniform (a,b). Here, —0o < a < b < oo are fixed, and the density function
is

b—a

f(x) ifa<z<b. (25)

e EX = (a+b)/2 and VarX = (b —a)?/12.

2. Gamma («,3). Here, o, 8 > 0 are fixed, and the density function is
flx) = ﬁ—mafle*ﬁx —o0o <z < o0. (26)

Here, [(a) = [;°t* te~"dt is the (Euler) gamma function. It is defined
for all & > 0, and has the property that I'(14+«) = al'(«). Also, I'(14+n) =
n! for all integers n > 0, whereas I'(1/2) = /7.

e EX = /B3 and VarX = a/p%

e Gamma (1, /) is also known as Exp (8). [The Ezponential distribu-
tion.]

e When n > 1 is an integer, Gamma (n/2,1/2) is also known as x?(n).
[The chi-squared distribution with n degrees of freedom.]

3. N(u,0?). [The normal distribution] Here, —0o < ju < oo and o > 0 are
fixed, and the density function is:

1
flz) = (@m0 —oo <z < o0 (27)

oV 2w

e EX =y and VarX = o2
e N(0,1) is called the standard normal distribution.

e We have the distributional identity, u+oN(0,1) = N(u,0?). Equiv-
alently,
N(M ’ 02) —H
o

= N(0,1). (28)

e The distribution function of a N(0,1) is an important object, and is
always denoted by ®. That is, for all —co < a < oo,

B(a) 1= \/12?/ 12 g, (29)



4 Random Vectors

Let Xy,...,X, be random variables. Then, X := (Xq,...,X,) is a random
vector.
4.1 Distribution Functions

Let X = (X1,...,X,) be an N-dimensional random vector. Its distribution
function is defined by

F(aj‘l,...,.l‘n):P{Xlel,...,Xn§$n}, (30)

valid for all real numbers x4, ..., z,.

If Xq,...,X, are all discrete, then we say that X is discrete. On the other
hand, we say that X is (absolutely) continuous when there exists a non-negative
function f, of n variables, such that for all n-dimensional sets A,

P{XGA}:/u-/f(xl,...,xn)d:cl - da. (31)
A

The function f is called the density function of X. It is also called the joint
density function of X1,..., X,.
Note, in particular, that

F(:vl,...,gcn):/ / ’f(ul,...,un)dun - duy. (32)

By the fundamental theorem of calculus,

o"F

83:18:32 N 8l‘n - f (33)

4.2 Expectations

If g is a real-valued function of n variables, then

Eg(Xl,...,Xn):/ / 9@y, xn) f(1, .. yxn)dey .. da,. (34)

An important special case is when n = 2 and g(x1,x2) = x122. In this case, we
obtain

E[XlXQ] = / / u1u2f(u1 ,UQ) dU1 dUQ. (35)
The covariance between X1 and X5 is defined as

COV(X]_ ,Xz) =E [(X]_ - EX]_) (XQ - EXQ)] . (36)



It turns out that
COV(X1 ,XQ) = E[Xle] - E[Xl]E[XQ} (37)

This is well defined if both X; and X5 have two finite moments. In this case,
the correlation between X; and X is

COV(X1 ,XQ)
VVarX; - VarXsy

provided that 0 < VarXy, VarXs < oo.

The expectation of X = (X1, ..., X,,) is defined as the vector EX whose jth
coordinate is EXj;.

Given a random vector X = (X1,...,X,), its covariance matriz is defined
as C = (Cyj)1<i,j<n, where C;; := Cov(X; X;). This makes sense provided that
the X;’s have two finite moments.

p(X1 ,XQ) = (38)

Lemma 5 Ewvery covariance matriz C is positive semi-definite. That is, x'Cx >
0 for all x € R™. Conversely, every positive semi-definite (n X n) matriz is the
covariance matriz of some random vector.

4.3 Multivariate Normals

Let u = (g1, - .., ttn) be an n-dimensional vector, and C an (n x n)-dimensional
matrix that is positive definite. The latter means that ’Cz > 0 for all non-zero
vectors € = (x1,...,2,). This implies, for instance, that C is invertible, and
the inverse is also positive definite.

We say that X = (Xi,...,X,) has the multivariate normal distribution
N, (p,C) if the density function of X is

1
b x’ﬂ e
) V2mrdetC

for all x = (z1,...,2,) € R

e—%(ﬂ«’—u)/C*l(w—u)7 (39)

f(.%‘h...

e EX = p and Cov(X) =C.

e X ~ N, (p,C) if and only if there exists a positive definite matrix A, and
n i.i.d. standard normals Z1, ..., Z, such that X = p+ AZ. In addition,
A'A=C.

When n = 2, a multivariate normal is called a bivariate normal.
Warning. Suppose X and Y are each normally distributed. Then it is not

true in general that (X ,Y) is bivariate normal. A similar caveat holds for the
n-dimensional case.



5 Independence

Random variables X1, ..., X, are (statistically) independent if

P{XlEAl,...,XnGAn}:P{XlGAl}X"'XP{XnEAn}7 (40)

for all one-dimensional sets Ay,...,A,. It can be shown that X;,..., X, are
independent if and only if for all real numbers 1, ..., z,,

P{Xl le,,Xn Sl’n}:P{Xl Sl'l} Xoee XP{Xn an} (41)
That is, the coordinates of X = (Xj,...,X,) are independent if and only
if Fx(z1,...,2,) = Fx,(x1) -+ Fx, (z,). Another equivalent formulation of
independence is this: For all functions ¢1,. .., g, such that g;(X;) is integrable,

Efg(X1) x ... x g(Xn)] = E[g1(X1)] x - -+ X E[gn(Xn)]. (42)

A ready consequence is this: If X; and X5 are independent, then they are
uncorrelated provided that their correlation exists. Uncorrelated means that
p(X1,Xs2) = 0. This is equivalent to Cov(X;,X3) = 0.

If X1,...,X, are (pairwise) uncorrelated with two finite moments, then

Var(X; +---+ X,,) = VarX; +--- 4+ VarX,,. (43)

Significantly, this is true when the X;’s are independent. In general, the formula
is messier:

n

Var (i XZ-) = VarX; +2 ) Y Cov(X;, X;). (44)

i=1 1<i<j<n

In general, uncorrelated random variables are not independent. An exception
is made for multivariate normals.

Theorem 6 Suppose (X ,Y) ~ Npti(p,C), where X andY are respectively
n-dimensional and k-dimensional random vectors. Then:

1. X is multivariate normal.
2.'Y is multivariate normal.

3. IfEX;Y; =0 for alli,j, then X andY are independent.

For example, suppose (X ,Y) is bivariate normal. Then, X and Y are nor-
mally distributed. If, in addition, Cov(X ,Y) = 0 then X and Y are indepen-
dent.

6 Convergence Criteria
Let X1, X5, ... be a countably-infinite sequence of random variables. There are

several ways to make sense of the statement that X,, — X for a random variable
X. We need a few of these criteria.

10



6.1 Convergence in Distribution

We say that X, converges to X in distribution if
FXn ({E) — F‘X(Qi)7 (45)

for all z € R at which Fx is continuous. We write this as X, 4 x.
Very often, F'x is continuous. In such cases, X, % X ifand only if Fx, (z) —

Fx(z) for all . Note that if X, X and X has a continuous distribution then
also
P{a < X, <b} — P{a < X < b}, (46)

for all a < b.
Similarly, we say that the random vectors X7, Xo,... converge in distribu-
tion to the random vector X when Fx, (a) — Fx(a) for all a at which Fx is

continuous. This convergence is also denoted by X, <4 X.

6.2 Convergence in Probability
We say that X, converges to X in probability if for all € > 0,

P{|X,—X|>e} —0. (47)

We denote this by X, 2 x.

It is the case that if X, . X then X, “, X, but the converse is patently
false. There is one exception to this rule.

Lemma 7 Suppose X, 2 ¢ where ¢ is a non-random constant. Then, X, e
Proof. Fix € > 0. Then,
P{X, - <e}>P{c—e< X, <c+e}=Fx, (c+te)—Fx,(c—¢€). (48)

But Fo(z) =0if z < ¢, and F.(z) =1 if > ¢. Therefore, F, is continuous at
c+te, whence we have Fx (c+€)— Fx, (c—€) — F.(c+€)— F.(c—¢€) = 1. This
proves that P{|X,, — ¢| <€} — 1, which is another way to write the lemma. O

Similar considerations lead us to the following.

Theorem 8 (Slutsky’s theorem) Suppose X, L X andY, % ¢ for a con-

stant c. If g is a continuous function of two wvariables, then g(X, ,Yn) 4,

9(X ,¢). [For instance, try g(x,y) = ax + by, g(x,y) = zye®, etc.]

When c is a random variable this is no longer valid in general.

11



7 Moment Generating Functions

We say that X has a moment generating function if there exists ty > 0 such
that
M (t) := Mx(t) = E[e"X] is finite for all t € [t , o). (49)

If this condition is met, then M is the moment generating function of X.
If and when it exists, the moment generating function of X determines its
entire distribution. Here is a more precise statement.

Theorem 9 (Uniqueness) Suppose X and Y have moment generating func-
tions, and Mx (t) = My (t) for allt sufficiently close to 0. Then, X andY have
the same distribution.

7.1 Some Examples
1. Binomial (n,p). Then, M () exists for all —oco < t < 0o, and
M(t)=(1—p+pe)". (50)

2. Poisson (A). Then, M(¢) exists for all —oo <t < oo, and

M(t) = eMe' =D, (51)

3. Negative Binomial (n,p). Then, M(¢) exists if and only if —co < t <
|log(1 — p)|. In that case, we have also that

M(t) = (Fé)eimet)n. (52)

4. Uniform (a,b). Then, M(t) exists for all —oco < ¢ < 00, and

etb _ eta

M) ==

(53)

5. Gamma («, 3). Then, M(¢) exists if and only if —co < ¢t < . In that

case, we have also that
ﬂ o
Mit)y=(-—] . 4
0= (52 (54

Set a = 1 to find the moment generating function of an exponential (3).

Set « = n/2 and § = 1/2—for a positive integer n—to obtain the moment
generating function of a chi-squared (n).

6. N(p,0?). The moment generating function exists for all —oco < t < oo.

Moreover,
2t2

M(t) = exp (;us + 02> . (55)

12



7.2 Properties

Beside the uniqueness theorem, moment generating functions have two more
properties that are of interest in mathematical statistics.

Theorem 10 (Convergence Theorem) Suppose X1, Xs,... is a sequence of
random variables whose moment generating functions all exists in an interval
[—to ,to] around the origin. Suppose also that for all t € [—tg,to], Mx, (t) —
Mx (t) as n — oo, where M is the moment generating function of a random

variable X. Then, X, 4 x.

Example 11 (Law of Rare Events) Let X,, have the Bin(n,\/n) distribu-
tion, where A > 0 is independent of n. Then, for all —co < t < oo,

A A N\"
My, ()= (1—-=+=e") . 56
w0 = (1-3+2¢') (56)
We claim that for all real numbers ¢,
C n
(1+ﬁ) — e as n — oo. (57)
Let us take this for granted for the time being. Then, it follows at once that

Mx, (t) — exp (=X + Xe') = e =D, (58)

n

That is,
Bin (n,A/n) <, Poisson (A). (59)

This is Poisson’s “law of rare events” (also known as “the law of small numbers”).

Now we wrap up this example by verifying (57). Let f(z) = (1 + x)™, and
Taylor-expand it to find that f(z) =14 nx + %n(n —1)2% + ---. Replace x by
¢/n, and compute to find that

c\" (n—1)c? =
1+5) =1 e ars = 60
(+n tet o —+ Hzﬂ (60)
7=0
and this is the Taylor-series expansion of e°. [There is a little bit more one has
to do to justify the limiting procedure.]

The second property of moment generating functions is that if and when
it exists for a random variable X, then all moments of X exist, and can be
computed from Mx.

Theorem 12 (Moment-Generating Property) Suppose X has a finite mo-
ment generating function in a neighborhood of the origin. Then, E(|X|") exists
for all n, and M (0) = E[X"], where f")(x) denotes the nth derivative of
function f at x.

13



Example 13 Let X be a N(u, 1) random variable. Then we know that M (¢) =
exp(ut + 5t%). Consequently,

M/(t) = (u+ t)eut-‘r(tz/z)7 and M”(t) _ [1 + (/'4 + t)2] eut+(t2/2) (61)

Set t = 0 to find that EX = M’(0) = p and E[X?] = M"(0) = 1 + 2, so that
VarX = E[X?] - (EX)? = 1.

8 Characteristic Functions
The characteristic function of a random variable X is the function
o(t) :=E [e"X] —00 <t < 00. (62)

Here, the “” refers to the complex unit, i = /—1. We may write ¢ as ¢x, for
example, when there are several random variables around.

In practice, you often treat ¥ as if it were a real exponential. However, the
correct way to think of this definition is via the Euler formula, ¢? = cos #+isin 6
for all real numbers 6. Thus,

(1) = Elcos(tX)] + iE[sin(tX))]. (63)

If X has a moment generating function M, then it can be shown that M (it) =
@(t). [This uses the technique of “analytic continuation” from complex analysis.]
In other words, the naive replacement of ¢ by it does what one may guess it
would. However, one advantage of working with ¢ is that it is always well-
defined. The reason is that |cos(tX)| < 1 and |sin(tX)| < 1, so that the
expectations in (63) exist. In addition to having this advantage, ¢ shares most
of the properties of M as well! For example,

Theorem 14 The following hold:

1. (Uniqueness Theorem) Suppose there exists to > 0 such that for all
t e (—to,to0), ¢x(t) = ¢y (t). Then X and Y have the same distribution.

2. (Convergence Theorem) If ¢x (t) — ¢x(t) for allt € (—to,10), then
X, % X. Conversely, if X, <, X, then ¢x,, (t) — ¢x(t) for all t.

8.1 Some Examples

1. Binomial (n,p). Then,

o(t) = M(it) = (1 —p+pe')". (64)

14



2. Poisson (A). Then, _
o(t) = M(it) = N7, (65)

3. Negative Binomial (n,p). Then,
pezt n
=M@t)=| —F———~ | .
ott) = M(it) = (T3 (66)

4. Uniform (a,b). Then,

5. Gamma (o, 3). Then,

6. N(u,0?). Then, because (it)? = —t2,

() = M(it) = exp (iut - "2;2> . (69)

9 Classical Limit Theorems

9.1 The Central Limit Theorem

Theorem 15 (The CLT) Let X1, Xo,... be i.i.d. random variables with two
finite moments. Let p:= EX, and 0 = VarX,. Then,

W 4 N0, 1). (70)

Elementary probability texts prove this by appealing to the convergence the-
orem for moment generating functions. This approach does not work if we know
only that X; has two finite moments, however. However, by using characteristic
functions, we can relax the assumptions to the finite mean and variance case,
as stated.

Proof of the CLT. Define

. Z?:l Xj—np

T, :
ovn

15



Then,

=1]E it | =2
L1x oo (1 (55))]
Jj=1
thanks to independence; see (42) on page 10. Let Y := (X; — p)/o denote the
standardization of X;. Then, it follows that

n

H (t/vn) = [ow, (t/vR)]", (73)

because the Y;’s are i.i.d. Recall the Taylor expansion, ' = 1+ iz — §:E + -

and write ¢y, (s) as E[e’™1] = 1+itEY; — 2?E[Y?]+--- =1- 12+ Thus
o= [1- L] et (74)
_ - _
T 2n ¢

See (57) on page 13. Because e~t"/2 is the characteristic function of N(0,1),

this and the convergence theorem (Theorem 15 on page 15) together prove the
CLT. O

The CLT has a multidimensional counterpart as well. Here is the statement.

Theorem 16 Let X1, Xo,... be i.i.d. k-dimensional random vectors with mean
vector p := EX; and covariance matriz Q := CovX. If Q is non-singular, then

Z?:l XJ —np g
= =

9.2 (Weak) Law of Large Numbers

Theorem 17 (Law of Large Numbers) Suppose X1, Xs,... are i.i.d. and
have a finite first moment. Let u:= EX;. Then,

n
X
Z]fl J P [ (76)

Proof. We will prove this in case there is also a finite variance. The general case
is beyond the scope of these notes. Thanks to the CLT (Theorem 15, page 15),
(X1 + -+ X,)/n converges in distribution to p. Slutsky’s theorem (Theorem
8, page 11) proves that convergence holds also in probability. O

16



9.3 Variance-Stabilization

Let X1, Xs,... beiid. with p = EX; and 02 = VarX; both defined and finite.
Define the partial sums,
Sp=X1 4+ + X, (77)

d
We know that: (i) S, ~ nu in probability; and (ii) (S, — nu) ~ N(0,nc?).
Now use Taylor expansions: For any smooth function h,

/) = 1) + (22 = ) 1), (79)

in probability. By the CLT, (S,/n) — u é N(0,0?/n). Therefore, Slutsky’s
theorem (Theorem 8, page 11) proves that

Vit i (22) < a4 .00 (79)

[Technical conditions: h’ should be continuously-differentiable in a neighbor-
hood of p.]

9.4 Refinements to the CLT

There are many refinements to the CLT. Here is a particularly well-known one.
It gives a description of the farthest the distribution function of normalized
sums is from the normal.

Theorem 18 (Berry—Esseen) If p := E{|X |} < oo, then

"X, -
max ‘P{Mga}—fb(a) il

o3y/n’

< (80)

—oco<a<oo O'\/’E
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