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1. Introduction

Let x be a real number between zero and one. We can write it, in binary form, as

x = 0.x1x2 · · · , where each xj takes the values zero and one. Of primary interest to us,

here, are numbers x such that half of their binary digits are zeros and the remaining

half are ones. More precisely, we wish to know about numbers x that satisfy

lim
n→∞

# {1 ≤ j ≤ n : xj = 1}
n

=
1

2
, (1)

where # denotes cardinality.

Equation (1) characterizes some, but not all, numbers between zero and one. For

example, x = 0 and x = 1 do not satisfy (1), and the following do: 0.10101010 · · · ,
0.01010101 · · · , 0.001001001 · · · , etc.

We can observe that the preceding three examples are all “periodic.” Thus, one

can ask if there are numbers that satisfy (1) whose digits are not periodic. Borel’s

normal number theorem gives an affirmative answer to this question. In fact, Borel’s

theorem implies, among other things, that the collection of non-normal numbers

has zero length. Surprisingly, this fact is intimately connected to diverse areas in

mathematics [probability, ergodic theory, b-adic analysis, analytic number theory, and

logic] and theoretical computer science [source coding, random number generation,

and complexity theory].

In this article, we describe briefly a general form of Borel’s normal-number theorem

and some of its consequences in other areas of mathematics and computer science.

Our discussion complements some related papers by Berkes, Philipp, and Tichy [3],

Harman [16], and Queffélec [22].
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2. Borel’s theorem

Given an integer b ≥ 2 and a number x between zero and one, we can always write

x =
∑∞

j=1 xjb
−j, where the xj’s take values in {0 , . . . , b − 1}. This representation is

unique for all but b-adic rationals; for those we opt for the representation in which

xj = 0 for all but a finite number of j’s.

We may think of {0 , . . . , b−1} as our “alphabet,” in which case a “word” of length

m is nothing but the sequence σ1 . . . σm, where each σj can take any of the values

0 , . . . , b− 1.

Let w be a fixed word of finite length m, and choose and fix integers n ≥ m, as

well as a real number x ∈ [0 , 1]. We can then define N b
n(x ; w) to be the number of

times the word w appears continguously among (x1 , . . . , xn). The reader is invited

to verify that N10
n (0.5 , {5}) = N2

n(0.5 , {1}) = 1 for all n ≥ 1.

A number x is said to be simply normal in base b if

lim
n→∞

N b
n(x ; {j})

n
=

1

b
for all letters j ∈ {0 , . . . , b− 1}. (2)

That is, x is simply normal in base b when, and only when, all possible letters in

the alphabet {0 , . . . , b − 1} are distributed equally in the b-ary representation of x.

Numbers that satisfy (1) are simply normal in base 2.

More generally, a number x is said to be normal in base b if given any finite word

w with letters from the alphabet {0 , . . . , b− 1},

lim
n→∞

N b
n(x ; w)

n
=

1

b|w|
, (3)

where |w| denotes the length of the word m. The number a = 0.101010 · · · is simply

normal, but not normal, in base 2. This can be seen, for example, by inspecting the

two-letter word “11.”

Still more generally, we say that x ∈ [0 , 1] is simply normal if it is simply normal

in all bases b ≥ 2, and [absolutely] normal if it is normal in all bases b ≥ 2. These

definitions are all due to Borel [4].

So far we have seen some “periodic” examples of numbers that are normal in base

2, say. It is also possible to construct non-periodic examples. The first such number

was constructed by Champernowne [9]. He proved in 1933 that the decimal number

0.1234567891011121314 . . . , obtained by concatenating all numerals in their natural

order, is simply normal in base 10. Also, he conjectured that 0.13571113171923 . . . ,
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obtained by concatenating all primes, is simply normal in base 10. Champernowne’s

conjecture was verified in 1946 by Copeland and Erdős [10].

Also, it is possible to construct numbers that are simply normal in one base, but

not in another. For example, the simply normal binary number a = 0.101010 · · · is

not normal in base 10, since a = 2/3 = 0.6̄ in decimal notation.

It was conjectured by Borel [5] in 1950 that all irrational algebraic numbers are

normal; see also Mahler’s 1976 lectures [20] wherein he proved, among other things,

that Champernowne’s number is transendental. Unfortunately, not much further

progress has been made in this direction. For example, it is not known whether

household numbers such as e, π, ln 2, or
√

2 are simply normal in any given base.1

We do not even know if
√

2 has infinitely-many 5’s [say] in its decimal expansion!

I hasten to add that there are compelling arguments that support the conjecture

that e, π,
√

2, and a host of other nice algebraic irrationals, are indeed normal; see

Bailey and Crandall [1].

The preceding examples, and others, were introduced in order to better understand

the remarkable normal number theorem of Borel [4] from 1909:

Theorem 2.1 (Borel). Almost every number in [0 , 1] is normal.

The veracity of this result is now beyond question. However, to paraphrase Doob

[12, p. 591], Borel’s original derivation contains an “unmendably faulty” error. Borel

himself was aware of the gap in his proof, and asked for a complete argument. His

plea was answered a year later by Faber [15, p. 400], and also later by Hausdorff [17].

Theorem 2.1 suggests that it should be easy to find normal numbers. But I am not

aware of any easy-to-describe numbers that are even simply normal. Recently, Becker

and Figueira [2] have built on a constructive proof of Theorem 2.1, due to Sierpiński

[26], to prove the existence of computable normal numbers. Their arguments suggest

possible ways for successively listing out the digits of some normal numbers. But a

direct implementation of this program appears to be at best arduous.

Borel’s theorem is generally considered to be one of the first contributions to the

modern theory of mathematical probability; a fact which Borel himself was aware

of [4]. In order to describe this connection to probability, let us select a number X

uniformly at random from the interval [0 , 1]. The key feature of this random selection

process is that for all Borel sets A ⊆ [0 , 1],

P{X ∈ A} = Lebesgue measure of A, (4)

1x > b is said to be [simply] normal in base b when x/b is [simply] normal in base b.
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where P denotes probability.

We can write X in b-ary form as
∑∞

j=1 Xjb
−j. Borel’s central observation was that

{Xj}∞j=1 is a collection of independent random variables, each taking the values 0, 1,

. . . , b−1 with equal probability. Then he proceeded to [somewhat erroneously] prove

his strong law of large numbers, which was the first of its kind. Borel’s law of large

numbers states that for all letters j ∈ {0 , . . . , b− 1},

P

{
lim

n→∞

1{X1=j} + · · ·+ 1{Xn=j}

n
=

1

b

}
= 1, (5)

where 1A denotes the characteristic function of A. It follows readily from (5) that

with probability one X is simply normal in base b. Because there are only a countable

number of integers b ≥ 2, this proves that X is simply normal. Normality of X is

proved similarly, but one analyses blocks of digits in place of single digits at a time.

Let Nb denote the collection of all numbers normal in base b. The preceding

argument implies that P{X ∈ ∩∞b=2 Nb} = 1. This and (4) together imply Theorem

2.1.

We conclude this section by making a few more comments:

• In 1916 Weyl [28] described a tantalizing generalization of Theorem 2.1 that

is nowadays called Weyl’s equidistribution theorem. In this connection, we

mention also the thesis of Wall [27].

• Riesz [23] devised a slightly more direct proof of Theorem 2.1. His derivation

appeals to Birkhoff’s ergodic theorem in place of Borel’s (or more generally,

Kolmogorov’s) strong law of large numbers. But the general idea is not dis-

similar to the proof outlined above.

• The probabilistic interpretation of Theorem 2.1 has the following striking im-

plication:

Finite-state, finite-time random number generators do not exist. (6)

Of course, this does not preclude the possibility of generating a random num-

ber one digit at a time. But it justifies our present day use of psuedo random-

number generators; see Knuth [18] for more on this topic. Remarkably, a

complexity theory analogue to (6) completely characterizes all normal num-

bers; see Schnorr and Stimm [25] and Bourke, Hitchcock, and Vinochandran

[6]. In this general direction, see also the interesting works of Chaitin [8] and

Lutz [19].
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• The proof of Borel’s theorem is more interesting than the theorem itself, be-

cause it identifies the digits of a uniform random variable as independent and

identically distributed. Such sequences have interesting properties that are

not described by Theorem 2.1. Next we mention one of the many possible

examples that support our claim.

Let Rn(x) denote the length of the largest run of ones in the first n binary

digits of x. [A run of ones is a continguous sequences of ones.] Then, according

to a theorem of Erdős and Rényi [14] from 1970,

lim
n→∞

Rn(x)

log2(n)
= 1 for almost every x ∈ [0 , 1]. (7)

Because this involves words of arbitrarily large length, it is not a statement

about normal number per se. There are variants of (7) that are valid in all

bases, as well.

3. Unbiased sampling

As was implied earlier, one of the perplexing features of normal numbers is that

they are abundant (Theorem 2.1), and yet we do not know of a single concrete number

that is normal. This has puzzled many researchers, but appears to be a fact that goes

beyond normal numbers, or even the usual structure of the real line.

Next we present two examples that examine analogous problems in similar settings.

These examples suggest the following general principle: Quite often, schemes that

involve taking “unbiased samples from large sets” lead to notions of normality that

are hard to pinpoint concretely. I believe that this principle explains our inability in

deciding whether or not a given number is normal. But I have no proof [nor disproof].

3.1. Cantor’s set. For our first example, let us consider the ternary Cantor set C,

which we can think of as all numbers x ∈ [0 , 1] whose ternary expansion
∑∞

j=1 xj3
−j

consists only of digits xj ∈ {0 , 2}.
In order to take an “unbiased sample” from C, it is necessary and sufficient to find

a probability measure on C that is as “flat” as possible. [We are deliberately being

vague here.] There are many senses in which the most flat probability measure on C

can be identified with the restriction mC of the usual log3(2)-dimensional Hausdorff

measure to C. That is, mC is the Cantor–Lebesgue measure. Now it is not difficult
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to show that mC can be defined directly as follows:

mC(A) := P

{
∞∑

j=1

Xj

3j
∈ A

}
for all Borel sets A ⊆ [0 , 1], (8)

where X1, X2, . . . are independent random variables, taking the values zero and two

with probability 1/2 each. A ready application of the strong law of large numbers

then reveals that the following holds for mC-almost every x ∈ C:

lim
n→∞

N3
n(x ; w)

n
=

1

2|w|
for all words w ∈

∞⋃
k=1

{0 , 2}k. (9)

We say that a number x ∈ C is normal in the Cantor set C if it satisfies (9).

Although mC-almost every number in C is normal in C, I am not aware of any

concrete examples. On the other hand, I point out that we do not know very many

concrete numbers in C at all—be they normal or otherwise. By analogy, this suggests

the sightly uncomfortable fact that we do not know very many numbers—normal as

well as non-normal—in [0 , 1].

3.2. Wiener’s measure. Our second example is a little more sophisticated, and

assumes that the reader has a good background in probability and infinite-dimensional

analysis. This example can be skipped on first reading.

Let C0[0 , 1] denote the colletion of all continuous functions f : [0 , 1] → R such that

f(0) = 0. As usual, we endow C0[0 , 1] with the [compact-open] topology of uniform

convergence. We seek to find a flat measure on C0[0 , 1]. The latter space is an abelian

group under pointwise addition. But it fails to support a Haar measure, primarily

because it is not locally compact. Nonetheless, there are measures on C0[0 , 1] that

are relatively flat. We describe one next.

Define C0
n[0 , 1] to be the collection of all piecewise continuous functions f : [0 , 1] →

R that have the following properties:

(1) f(0) = 0;

(2) |f((k + 1)/n)− f(k/n)| = 1/
√

n for all k = 0, . . . , n− 1;

(3) for all x between k/n and (k + 1)/n), we define f(x) by interpolating linearly

the values f(k/n) and f((k + 1)/n).

Evidently, ∪∞n=1C
0
n[0 , 1] is dense in C0[0 , 1]. Because each C0

n[0 , 1] is a finite collec-

tion, the uniform measure mn on C0
n[0 , 1] is decidedly the flattest—or least biased—

measure on C0
n[0 , 1]. In 1952, Donsker [11] proved that mn converges (weak-∗) to

Wiener’s measure [29]. In this sense, Wiener’s measure W is a relatively flat measure
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on C0[0 , 1]. Moreover, it can be shown that given any complete orthonormal basis

{φk}∞k=1 of L2[0 , 1], there exist independent, standard normal variables {Xk}∞k=1—

defined on C0[0 , 1]—such that

f '
∞∑

k=1

φkXk(f) for W -almost all f ∈ C0[0 , 1]. (10)

Choose and fix a function G ∈ L1(e−x2/2dx). Then, by the strong law of large

numbers,

lim
n→∞

∑n
k=1 G(Xk(f))

n
=

1√
2π

∫ ∞

−∞
G(x)e−x2/2 dx, (11)

for W -almost all f ∈ C0[0 , 1]. A density argument shows that [29] holds for all

G ∈ L1(e−x2/2dx) outside a single W -null set of functions f . Thus, we call a function

f ∈ C0[0 , 1] normal if it satisfies (11) for all G ∈ L1(e−x2/2dx).

Choose and fixed a function f ∈ C0[0 , 1]. We now ask the following question:

Is f is normal? (12)

The Xk(f)’s are defined abstractly via Xk := λ(φk), where λ : L2[0 , 1] → L2(W )

denote Wiener’s isometry. Because each Xk is defined via a Hilbertian isometry, it is

not clear how one understands Xk(f) for a fixed f ∈ C0[0 , 1]. Thus, there is little

hope in answering (12), even when f is nice.

4. Non-normal numbers

At first glance, one might imagine that because normal numbers are so complicated,

non-normal numbers are not. Unfortunately, this is not the case. We conclude this

article by mentioning two striking results that showcase some of the complex beauty

of non-normal numbers.

4.1. Eggleston’s theorem. Let us choose and fix a base b ≥ 2 and a probability

vector p := (p0 , . . . , pb−1); that is, 0 ≤ pj ≤ 1 and p0 + · · · + pb−1 = 1. Consider the

set

E (p) :=

{
x ∈ [0 , 1] : lim

n→∞

N b
n(x ; {j})

n
= pj for all j = 0 , . . . , b− 1

}
. (13)

Note that if any one of the pj’s is different from 1/b, then all elements of E (p) are

non-normal. In 1949, Eggleston [13] confirmed a conjecture of I. J. Good by deriving

the following result.
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Theorem 4.1 (Eggleston). The Hausdorff dimension of E (p) is the thermodynamic

entropy
∑b−1

j=0 pj logb(1/pj), where 0× logb(1/0) := 0.

This theorem is true even if p0 = · · · = pb−1 = 1/b, but yields a weaker result

than Borel’s theorem in that case. Ziv and Lempel [30] developed related ideas in the

context of source coding.

4.2. Cassels’s theorem. For the second, and final, example of this article we turn

to a striking theorem of Cassels [7] from 1959:

Theorem 4.2 (Cassels). Define the function f : [0 , 1] → R by

f(x) :=
∞∑

j=1

xj

3j
, (14)

where x1, x2, . . . denote the binary digits of x. Then, for almost every x ∈ [0 , 1], f(x)

is simply normal with respect to every base b that is not a power of 3.

It is manifestly true that Cassels’s f(x) is not normal in bases 3, 9, etc. Hence, non-

normal numbers too have complicated structure. We end our discussion by making

two further remarks:

• Cassels’s theorem answered a question of Hugo Steinhaus, and was later ex-

tended by Schmidt [24]. Pollington [21] derived a further refinement.

• Because 2f is a bijection between [0 , 1] and the Cantor set C, Cassels’s theo-

rem constructs an uncountable number of points in 1
2
C that are simply normal

with respect to every base b that is not a power of 3. Not surprisingly, we do

not have any concrete examples of such numbers.
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[14] Erdős, P. and A. Rényi (1970). On a new law of large numbers, J. Analyse Math. 23,
103–111.
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[28] Weyl, Herman (1916). Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77,
313–352

[29] Wiener, Norbert (1923). Differential space, J. Math. Physics 2, 131–174
[30] Ziv, Jacob, and Abraham Lempel (1978). Compression of individual sequences via variable-

rate coding, IEEE Trans. Inform. Theory 24(5), 530–536

Davar Khoshnevisan: Department of Mathematics, The University of Utah, 155 S.

1400 E. Salt Lake City, UT 84112–0090

E-mail address: davar@math.utah.edu
URL: http://www.math.utah.edu/~davar


