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Lecture 1

Introduction

What is a Lévy process?

In a nutshell, Lévy processes are continuous-time random walks that are
“mathematically viable.” We are about to describe these processes in greater
depth, but it might help to keep in mind Brownian motion as a central ex-
ample of a “mathematically viable” continuous-time random walk.

A stochastic process X := {Xt}t≥0 [with values in Rd] is a continuous-
time random walk if X0 = 0 [the process starts at the origin at time 0] and
X has i.i.d. increments. The latter property means that for all s, t ≥ 0:

(1) Xt+s − Xs and Xt have the same distribution; and
(2) Xt+s − Xs is independent of {Xr}r∈[0,s].

While the preceding definition makes perfect sense in discrete time, it does
not lend itself to a rich continuous-time theory as the following example
might suggest:

Consider the following deterministic [i.e., nonrandom] equation:

f (t + s) = f (t) + f (s) for all s, t ≥ 0. (1)

It is a fundamental fact that all Borel-measurable solutions to equation (1)
have the form f (t) = at for some a ≥ 0; see Theorem 9 below. But
it is also known (Hamel, 1905) that, under the axiom of choice, (1) has
nonmeasurable nonlinear solutions [which can be shown are nowhere
continuous also]; see Theorem 10. Choose and fix one such badly-behaved
solution, call it f , and observe that Xt := f (t) is a [nonrandom] continuous-
time random walk! The nonlinear solutions to the nonrandom equation
(1) have very bad measurability properties, and therefore the class of all

1



2 1. Introduction

continuous-time random walks contains such badly-behaved objects that it
is hopeless to study them seriously. Fortunately, there is a fix that is simple
to describe:

Definition 1. A Lévy process X := {Xt}t≥0 is a continuous-time random
walk such that the trajectories, or paths, of X [i.e., the function t 7Ï Xt as
a function of ω ∈ Ω] are right-continuous with left limits everywhere.1 �

This is a course about Lévy processes. Some standard references are
the following books: Bertoin (1996); Kyprianou (2006); Sato (1999); see also
the survey monograph by Fristedt (1974). The notation of this course is
on the whole borrowed from Math. 6040 (Khoshnevisan, 2007).

Infinite divisibility

Suppose X := {Xt}t≥0 is a Lévy process on Rd , and let µt denote the
distribution [or “law”] of Xt for every t ≥ 0. For all n ≥ 1, t > 0,

Xt =
n∑

j=1

(
Xjt/n − X(j−1)t/n

)
(2)

is a sum of n i.i.d. random variables. For example, we set t = 1 to find that

µ1 = µ1/n ∗ · · · ∗ µ1/n (n times),

where “∗” denotes convolution. Equivalently, we can write this using the
Fourier transform as µ̂1 = µ̂n1/n; in particular, µ̂1/n

1 is the Fourier transform
of a probability measure.

We can also apply (2) with t := n to find that

µn = µ1 ∗ · · · ∗ µ1 (n times),

or equivalently, (µ̂1)n is also the Fourier transform of a probability mea-
sure. Thus, to summarize, (µ̂1)t is the Fourier transform of a probability
measure for all rationals t ≥ 0. In fact, a little thought shows us that (µ̂1)t
is the Fourier transform of µt for all rational t ≥ 0. Thus, we can write
probabilistically,

[
µ̂1(ξ)

]t = Eeiξ·Xt = µ̂t (ξ) for all ξ ∈ Rd,

for all rational t ≥ 0. And because X has right-continuous trajectories, for
all t ≥ 0 we can take rational s ↓ t to deduce that the preceding holds
for all t ≥ 0. This shows (µ̂1)t is the Fourier transform of a probability
measure for every t ≥ 0.

1In other words, Xt = lims↓t Xs and Xt− := lims↑t Xs exists for all t > 0.
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Definition 2. A Borel probability measure ρ on Rd is said to be infinitely
divisible if (ρ̂)t is the Fourier transform of a probability measure for every
t ≥ 0. �

Thus, if X is a Lévy process then the distribution of X1 is infinitely
divisible. In fact, the very same reasoning shows that the distribution of
Xs is infinitely divisible for all s ≥ 0. A remarkable fact, due to Lévy and
then Itô, is that the converse is also true: Every infinitely-divisible measure
ρ on Rd corresponds in a unique way to a Lévy process X in the sense that
the law [i.e., the distribution] of X1 is ρ. Thus, we can see immediately that
the standard-normal law on R corresponds to one-dimensional Brownian
motion, and Poiss(λ) to a rate-λ Poisson process on the line. In other words,
the study of Lévy processes on Rd is in principle completely equivalent to
the analysis of all infinitely-divisible laws on Rd .

The Lévy–Khintchine formula

We need to introduce some terminology before we can characterize infinitely-
divisible laws on Rd .
Definition 3. A Lévy triple is a trio (a , σ,m) where a ∈ Rd , σ is a (d × d)
matrix, and m is a Borel measure on Rd such that

m({0}) = 0 and
∫

Rd

(
1 ∧ ‖x‖2

)
m(dx) <∞. (3)

The matrix σ ′σ is called the diffusion [or Gaussian] covariance matrix,
and m is called the Lévy measure. �

Although m(Rd) might be infinite, (3) ensures that m(A) <∞ for every
open set A that does not contain the origin. Indeed, the fact that q 7Ï
q/(1 + q) is decreasing on R+ implies that

m
{
z ∈ Rd : ‖z‖ > r

}
≤ 1 + r2

r2 ·
∫

Rd

‖x‖2
1 + ‖x‖2 m(dx)

≤ 1 + r2

r2 ·
∫

Rd

(
1 ∧ ‖x‖2

)
m(dx) <∞.

(4)

A similar argument shows that
∫

Rd (q ∧ ‖x‖2)m(dx) <∞ for all q > 0.

Definition 4. A Lévy exponent is the function Ψ : Rd → C, where

Ψ(ξ) := i(a · ξ) + 1
2‖σξ‖

2 +
∫

Rd

[
1− eiξ·z + i(ξ · z)1l(0,1)(‖z‖)

]
m(dz), (5)

where (a , σ,m) is a Lévy triple. �

Lemma 5. The integral in (5) is absolutely convergent, and Ψ is continu-
ous with Ψ(0) = 0.
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Proof. Because 1−cos θ ≤ θ2/2 and θ− sin θ ≤ θ2/6 for all θ ∈ R [Taylor’s
theorem with remainder],

∣∣∣∣∣
1− e−iξ·z − i(ξ · z)1l(0,1)(‖z‖)

‖ξ‖2

∣∣∣∣∣ ≤
(
‖z‖2 ∧ 1

‖ξ‖2

)
.

The definition of a Lévy measure then tells us that the integral in Ψ is
absolutely convergent. And the remaining assertions follow easily from
this. �

The following result is called the Lévy–Khintchine formula; it provides
the reason for introducing all this terminology.
Theorem 6 (Khintchine, 1938; Kolmogorov, 1932; Lévy, 1934). A Borel
probability measure ρ on Rd is infinitely divisible if and only if ρ̂(ξ) =
exp(−Ψ(ξ)) for all ξ ∈ Rd , where Ψ is a Lévy exponent. The corresponding
triple (a , σ,m) determines ρ uniquely.

See also Lévy (1937, pp. 212–220).
The uniqueness portion will follow immediately from Fourier analysis;

see also the proof of Theorem 3 below [page 29]. That proof also implies
the more important half of the theorem; namely, that if ρ̂ = e−Ψ for a
Lévy exponent Ψ, then ρ is infinitely divisible. The proof of the remaining
half is a difficult central-limit-type argument, and does not concern our
immediate needs; you can find it in Sato (1999, pages 42–45).

There are many other ways of writing the Lévy–Khintchine formula.
Here is one that is used frequently: Suppose

∫
Rd (1∧‖x‖)m(dx) <∞. Then∫

Rd (1− eiξ·z)m(dz) and
∫

Rd i(ξ · z)m(dz) both converge absolutely; this can
be seen from a Taylor expansion similar to the one in the proof of Lemma
5. Therefore, in the case that

∫
Rd (1 ∧ ‖x‖)m(dz) <∞, we can also write

Ψ(ξ) = i(b · ξ) + 1
2‖σξ‖

2 +
∫

Rd

[
1− eiξ·z

]
m(dz),

where b := a −
∫

‖z‖<1
zm(dz).

(6)

Let us conclude with a few basic properties of Lévy exponents.
Lemma 7. If Ψ is a Lévy exponent, then Ψ and ReΨ are also Lévy expo-
nents. Moreover, Ψ(ξ) = Ψ(−ξ) and ReΨ(ξ) ≥ 0 for all ξ ∈ Rd .

On equation (1)

This section is not covered in the lectures. Nonetheless it would be a
shame to say nothing indepth about the functional equation (1). Therefore,
we close this chapter with a discussion on (1).
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Suppose f solves (1). Then f (0) = 2f (0), whence we have f (0) = 0.
Therefore, we can extend f to a function F on all of R as follows: F (x) =
f (x) if x ≥ 0; and F (x) = −f (−x) for all x < 0. Note that F solves “Cauchy’s
functional equation,”

F (x + y) = F (x) + F (y) for every x, y ∈ R. (7)
The preceding reduces the analysis of (1) to an analysis of (7). Therefore,
we investigate the latter equation from now on. The following is immediate,
but important.

Proposition 8. If F solves (7), then F (kx) = kF (x) for all x ∈ R and all
integers k ≥ 2. In particular, F (y) = yF (1) for all rationals y .

Suppose F : R → R and G : R → R are right-continuous functions that
have left limits everywhere and agree on the rationals. Then it is easy
to see that F = G on all of R. As a consequence of Proposition 8, we
find that if F solves (7) and F is right continuous with left limits every-
where, then F (x) = xF (1) for all x; i.e., F is a linear function. As it turns
out, “right continuous with left limits” can be reduced to the seemingly-
stronger condition “Lebesgue measurable,” without changing the content
of the preceding discussion. More precisely, we have the following.

Theorem 9. Every Lebesgue-measurable solution to (7) is linear.

This is classical; we follow a more recent proof—due to Fitzsimmons
(1995)—that is simpler than the classical one.

Proof. Let F be a Lebesgue-measurable solution to (1), consider the C-
valued function G(x) := exp(iF (x)), defined for every x ∈ R. It is clear
that

G(x + y) = G(x)G(y) for all x, y ∈ R; (8)
compare with (1). Because |G(x)| = 1, G is locally integrable and never
vanishes. Therefore,

∫ a
0 G(x) dx 6= 0 for almost every a ≥ 0. We can now

integrate (8) over all y ∈ [0 , a] [for almost all a ≥ 0] to obtain the following:
For almost all a ∈ R, we have

∫ a+x

x
G(y) dy = G(x) ·

∫ a

0
G(y) dy for every x ∈ R. (9)

The dominated convergence theorem implies that the left-hand side is a
continuous function of x, and hence so is the right-hand side; i.e., G is
continuous. Thanks to Proposition 8 every continuous solution to (8) is
a complex exponential. Therefore, there exists θ ∈ R such that G(x) =
eiθx for all x ∈ R. From this it follows that F (x) = θx + 2πN(x), where
N : R → Z is measurable. It suffices to prove that N(x) = 0 for all x.
But this is not too difficult to establish. Indeed, we note that N solves (7).
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Therefore, N(x)/k = N(x/k) for all x ∈ R and integers k ≥ 2 (Proposition
8). Consequently, N(x)/k is an integer for all x ∈ R and k ≥ 2; and this
implies readily that N(x) = 0 [for otherwise, we could set k = 2|N(x)|]. �

Theorem 10 (Hamel, 1905). Assume the axiom of choice. Then, there are
uncountably-many nonmeasurable solutions to (7).

In fact, the proof will show that there are “many more” nonmeasurable
solutions to (7) than there are measurable ones.

Proof (sketch). Let H—a socalled “Hamel basis”—denote the maximal
linearly-independent subset of R, where R is viewed as a vector space
over the field Q of rationals. The existence of H follows from the axiom
of choice (Hewitt and Stromberg, 1965, (3.12), p. 14). And it follows fairly
easily from the axiom of choice (Hewitt and Stromberg, 1965, (3.20), p. 18)
that for every x ∈ R there exists a unique function ξx : H→ Q such that:
(i) ξx(h) = 0 for all but a finite number of h ∈ H; and (ii) x =

∑
h∈H hξx(h).

Because a countable union of countable sets is itself countable [this follows,
for instance, from the axiom of choice], we can deduce that H has the car-
dinality c of the continuum. [For if the cardinality of H were < c, then H
would be countable.]

Now let F denote the collection of all functions φ : H → R; the cardi-
nality of F is 2c > c.

Define

Fφ(x) :=
∑

h∈H
φ(h)ξx(h) for all x ∈ R and φ ∈ F. (10)

Since H is linearly independent, it follows that if φ and ψ are two different
elements of F, then Fφ 6= Fψ . Consequently, the cardinality of {Fφ}φ∈F is
2c [one for every φ ∈ F].

The definition of the ξx ’s implies that Fφ solves (7) for every φ ∈ F.
It follows from Proposition 8 that if Fφ were continuous, then Fφ would
be linear; in fact, Fφ(x) = xFφ(1) for all x ∈ R. Note that the collection of
all numbers Fφ(1) such that Fφ is continuous is at most c. Therefore, the
cardinality of all linear/continuous solutions to (7) that have the form Fφ
for some φ ∈ F is at most c. Because {Fφ}φ∈F has cardinality 2c > c, it
follows that there are at least 2c − c = 2c different solutions to (7) none of
which are continuous. Theorem 9 then implies that every discontinuous
solution Fφ to (7) is nonmeasurable, and this completes the proof. �

Interestingly enough, Lévy (1961)—after whom the stochastic processes
of this course are named—has used the Hamel basis H of the preceding
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proof in order to construct an “explicitly constructed” set in R that is not
measurable.

Problems for Lecture 1
1. Verify Lemma 7.

2. Prove that every Lévy process X on Rd is continuous in probability; i.e., if
s → t then Xs → Xt in probability. [Our later examples show that convergence
in probability cannot in general be improved to almost-sure convergence.]

3. Verify that if X is a Lévy process on Rd , then {Xjh}∞j=0 is a d-dimensional
random walk for every fixed h > 0.

4. Let µ be an infinitely-divisible distribution on Rd , so that for every integer
n ≥ 1 there exists a Borel probability measure µn on Rd such that µ̂1/n = µ̂n .
Observe that limn→∞ |µ̂n|2 is the indicator of the set {ξ ∈ Rd : µ̂(ξ) 6= 0}. Use
this to prove that µ̂ is never zero. (Hint: You may use the following theorem of
P. Lévy without proof: If {µn}n≥1 is a sequence of probability measures on Rd

such that q := limn→∞ µ̂n exists and q is continuous in an open neighborhood
of the origin, then there exists a probability measure µ such that q = µ̂, and
µn Ñ µ, in particular, µ̂n → µ̂ everywhere.)

5. Is Unif (a , b) infinitely divisible? (Hint: Exercise 4!)

6. Verify the following:
(1) Y is infinitely divisible iff its law [or distribution] is;
(2) Constants are infinitely-divisible random variables;
(3) N(µ , σ2) is infinitely divisible for every fixed µ ∈ R and σ2 > 0;
(4) Poiss(λ) is infinitely divisible for every λ > 0 fixed;
(5) Gamma (α , λ) is infinitely divisible for all α, λ > 0 fixed. Recall that the

density function of Gamma (α , λ) is f (x) := λαxα−1e−λx/Γ(α) · 1l(0,∞)(x).
Gamma laws include Exp (λ) = Gamma (1 , λ) and ξ2

k = Gamma (k , 1/2)
for k ≥ 1.

7. One can combine Lévy processes to form new ones:
(1) Prove that if X1, . . . , Xk are independent Lévy processes with values in

Rd , then Yt := X1
t +· · ·+Xk

t defines a Lévy process on Rd as well. Identify
the Lévy triple and exponent of Y in terms of those of Xj ’s.

(2) Prove that if X1, X2, · · · , Xk are independent Lévy processes with re-
spective values in Rd1 , . . . ,Rdk , then Zt := (X1

t , . . . , Xk
t ) defines a Lévy

process with values in Rd , where d = d1 + · · · + dk . Identify the Lévy
triple and exponent of Z in terms of those of Xj ’s. In particular, prove
that if X is a Lévy process on Rd , then Yt := (t , Xt ) defines a Lévy pro-
cess on R+×Rd . Identify the Lévy triple and exponent of Y in terms of
those of Xj ’s.
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8. Prove that lim sup‖ξ‖→∞ |Ψ(ξ)|/‖ξ‖2 <∞ for all Lévy exponents Ψ.

9 (Time reversal). Verify that if X is a Lévy process on Rd , then X̃t := −Xt
defines a Lévy process. Identify its Lévy triple and exponent of X̃ in terms of
those of X. Furthermore, prove that for every fixed time t ≥ 0, the processes
{X(t−s)− − Xt}s∈[0,t] and {X̃s}s∈[0,t] have the same finite-dimensional distributions.



Lecture 2

Some Examples

Our immediate goal is to see some examples of Lévy processes, and/or
infinitely-divisible laws on Rd .

Uniform motion

Choose and fix a nonrandom a ∈ Rd and define

Xt := at for all t ≥ 0. (1)

Then, {Xt}t≥0 is a [nonrandom] Lévy process with Lévy triple (a , 0 , 0).
The process {Xt}t≥0 denotes uniform motion in the direction of a.

Poisson processes on the real line

If N = Poiss(λ) for some λ > 0, then

EeiξN =
∞∑

n=0
eiξn · e−λλn

n! = exp
(
−λ
(
1− eiξ

))
. (2)

That is, E exp(iξN) = exp(−Ψ(ξ)), where

Ψ(ξ) =
∫

R

(
1− eiξz − iξz1l(0,1)(|z|)

)
m(dz),

and m(dz) := λδ{1}(dz). The corresponding Lévy process is called the
Poisson process with intensity parameter λ.

9
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Nonstandard Brownian motion with drift

The Lévy triple (0 , I , 0), where “I” denotes the (d × d) identity matrix,
belongs to a vector of d i.i.d. standard-normal random variables, and the
corresponding Lévy process is [standard] d-dimensional Brownian motion.
We can generalize this example easily: Choose and fix a vector a ∈ Rd , and
a (d×d) matrix σ , and consider the Lévy triple (a , σ , 0). The corresponding
Lévy exponent is

Ψ(ξ) = i(a · ξ) + 1
2‖σξ‖

2.

Therefore, Ψ is the Lévy exponent of random vector X in Rd if and only
if X = −a + σZ where Z is a vector of d i.i.d. standard-normal random
variables. The corresponding Lévy process is described by Wt := −at +
σBt , where B is standard Brownian motion [check!] . The jth coordinate of
W is a Brownian motion with mean −aj and variance v2

j := (σ ′σ )j,j , and the
coordinates of W are not in general independent. Since limt→∞(Wt/t) =
−a a.s. by the law of large numbers for Brownian motion, −a is called the
“drift” of the nonstandard Brownian motion W .

Isotropic stable laws

Choose and fix a number α. An isotropic stable law of index α is the
infinitely-divisible distribution with Lévy exponent Ψ(ξ) = c‖ξ‖α, where
c ∈ R is a fixed constant. The corresponding Lévy process is called the
isotropic stable process with index α. We consider only random vectors
with Lévy exponent exp(−c‖ξ‖α) in this discussion.

Of course, c = 0 leads to Ψ ≡ 0, which is the exponent of the infinitely
divisible, but trivial, random variable X ≡ 0. Therefore, we study only
c 6= 0. Also, we need | exp(−Ψ(ξ))| = exp{−c‖ξ‖α} ≤ 1, and this means
that c cannot be negative. Finally, Ψ(0) = 0, and hence we have α > 0.

Lemma 1 (Lévy). Ψ(ξ) = c‖ξ‖α is a Lévy exponent iff α ∈ (0 , 2].

The case α = 2 is the Gaussian case we just saw. And α = 1 is also
noteworthy; the resulting distribution is the “isotropic [or symmetric, in
dimension one] Cauchy distribution” whose density is

f (x) =
Γ
(d+1

2
)

π(d+1)/2cd/2

(
1 + ‖x‖

2

c2

)−(d+1)/2
for all x ∈ Rd. (3)

Proof of Lemma 1. Exercise 8 below shows that |Ψ(ξ)| = O(‖ξ‖2) as ‖ξ‖ →
∞; therefore, α ≤ 2. Since α = 2 is Gaussian, we limit ourselves to α < 2.
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Next let us consider α ∈ (0 , 2) [and of course c > 0]. In that case, a
change of variables shows that for all ξ ∈ Rd ,
∫

Rd

(
1− eiξ·z − i(ξ · z)1l(0,1)(‖z‖)

) dz
‖z‖d+α =

∫

Rd
(1− cos(ξ · z)) dz

‖z‖d+α

∝ ‖ξ‖α.
(4)

[The first identity is justified because the left-most integral is a radial func-
tion of ξ , and hence real.] Therefore, we can choose C ∈ (0 ,∞) so
that m(dx) = C‖x‖−(d+α) dx is the Lévy measure with exponent Ψ(ξ) =
exp(−c‖ξ‖α) iff (3) on page 3 holds. �

Sometimes, a reasonable knowledge of the Lévy exponent of an infinitely-
divisible law yields insight into its structure. Here is a first example; Sko-
rohod (1961) contains much more precise [and very useful] estimates of
the tails of stable laws.

Proposition 2. If X has an isotropic stable distribution with α ∈ (0 , 2),
then for all β > 0, E(‖X‖β) <∞ iff β < α.

In other words, except in the case that α = 2, the decay of the tail of
an isotropic stable law is slow. It is also possible to say more about the
tails of the distrbution (Theorem 15, page 50). But that requires a more
sophisticated analysis.

Proof. Because E exp(iz ·X) = exp(−c‖z‖α) = E cos(z ·X) for some c > 0,
we may apply (4) in the following form:

∫

Rd

(
1− eiξ·z

) dz
‖z‖d+α =

∫

Rd
(1− cos(iξ · z)) dz

‖z‖d+α ∝ ‖ξ‖
α. (5)

Replace ξ by X and take expectations to obtain

E
(
‖X‖β

)
∝ E

∫

Rd
(1− cos(z · X)) dz

‖z‖d+β =
∫

Rd

(
1− e−c‖z‖α

) dz
‖z‖d+β

∝
∫ ∞

0

(
1− e−rα

) dr
rβ+1 .

Now
∫ ∞

1

(
1− e−rα

) dr
rβ+1 ≤

∫ ∞

1

dr
rβ+1 <∞ for every β > 0.

Therefore, E(‖X‖β) < ∞ iff
∫ 1
0 (1 − e−rα )dr/rβ+1 < ∞. The result follows

from this and the fact that (θ/2) ≤ 1− e−θ ≤ θ for all θ ∈ (0 , 1). �
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The asymmetric Cauchy distribution on the line

We can specialize the preceding example to d = α = 1 and obtain the
symmetric Cauchy law µ on the line. Of course the density of µ is known
as well.1 But more significantly, we have learned that the Lévy triple of
µ is (0 , 0 ,m), where m(dz) ∝ z−2 dz. This suggests that perhaps we can
create an asymmetric variation of the Cauchy law by considering a Lévy
triple of the form (c0 , 0 ,m) for a Lévy measure of the form

m(dz)
dz = c1

z2 1l(0,∞)(z) + c2
z2 1l(−∞,0)(z),

where c1 6= c2 are both positive and c0 is selected carefully. This can in
fact be done, as we will see next.

Theorem 3. For every c, c1, c2 > 0 and θ ∈ [−2/π , 2/π] there exists
c0 ∈ R and an infinitely-divisible Borel probability measure µ on R such
that: (i) The Lévy triple of µ has the form (c0 , 0 ,m) for m as above; and
(ii) µ̂(ξ) = exp(−c|ξ| − icθξ log |ξ|) for ξ ∈ R \ {0}.2

The measure µ given above is called the Cauchy distribution on R
with asymmetry parameter θ [and scale parameter c]. When θ = 0, µ is
the symmetric Cauchy law. When |θ| = 2/π , µ is called the completely
asymmetric Cauchy law on R.

The Gamma distribution on the half line

It is easy to see that the Gamma (α , λ) distribution on (0 ,∞) is infinitely
divisible for every α, λ > 0. Next we identify its Lévy triple.

Proposition 4. If µ is a Gamma (α , λ) distribution on R+ for some α, λ > 0,
then µ is infinitely divisible with a := 0, σ := 0, and Lévy measure m and
Lévy exponent Ψ respectively given by

m(dx) = αe−λx
x dx · 1l(0,∞)(x), Ψ(ξ) = α log

(
1− iξ

λ

)
,

where “log” denotes the principle branch of the logarithm.

1It is f (x) = 1/{π(1 + x2)} for −∞ < x <∞.
2I am making a little fuss about ξ ∈ R \{0}, since the function ξ log |ξ| is defined only for ξ ∈ R \{0}.
But of course µ̂(0) = 1 because µ is a probability measure. Alternatively, we can define the function
ξ log |ξ| cotinuously on all of [0 ,∞) by letting 0 log |0| be limξ→0,ξ 6=0 ξ log |ξ| = 0. If so, then the stated
formula for µ̂(ξ) is valid for all ξ ∈ R.
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Adding independent Lévy processes

Finally, let me mention the following device which can be used to generate
new Lévy processes from old ones.

Lemma 5. If {Xt}t≥0 and {X̄t}t≥0 are independent Lévy processes on Rd

with respective triples (a, σ,m) and (ā, σ̄ , m̄), then {Xt +Yt}t≥0 is a Lévy
process on Rd with Lévy triple (A ,Σ ,M), where A := a + ā and M :=
m+ m̄, and Σ can be chosen in any fashion as long as Σ′Σ = σ ′σ + σ̄ ′σ̄ .

This is elementary, and can be checked by directly verifying the defin-
ing properties of Lévy processes. However, I emphasize that: (i) There is
always such a Σ;3 and (ii) Σ′Σ is defined uniquely even though Σ might
not be.

Problems for Lecture 2
1. Prove that if q :=

∫ 1
0 z−2(z − sin z) dz −

∫∞
1 z−2 sin z dz, then for all ξ > 0,

∫ ∞

0

(
1− eiξz + iξz1l(0,1)(z)

) dz
z2 = πξ

2 + iξ ln ξ + iqξ.

Deduce Theorem 3 from this identity.

2. This problem outlines the proof of Proposition 4.
(1) Suppose f : (0 ,∞) → R has a continuous derivative f ′ ∈ L1(R), and

f (0+) := limx↓0 f (x) and f (∞−) := limx↑∞ f (x) exist and are finite. Prove
that for all λ, ρ > 0,
∫ ∞

0

[
f (λx)− f ((λ + ρ)x)

x

]
dx =

[
f (0+)− f (∞−)

]
ln
(
1 + ρ

λ

)
.

This is the Frullani integral identity.
(2) Prove that for all λ > 0 and ξ ∈ R,

1− iξ
λ = exp

(∫ ∞

0
e−λx

(
1− eiξx

) dx
x

)
,

and deduce Proposition 4 from this identity.

3 (Stable scaling). Prove that if X is an isotropic stable process in Rd with index
α ∈ (0 , 2], then Yt := R−1/αXRt defines a Lévy process for every R > 0 fixed.
Explicitly compute the Lévy exponent of Y . Is the same result true when R
depends on t? What happens if you consider instead an asymmetric Cauchy
process on the line?

3This follows readily from the fact that σ ′σ + σ̃ ′σ̃ is a nonnegative-definite matrix.





Lecture 3

Continuous-Parameter
Martingales

Here and throughout, (Ω ,F,P) denotes a complete probability space. [Re-
call that “completeness” is a property ofF; namely, that all subsets of P-null
sets are F-measurable and P-null.]

Filtrations

Definition 1. A filtration {Ft}t≥0 is a family of sub-sigma-algebras of F
such that Fs ⊆ Ft whenever s ≤ t .

Definition 2. A filtration {Ft}t≥0 satisfies the usual conditions [“conditions
habituelles”] if:

(1) Ft is P-complete for every t ≥ 0; and
(2) {Ft}t≥0 is right continuous; i.e., Ft = ∩s>tFs for all t ≥ 0.

Given a filtration {Gt}t≥0, there exists a smallest filtration {Ft}t≥0 that
satisfies the usual conditions. We can construct the latter filtration in a few
steps as follows:

(1) Let F0
0 denote the completion of G0;

(2) Define F0
t to be the smallest sigma-algebra that contains both F0

0
and Gt [for all t ≥ 0];

(3) Define Ft := ∩s>tF0
s . Then, {Ft}t≥0 is the desired filtration.

From now on, we assume tacitly that all filtrations satisfy the usual
conditions, unless it is stated explicitly otherwise.

15
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Martingales

Let X := {Xt}t≥0 be a real-valued stochastic process on (Ω ,F,P), and
{Ft}t≥0 a filtration on the same space.
Definition 3. X is adapted to {Ft}t≥0 if Xt is Ft -measurable for all t ≥ 0.

Definition 4. X is a martingale [with respect to {Ft}t≥0] if:
(1) X is adapted to {Ft}t≥0;
(2) Xt ∈ L1(P) for all t ≥ 0;
(3) E(Xt+s |Fs) = Xs almost surely for all s, t ≥ 0.

Thus, continuous-time martingales are defined just as in the discrete-
time theory. However, there is a notable technical matter that arises: The
last part of the definition of martingales has to be understood carefully. It
states that for all s, t ≥ 0 there exists a P-null set Ns,t such that

E(Xt+s |Fs) = Xs a.s. on Nc
s,t .

Definition 5. The filtration {Xt}t≥0 generated by the stochastic process X
is defined as the smallest filtration such that: (a) X is adapted to {Xt}t≥0;
and (b) {Xt}t≥0 satisfies the usual conditions. We might refer to {Xt}t≥0
also as the natural filtration of X.

It can be verified directly that it X is a martingale with respect to
some filtration {Ft}t≥0, then X is certainly a martingale in its own natural
filtration {Xt}t≥0. Therefore, unless we need explicit information about
the filtrations involved, we say that X is a martingale without mentioning
the filtrations explicitly. [If this happens, then we are assuming that the
underlying filtration is the natural filtration of X.]
Definition 6. A stochastic process {Xt}t≥0 with values in a Euclidean space
is cadlag [“continue á droite, limitée à gauche”] if t 7Ï Xt is right continuous
and the left limits

Xt− := lim
s↑t

Xs exist for all t > 0.

Some authors use “rcll” in place of “cadlag.” But let’s not do that here ©.

The continuous-time theory of general processes is quite complicated,
but matters simplify greatly for cadlag processes, as the next theorem
shows. First, let us recall
Definition 7. A map T : Ω → R+ ∪ {∞} is a stopping time [for a given
filtration {Ft}t≥0] if {T ≤ t} ∈ Ft for all t ≥ 0. The sigma-algebra FT is
defined as in discrete-parameter theory, viz.,

FT := {A ∈ F : A ∩ {T ≤ t} ∈ Ft for all t ≥ 0} .
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Theorem 8. Suppose X is a process that takes values in Rd , is cadlag,
and is adapted to a filtration {Ft}t≥0. Then for all stopping times T ,
XT1l{T<∞} is a random variable. Moreover, TA := inf{s > 0 : Xs ∈ A} is a
stopping time for every A ∈ B(Rd), provided that we define inf∅ :=∞.

Theorem 9 (The optional stopping theorem). Suppose X is a cadlag mart-
ingale and T is a stopping time that is bounded a.s. That is, suppose there
exists a nonrandom k > 0 such that P{T < k} = 1. Then, E(XT ) = E(X0).

I will not prove this here, but suffice it to say that the idea is to follow
a discretization scheme, which enables us to appeal to the optional stop-
ping theorem of discrete-parameter martingale theory. See the proof of
Theorem 11 below for this sort of argument.

Definition 10. Choose and fix an real number p > 1. X is said to be a
cadlag Lp martingale if it is a cadlag martingale and Xt ∈ Lp(P) for all
t ≥ 0.

Theorem 11 (Doob’s maximal inequality). If X is a cadlag Lp martingale
for some p > 1, then

E
(

sup
s∈[0,t]

|Xs|p
)
≤
(

p
p − 1

)p
E (|Xt |p) for every t ≥ 0.

In other words, the Lp norm of the maximum process is at most q
times the Lp norm of the terminal value of the process, where q is the
conjugate to p; i.e., p−1 + q−1 = 1.

Sketch of Proof. Notice that if F is an arbitrary finite set in [0 , t], then
{Xs}s∈F is a discrete-time martingale [in its own filtration]. Therefore,
discrete-time theory tells us that

E
(

max
s∈F
|Xs|p

)
≤
(

p
p − 1

)p
max
s∈F

E(|Xs|p) ≤
(

p
p − 1

)p
E(|Xt |p).

(Why the last step?) Now replace F by Fn := {jt/2n; 0 ≤ j ≤ 2n} and take
limits [n ↑ ∞]: By the dominated convergence theorem,

lim
n→∞

E
(

max
s∈Fn
|Xs|p

)
= E

(
sup
n≥1

max
s∈Fn
|Xs|p

)
,

and the supremum is equal to sups∈[0,t] |Xs|p because X [and hence s 7Ï
|Xs|p] is cadlag. �

Similarly, one can derive the following from the discrete-parameter
theory of martingales:



18 3. Continuous-Parameter Martingales

Theorem 12 (The martingale convergence theorem). Let X be a cad-
lag martingale such that either: (a) Xt ≥ 0 a.s. for all t ≥ 0; or (b)
supt≥0 E(|Xt |) <∞. Then, limt→∞Xt exists a.s. and is finite a.s.

In like manner, we can define continuous-parameter supermartingales,
submartingales, and reverse martingales. In the case that those pro-
cesses are cadlag, the discrete-parameter theory extends readily to the
continuous-parameter setting. I will leave the numerous details and varia-
tions to you.

Modifications

Now we address briefly what happens if we have a quite general continuous-
parameter martingale that is not cadlag.

Definition 13. The finite-dimensional distributions of a stochastic process
X are the collection of all joint probabilities of the form

P {Xt1 ∈ A1 , . . . , Xtk ∈ Ak} ,
as t1, . . . , tk range over all possible numbers in R+ := [0 ,∞), and A1, . . . , Ak
over all possible measurable subsets of the state space where X takes its
values.

It is important to remember that, a priori, the finite-dimensional distri-
butions of X are the only hard piece of information that we have available
on a process X. [Think, for example, about how we learned about Brown-
ian motion in Math. 6040.]

Definition 14. Let X := {Xt}t≥0 and Y := {Yt}t≥0 be two stochastic pro-
cesses with values in a common space. We say that X is a modification of
Y if P{Xt = Yt} = 1 for all t ≥ 0.

We can make some elementary observations: First, if X is a mod-
ification of Y , then Y is also a modification of X; second—and this is
important—if X and Y are modifications of one another, then their finite-
dimensional distributions are the same. In other words, if X and Y are
modifications of one another, then they are “stochastically the same.” How-
ever, we next see that not all modifications are created equal; some are
clearly better than others.

Example 15. Let B denote a one-dimensional Brownian motion. Let us
introduce an independent positive random variable T with an absolutely
continuous distribution [say, T = Unif [0 , 1], or T = Exp (1), etc.]. And now
we can define a new process X by setting Xt (ω) := Bt (ω) if t 6= T(ω), and
Xt (ω) := 5 if T(ω) = t for all t ≥ 0 and ω ∈ Ω. Since P{T = t} = 0 for all
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t ≥ 0, it follows that X and B are modifications of one another. Therefore,
X is a Brownian motion in the sense that X has i.i.d. increments with
Xt = N(0 , t) for all t ≥ 0. However, t 7Ï Xt is a.s. discontinuous [with
probability one, X has a jump at T]. �

The following is an important result in the general theory of processes.
In words, it states that {Xt}t≥0 always has a cadlag modification, which has
the same finite-dimensional distributions as {Xt}t≥0.

Theorem 16. Every martingale {Xt}t≥0 has a cadlag modification. That
modification is a cadlag martingale.

Therefore we can, and will, always consider only cadlag martingales.
The proof of the preceding theorem is not particularly hard, but it

takes us too far afield. Therefore, we will skip it. You can find the details
of a proof in (Khoshnevisan, 2002, p. 225). However, here is an important
consequence, which we will use from now on.

If Y is an integrable random variable and {Ft}t≥0 a filtration, then
Mt := E(Y |Ft ) defines a martingale. If T is a simple stopping time with
possible values in a finite [nonrandom] set F , then for all A ∈ FT ,

E
(
E
(
Y
∣∣FT

)
; A
)

= E (Y ; A) =
∑

t∈F
E (Y ; A ∩ {T = t}) .

Because A ∩ {T = t} ∈ Ft , it follows that

E
(
E
(
Y
∣∣FT

)
; A
)

=
∑

t∈F
E (Mt ; A ∩ {T = t}) = E (MT ;A) for all A ∈ FT .

Therefore, MT = E(Y |FT ) a.s. for all simple stopping times T . If T is a
bounded stopping time, then we can find simple stopping times Tn ↓ T [as
in Math. 6040]. Therefore, the cadlag version of M satisfies MT = E(Y |FT )
a.s. for all bounded, hence a.s.-finite, stopping times T .

Problems for Lecture 3
1. Let {Ft}t≥0 denote a filtration [that satisfies the usual conditions]. Then prove
that for all Y ∈ L1(P), t 7Ï E(Y |Ft ) has a cadlag modification. Use this to prove
that if {Xt}t≥0 is a cadlag martingale, then there is a version of modification
expectations that leads to: E(Xt+s |Ft ) = Xt for all s, t ≥ 0, a.s. [Note the order of
the quantifiers.] In other words, there exists one null set off which the preceding
martingale identity holds simultaneously for all s, t ≥ 0.

2. Prove Theorem 8, but for the second part [involving TA] restrict attention to
only sets A that are either open or closed. The result for general Borel sets A is
significantly harder to prove, and requires the development of a great deal more
measure theory [specifically, Choquet’s celebrated “capacitability theorem”]. You
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can learn about Choquet’s theorem, as well as the measurability of TA for a Borel
set A, in Chapters 3 and 4 of the definitive account by Dellacherie and Meyer
(1978).

3. Prove that the process X of Example 15 is a.s. discontinuous at T .

4. Prove that if supt≥0 E(|Xt |p) <∞ for a martingale X and some p ∈ (1 ,∞), then
limt→∞ Xt exists a.s. and in Lp(P). [This is false for p = 1.]

5 (Change of measure). Let M be a nonnegative cadlag mean-one martingale
with respect to a filtration {Ft}t≥0. Define

P̂(A) := E (Mt ;A) for all A ∈ Ft .
Then, prove that P̂ defines consistently a probability measure on the measurable
space (Ω ,F∞), where F∞ := ∨t≥0Ft .

(1) Let Ê denote the expectation operator for P̂. Then prove that Ê(Y ) =
E(MtY ) for all nonnegative Ft -measurable random variables Y ;

(2) Suppose {Ft}t≥0 denotes the natural filtration of a d-dimensional Br-
ownian motion B := {Bt}t≥0. Show that for all λ ∈ Rd fixed, M is a
nonnegative cadlag mean-one martingale with respect to {Ft}t≥0, where

Mt := exp
(
−λ · Bt −

t‖λ‖2
2

)
(t ≥ 0);

(3) Prove that Xt := Bt + λt defines a d-dimensional Brownian motion on
the probability space (Ω ,F∞, P̂). That is, if we start with an ordinary
Brownian motion B under P, then we obtain a Brownian motion with
drift λ if we change our measure to P̂. This is called the Girsanov
and/or Cameron–Martin transformation of Brownian motion [to Br-
ownian motion with a drift].



Lecture 4

Poisson Random
Measures

Throughout, let (S ,S,m) denote a sigma-finite measure space with m(S) >
0, and (Ω ,F,P) the underlying probability space.

A construction of Poisson random measures

Definition 1. A Poisson random measure Π with intensity m is a collec-
tion of random variables {Π(A)}A∈S with the following properties:

(1) Π(A) = Poiss(m(A)) for all A ∈ S;
(2) If A1, . . . , Ak ∈ S are disjoint, then Π(A1), . . . ,Π(Ak) are indepen-

dent.

We sometimes write “PRM(m)” in place of “Poisson random measure
with intensity m.”

Theorem 2. PRM(m) exists and is a.s. purely atomic.

Proof. The proof proceeds in two distinct steps.
Step 1. First consider the case that m(S) <∞.
Let N,X1, X2, . . . be a collection of independent random variables with

N = Poiss(m(S)), and P{Xj ∈ A} = m(A)/m(S) for all j ≥ 1 and A ∈ S.
Define,

Π(A) :=
N∑

j=1
1lA(Xj ) for all A ∈ S.

21
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Clearly, Π is almost surely a purely-atomic measure with a random number
[i.e., N] atoms. Next we compute the finite-dimensional distributions of Π.

If we condition first on N , then we find that for every disjoint A1, . . . , Ak ∈
S and ξ1, . . . , ξk ∈ R,

Eei
∑k

j=1 ξjΠ(Aj ) = E




N∏

`=1
exp




i
k∑

j=1
ξj1lAj (X` )










= E







E exp




i
k∑

j=1
ξj1lAj (X1)









N


 .

Because the Aj ’s are disjoint, the indicator function of (A1 ∪ · · · ∪ Ak)c is
equal to 1−

∑k
j=1 1lAj , and hence

exp




i
k∑

j=1
ξj1lAj (x)




 =
k∑

j=1
1lAj (x)eiξj + 1−

k∑

j=1
1lAj (x)

= 1 +
k∑

j=1
1lAj (x)

(
eiξj − 1

)
for all x ∈ S.

Consequently,

E exp




i
k∑

j=1
ξj1lAj (X1)




 = 1 +
k∑

j=1

m(Aj )
m(S)

(
eiξj − 1

)
,

and hence,

E exp



i
k∑

j=1
ξjΠ(Aj )



 = E








1 +
k∑

j=1

m(Aj )
m(S)

(
eiξj − 1

)





N


 .

Now it is easy to check that if r ∈ R, then E(rN ) = exp{−m(S)(1 − r)}.
Therefore,

E exp



i
k∑

j=1
ξjΠ(Aj )



 = e−
∑k

j=1 m(Aj )
(
1−eiξj

)

. (1)

This proves the result, in the case that m(S) <∞, thanks to the uniqueness
of Fourier transforms.

Step 2. In the general case we can find disjoint sets S1, S2, . . . ∈ S
such that S = ∪∞k=1Sk and m(Sj ) < ∞ for all j ≥ 1. We can construct
independent PRM’s Π1,Π2, . . . as in the preceding, where Πj is defined
solely based on subsets of Sj . Then, define Π(A) :=

∑∞
j=1 Πj (A ∩ Sj ) for all
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A ∈ S. Because a sum of independent Poisson random variables has a
Poisson law, it follows that Π = PRM(m). �

Theorem 3. Let Π := PRM(m), and suppose φ : S → Rk is measur-
able and satisfies

∫
Rd ‖φ(x)‖m(dx) < ∞. Then,

∫
Rd φ dΠ is finite a.s.,

E
∫

Rd φ dΠ =
∫
φ dm, and for every ξ ∈ Rk ,

Eeiξ·
∫
φ dΠ = exp

(
−
∫ (

1− eiξ·φ(x)
)
m(dx)

)
. (2)

The preceding holds also if m is a finite measure, and φ is measurable.
If, in addition,

∫
Rd ‖φ(x)‖2m(dx) <∞, then also

E
(∥∥∥∥
∫

Rd
φ dΠ−

∫

Rd
φ dm

∥∥∥∥
2
)
≤ 2k−1

∫

Rd
‖φ(x)‖2m(dx).

Proof. By a monotone-class argument it suffices to prove the theorem in
the case that φ =

∑n
j=1 cj1lAj , where c1, . . . , cn ∈ Rk and A1, . . . , An ∈ S

are disjoint with m(Aj ) < ∞ for all j = 1, . . . , n. In this case,
∫
φ dΠ =∑n

j=1 cjΠ(Aj ) is a finite weighted sum of independent Poisson random vari-
ables, where the weights are k-dimensional vectors c1, . . . , cn . The formula
for the characteristic function of

∫
φ dΠ follows readily from (1). And the

mean of
∫
φ dΠ is elementary. Finally, if φj denotes the jth coordinate of

φ, then

Var
∫
φj dΠ =

n∑

i=1
c2
i VarΠ(Ai) =

n∑

i=1
c2
im(Ai) =

∫
|φj (x)|2m(dx). (3)

The L2 computation follows from adding the preceding over j = 1, . . . , k,
using the basic fact that for all random [and also nonrandom] mean-zero
variables Z1, . . . , Zk ∈ L2(P),

|Z1 + · · ·+ Zk|2 ≤ 2k−1
k∑

j=1
|Zj |2. (4)

Take expectations to find that Var
∑k

j=1 Zj ≤ 2k−1∑k
j=1 Var(Zj ). We can

apply this in (3) with Zj :=
∫
φj dΠ to finish. �
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The Poisson process on the line

In the context of the present chapter let S := R+, S := B(R+), and consider
the intensity m(A) := λ|A| for all A ∈ B(R+), where | · · · | denotes the one-
dimensional Lebesgue measure on (R+ ,B(R+)), and λ > 0 is a fixed finite
constant. If Π denotes the corresponding PRM(m), then we can define

Nt := Π((0 , t]) for all t ≥ 0.
That is, N is the cumulative distribution function of the random measure
Π. It follows immediately from Theorem 2 that:

(1) N0 = 0 a.s., and N has i.i.d. increments; and
(2) Nt+s −Ns = Poiss(λt) for all s, t ≥ 0.

That is, N is a classical Poisson process with intensity parameter λ in the
same sense as in Math. 5040.

Problems for Lecture 4
Throughout let N denote a Poisson process with intensity λ ∈ (0 ,∞).

1. Check that N is cadlag and prove the following:
(1) Nt − λt and (Nt − λt)2 − λt define mean-zero cadlag martingales;
(2) (The strong law of large numbers) limt→∞Nt/t = λ a.s.

2. Let τ0 := 0 and then define iteratively for all k ≥ 1,
τk := inf {s > τk−1 : Ns > Ns−} .

Prove that {τk − τk−1}∞k=1 is an i.i.d. sequence of Exp(λ) random variables.

3. Let τk be defined as in the previous problem. Prove that Nτk −Nτk− = 1 a.s.



Lecture 5

Poisson Point Processes

Let (S ,S,m) be as in the preceding lectures. The goal of this lecture is
to learn quickly about Poisson point processes. The book by Kingman
(1972) contains a more detailed treatment, as well as a more extensive
bibliography.

A construction of Poisson point processes

Definition 1. A stochastic process Π := {Πt (A)}t≥0,A∈S is a Poisson point
process with intensity m [written as PPP(m)] if:

(1) For all t, s ≥ 0, Πs+t − Πs is a PRM(tm) that is independent of
{Πs(A)}A∈S;

(2) {Πt (A)}t≥0 is a Poisson process with intensity m(A) for all A ∈ S.

Theorem 2. PPP(m) exists.

Once you learn why PPP(m) exists, you should convince yourself that
the finite-dimensional distributions are determined uniquely.

Proof. The proof is easy: Let

S∗ := R+ × S, S∗ := B(S∗), m∗ := Leb×m, (1)

where “Leb” denotes the Lebesgue measure on R+. Then, let Π∗ = PRM(m∗)
on (S∗,S∗,m∗) and define Πt (A) := Π∗((0 , t]×A) for all t ≥ 0 and A ∈ S. A
direct computation or two shows that the process {Πt}t≥0 does the job. �

Theorem 3 on page 23 yields the following byproduct for PPP’s.

Proposition 3. The following are valid:

25
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(1) For all fixed A ∈ B(Rd), {Πt (A)}t≥0 is a Poisson process with rate
m(A) [this is true even if m(A) =∞];

(2) If A1, . . . , Ak ∈ B(Rd) are disjoint and m(Aj ) <∞ for all 1 ≤ j ≤ k,
then {Πt (A1)}t≥0 , . . . , {Πt (Ak)}t≥0 are independent processes;

(3) For every fixed t ≥ 0, Πt = PRM(tm) on (Rd ,B(Rd)).

And here is a little more.

Theorem 4. Let {Πt}t≥0 = PPP(m), and suppose φ : Rd → Rk is measur-
able and satisfies

∫
Rd ‖φ(x)‖m(dx) <∞. Then,

∫
Rd φ(x) Πt (dx) is finite a.s.

and t 7Ï
∫

Rd φ dΠt − t
∫

Rd φ dm is a k-dimensional mean-zero martingale.
And for every ξ ∈ Rk ,

Eeiξ·
∫
φ dΠt = e−t

∫
Rd (1−eiξ·φ(x))m(dx). (2)

The preceding holds also if m is a finite measure, and φ is measurable.
If, in addition,

∫
Rd ‖φ(x)‖2m(dx) <∞, then for all T > 0,

E
(

sup
t∈[0,T]

∥∥∥∥
∫

Rd
φ dΠt − t

∫

Rd
φ dm

∥∥∥∥
2
)
≤ 2k+1T

∫

Rd
‖φ(x)‖2m(dx).

Proof. I will describe only the two parts that differ from Theorem 3; the
rest follows from Theorem 3. Namely:

(1) It is enough to check the martingale property by working only with
φ of the form φ(x) = c1lA(x), where c ∈ R and A ∈ B(S). In this case, we
wish to prove that Xt := cΠt (A) − ctm(A) (t ≥ 0) defines a mean zero
martingale in the filtration {Ft}t≥0 generated by {Πs}s≥0. But this follows
from Exercise 1 [you have to pay some attention to the filtration though].

(2) It remains to check the L2 maximal inequality. Without loss of
generality we may assume that k = 1; otherwise we work with individual
coordinates of φ separately, and then add, using (4). Also, it suffices to
consider only the case that φ(x) = c1lA(x) as in (1). According to Doob’s
maximal inequality,

E
(

sup
t∈[0,T]

|Xt |2
)
≤ 4E(X2

T ) = 4c2Var (ΠT (A)) = 4
∫ ∞

−∞
|φ(x)|2m(dx).

The result follows. �

Compound Poisson processes

Compound Poisson processes are a generalization of Poisson processes.
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Definition 5. Let X1, X2, . . . be i.i.d. random variables in Rd with common
law m. Let N denote an independent Poisson process with rate λ ∈ (0 ,∞).
Then, C := {Ct}t≥0 is a compound Poisson process [with parameters m
and λ], where

Ct :=
Nt∑

j=1
Xj (t ≥ 0),

where
∑0

j=1Xj := 0. If E‖X1‖ <∞, then

Ct − ECt = Ct − tE(X1)
(t ≥ 0) is called a compensated compound Poisson process with param-
eters m and λ.

Remark 6. Compound Poisson processes are also [sometimes] called
continuous-time random walks. �

In the case that d = 1 and m := δ1, C = N is a Poisson process. Note
that, in general, C behaves much like N : It jumps at i.i.d. Exp(λ) times; the
difference now is that the jump sizes are themselves i.i.d., independent of
the jump times, with jumping distribution m.

Proposition 7. If C is a compound Poisson process with parameters
m and λ, then C is cadlag, and has i.i.d. increments with incremental
distribution governed by the following characteristic function:

Eeiξ·(Ct+s−Cs) = exp
{
−λt

∫

Rd

(
1− eiξ·z

)
m(dz)

}
for ξ ∈ Rd , s, t ≥ 0.

Theorem 8 (The strong Markov property). The following are valid:
(1) (The strong Markov property, part 1) For all finite stopping times

T [with respect to the natural filtration of C], all nonrandom
t1, . . . tk ≥ 0, and A1, . . . , Ak ∈ B(R+),

P




k⋂

j=1

{
CT+tj − CT ∈ Aj

}
∣∣∣∣∣∣
FT



 = P




k⋂

j=1

{
Ctj ∈ Aj

}


 a.s.; and

(2) (The strong Markov property, part 2) For all finite stopping times
T , all nonrandom t1, . . . tk ≥ 0, and measurable φ1, . . . , φk : R+ →
R+,

E




k∏

j=1
φj (CT+tj − CT )

∣∣∣∣∣∣
FT



 = E




k∏

j=1
φj (Ctj )



 a.s.; and
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Next we construct compound Poisson processes using Poisson point
processes. If {Πt}t≥0 denote a PPP(λm) on Rd where λ ∈ (0 ,∞) is fixed,
then

Yt :=
∫

Rd
xΠt (dx) (t ≥ 0)

defines a cadlag process with i.i.d. increments. Moreover,
∫

Rd ‖x‖Πt (dx) <
∞ a.s. for all t ≥ 0. This is because each Πt has at most a finite number
of atoms.1 And (2) applies to yield

Eeiξ·(Yt+s−Ys) = exp
{
−λt

∫

Rd

(
1− eiξ·x

)
m(dx)

}
.

We can compare this with Exercise 2 to find that Y is a compound Pois-
son process with parameters m and λ. In order to better understand this
construction of compound Poisson processes [using PPP’s], note that Πt
has Nt := Πt (Rd) atoms, where N is a Poisson process of rate λ. If we de-
note those atoms by X1, . . . , XNt , then

∫
Rd xΠt (dx) =

∑Nt
j=1Xj is compound

Poisson, as desired.

Problems for Lecture 5
1. Prove Proposition 3.

2. Prove Proposition 7.

3. Prove Theorem 8.

1In fact, EΠt (Rd) = λm(Rd)t = λt .



Lecture 6

Lévy Processes

Recall that a Lévy process {Xt}t≥0 on Rd is a cadlag stochastic process
on Rd such that X0 = 0 and X has i.i.d. increments. We say that X is
continuous if t 7Ï Xt is continuous. On the other hand, X is pure jump if
t 7Ï Xt can move only when it jumps [this is not a fully rigorous definition,
but will be made rigorous en route the Itô–Lévy construction of Lévy
processes].

Definition 1. If X is a Lévy process, then its tail sigma-algebra is T :=
∩t≥0σ ({Xr+t − Xt}r≥0). �

The following is a continuous-time analogue of the Kolmogorov zero-
one law for sequences of i.i.d. random variables.

Proposition 2 (Kolmogorov zero-one law). The tail sigma algebra of a
Lévy process is trivial; i.e., P(A) ∈ {0 , 1} for all A ∈ T.

The Lévy–Itô construction

The following is the starting point of the classification of Lévy processes,
and is also known as the Lévy–Khintchine formula; compare with the
other Lévy–Khintchine formula (Theorem 6).

Theorem 3 (The Lévy–Khintchine formula; Itô, 1942; Lévy, 1934). For
every Lévy exponent Ψ on Rd there exists a Lévy process X such that for
all t ≥ 0 and ξ ∈ Rd ,

Eeiξ·Xt = e−tΨ(ξ). (1)
Conversely, if X is a Lévy process on Rd then (1) is valid for a Lévy
exponent Ψ.

29
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In words, the collection of all Lévy processes on Rd is in one-to-one
correspondence with the family of all infinitely-divisible laws on Rd .

We saw already that if X is a Lévy process, then X1 [in fact, Xt for
every t ≥ 0] is infinitely divisible. Therefore, it remains to prove that if Ψ
is a Lévy exponent, then there is a Lévy process X whose exponent is Ψ.
The proof follows the treatment of Itô (1942), and is divided into two parts.

Isolating the pure-jump part. Let B := {Bt}t≥0 be a d-dimensional Br-
ownian motion, and consider the Gaussian process defined by

Wt := σBt − at. (t ≥ 0).
A direct computation shows that W := {Wt}t≥0 is a continuous Lévy pro-
cess with Lévy exponent

Ψ(c)(ξ) = ia′ξ + 1
2‖σξ‖

2 for all ξ ∈ Rd.

[W is a Brownian motion with drift −a, where the coordinates of W are
possibly correlated, unless σ is diagonal.] Therefore, it suffices to prove
the following:

Proposition 4. There exists a Lévy process Z with exponent

Ψ(d)(ξ) :=
∫

Rd

(
1− eiξ·z + i(ξ · z)1l(0,1)(‖z‖)

)
m(dz),

for all ξ ∈ Rd .

Indeed, if this were so, then we could construct W and Z independently
from one another, and set

Xt = Wt + Zt for all t ≥ 0.
This proves Theorem 3, since Ψ = Ψ(c) + Ψ(d). In fact, together with Theo-
rem 6, this implies the following:

Theorem 5. (1) The only continuous Lévy processes are Brownian mo-
tions with drift, and; (2) The Gaussian and the non-Gaussian parts of an
arbitrary Lévy process are independent from one another.

Therefore, it suffices to prove Proposition 4.

Proof of Proposition 4. Consider the measurable sets

A−1 :=
{
z ∈ Rd : ‖z‖ ≥ 1

}
, and An :=

{
z ∈ Rd : 2−n+1 ≤ ‖z‖ < 2−n

}
,

as n varies over all nonnegative integers. Now we can define stochastic
processes {X(n)}∞n=−1 as follows: For all t ≥ 0,

X(−1)
t :=

∫

A−1

xΠt (dx), X(n)
t :=

∫

An
xΠt (dx)− tm(An) (n ≥ 0).
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Thanks to the construction of Lecture 5 (pp. 26 and on), {X(n)}∞n=−1 are
independent Lévy processes, and for all n ≥ 0, t ≥ 0, and ξ ∈ Rd ,

Eeiξ·X
(n)
t = exp

{
−t
∫

An

(
1− eiξ·z + i(ξ · z)1l(0,1)(‖z‖)

)
m(dz)

}
.

Moreover, X(−1) is a compound Poisson process with parameters m(• ∩
A−1)/m(A−1) and λ = m(A−1), for all n ≥ 0, X(n) is a compensated com-
pound Poisson process with parameters m(• ∩ An)/m(An) and λ = m(An).

Now Y (n)
t :=

∑n
k=0X

(k)
t defines a Lévy process with exponent

ψn(ξ) :=
∫

1>‖z‖≥2−n+1

(
1− eiξ·z + i(ξ · z)1l(0,1)(‖z‖)

)
m(dz),

valid for all ξ ∈ Rd and n ≥ 1. Our goal is to prove that there exists a
process Y such that for all nonrandom T > 0,

sup
t∈[0,T]

∥∥∥Y (n)
t − Yt

∥∥∥→ 0 in L2(P). (2)

Because Y (n) is cadlag for all n, uniform convergence shows that Y is cad-
lag for all n. In fact, the jumps of Y (n+1) contain those of Y (n), and this
proves that Y is pure jump. And because the finite-dimensional distribu-
tions of Y (n) converge to those of Y , it follows then that Y is a Lévy process,
independent of X(−1), and with characteristic exponent

ψ∞(ξ) = lim
n→∞

ψn(ξ) =
∫

1>‖z‖

(
1− eiξ·z + i(ξ · z)1l(0,1)(‖z‖)

)
m(dz).

[The formula for the limit holds by the dominated convergence theorem.]
Sums of independent Lévy processes are themselves Lévy. And their ex-
ponents add. Therefore, X(−1)

t + Yt is Lévy with exponent Ψ(d).
It remains to prove the existence of Y . Let us choose and fix some

T > 0, and note that for all j, k ≥ 1 and t ≥ 0,

Y (n+k)
t − Y (n)

t =
n+k∑

j=k+1

(∫

Aj
xΠt (dx)− tm(Aj )

)
,

and the summands are independent because the Aj ’s are disjoint. Since
the left-hand side has mean zero, it follows that

E
(∥∥∥Y (n+k)

t − Y (n)
t

∥∥∥
2
)

=
n+k∑

j=k+1
E




∥∥∥∥∥

∫

Aj
xΠt (dx)− tm(Aj )

∥∥∥∥∥

2




≤ 2d−1t
n+k∑

j=k+1

∫

Aj
‖x‖2m(dx) = 2d−1t

∫

∪n+k
j=k+1Aj

‖x‖2m(dx);
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see Theorem 3. Every one-dimensional mean-zero Lévy process is a mean-
zero martingale [in the case of Brownian motion we have seen this in Math.
6040; the reasoning in the general case is exactly the same]. Therefore,
Y (n+k) − Y (n) is a mean-zero cadlag martingale (coordinatewise). Doob’s
maximal inequality tells us that

E
(

sup
t∈[0,T]

∥∥∥Y (n+k)
t − Y (n)

t

∥∥∥
2
)
≤ 2d+1T

∫

2−k≤‖z‖<2n−k+1
‖x‖2m(dx).

This and the definition of a Lévy measure (p. 3) together imply (2), whence
the result. �

Problems for Lecture 6
1. Prove the Kolmogorov 0-1 law (page 29).

2. Prove that every Lévy process X on Rd is a strong Markov process. That is,
for all finite stopping times T [in the natural filtration of X], t1, . . . , tk ≥ 0, and
A1, . . . , Ak ∈ B(Rd),

P




k⋂

j=1

{
XT+tj − XT ∈ Aj

}
∣∣∣∣∣∣
FT



 = P




k⋂

j=1

{
Xtj ∈ Aj

}


 a.s.

(Hint: Follow the Math. 6040 proof of the strong Markov property of Brownian
motion.)



Lecture 7

Structure Theory

The Lévy–Itô decomposition

The Lévy–Itô proof of the Lévy–Khintchine formula (Theorem 3, page 29,
and the proof of the part that we have not discussed) has also consequences
that reach beyond issues of existence etc. Indeed, that proof shows among
other things that if X is a Lévy process with triple (a, σ,m) and

(∆X)t := Xt − Xt− (t ≥ 0),

then
Πt (A) :=

∑

s∈[0,t]
1l{(∆X)s∈A} (t ≥ 0, A ∈ B(Rd))

defines a PPP(m). And we have the process-wise decomposition

Xt = Wt + Ct +Dt (t ≥ 0), (1)

called the Lévy–Itô decomposition of X, where:

- Wt := σBt − at , where B is standard Brownian motion on Rd;
- C is a compound Poisson process with parameters m(•∩A−1)/m(A−1)

and λ = m(A−1), where A−1 := {z ∈ Rd : ‖z‖ ≥ 1}. And
‖Ct − Ct−‖ ≥ 1 for all t ≥ 0;

- D is a mean-zero Lévy process that is an L2 martingale and satis-
fies:
(a) ‖Dt −Dt−‖ ≤ 1 for all t ≥ 0 [a.s.]; and
(b) For all T > 0,

E
(

sup
t∈[0,T]

‖Dt‖2
)
≤ 2d+1Tm(Ac−1);

33
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- B, C, and D are independent processes.

The preceding decomposition teaches us a great deal about the behav-
ior of Lévy processes. Next we make some remarks along these directions.

The Gaussian Part

The following gives us an interpretation of the matrix σ : X has a nontrivial
Gaussian component if and only if σ ′σ has a nontrivial spectrum.

Theorem 1. We have

lim sup
‖ξ‖→∞

ReΨ(ξ)
‖ξ‖2 = lim sup

‖ξ‖→∞

|Ψ(ξ)|
‖ξ‖2 = max

z∈Rd\{0}

(
z′σ ′σz
‖z‖2

)
.

Consequently, X has a nontrivial Gaussian part iff

lim sup
‖ξ‖→∞

ReΨ(ξ)
‖ξ‖2 = lim sup

‖ξ‖→∞

|Ψ(ξ)|
‖ξ‖2 > 0.

Remark 2. λmax := maxa∈Rd\{0}(a′σ ′σa/‖a‖2) is none other than the largest
eigenvalue of σ . And of course λmax ≥ 0, since σ is nonnegative defi-
nite. �

Proof of Theorem 1. By the Lévy–Khintchine formula,
∣∣∣∣Ψ(ξ)− 1

2‖σξ‖
2
∣∣∣∣ ≤ |a

′ξ|+
∫

Rd

∣∣∣1− e−iξ·z + i(ξ · z)
∣∣∣ m(dz),

ReΨ(ξ) = 1
2‖σξ‖

2 +
∫

Rd
(1− cos(ξ · z)) m(dz).

Therefore, it suffices to prove that

lim
‖ξ‖→∞

∫

Rd

∣∣∣∣∣
1− e−iξ·z + i(ξ · z)1l(0,1)(‖z‖)

‖ξ‖2

∣∣∣∣∣ m(dz) = 0, (2)

lim
‖ξ‖→∞

∫

Rd

(
1− cos(ξ · z)
‖ξ‖2

)
m(dz) = 0. (3)

We saw earlier that
∣∣∣∣∣
1− e−iξ·z + i(ξ · z)1l(0,1)(‖z‖)

‖ξ‖2

∣∣∣∣∣ ≤
(
‖z‖2 ∧ 1

‖ξ‖2

)
. (4)

This and the dominated convergence theorem together imply (2). And (3)
is proved similarly. �



The Compound Poisson Part 35

The Compound Poisson Part

Recall from (7) on page 35 that if
∫

Rd (1 ∧ ‖x‖)m(dx) < ∞, then we have
the following form of the Lévy–Khintchine formula:

Ψ(ξ) = i(b · ξ) + 1
2‖σξ‖

2 +
∫

Rd

(
1− eiξ·z

)
m(dz), (5)

where
b := a −

∫

‖z‖<1
zm(dz). (6)

It follows readily from structure theory that in this case, that is when∫
Rd (1 ∧ ‖x‖)m(dx) <∞, we have the decomposition

Xt = σBt − bt + Ct , (7)
where B is a standard Brownian motion, and C is an independent pure-
jump process. If, in addition, m is a finite measure [this condition implies
that

∫
Rd (1∧ ‖x‖)m(dx) is finite] then we can recognise

∫
Rd (1− eiξ·z)m(dz)

as the characteristic exponent of a compound Poisson process with para-
meter λ := m(Rd) and jump distribution m(•)/m(Rd). This proves the first
half of the following theorem.
Theorem 3. Suppose m(Rd) < ∞, and b = 0 and σ = 0. Then X is
compound Poisson. Conversely, if X is compound Poisson then σ = 0,
m(Rd) <∞, and b = 0.

Proof. We have proved already the first half. Therefore, we assume from
here on that X is compound Poisson.

Because X is compound Poisson, it is a pure-jump process. Therefore,
(7) tells us readily that Xt must equal Ct ; i.e., σ = 0 and b = 0. It remains
to demonstrate that m(Rd) <∞.

Define Aε := {z ∈ Rd : ‖z‖ > ε}, where ε > 0 is arbitrary. Note
that the total number of jumps, during the time interval [0 , t], whose mag-
nitude is in Aε is Πt (Aε ) =

∑
s∈[0,t] 1l{‖(∆X)s‖>ε}, which—by properties of

Poisson processes—has mean and variance both equal to tm(Aε ). Thanks
to Chebyshev’s inequality,

P
{

Πt (Aε ) ≤
1
2 tm(Aε )

}
≤ P

{
|Πt (Aε )− EΠt (Aε )| >

1
2 tm(Aε )

}

≤ 4
tm(Aε )

.

Now, if m(Rd) =∞ then m(Aε )→∞ as ε → 0. It follows readily from the
preceding that supε>0 Πt (Aε ) =∞. But that supremum is the total number
of jumps of X during the time interval [0 , t], and this would contradict the
assumption that X is compound Poisson. Therefore, m(Rd) <∞. �
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One can also characterize when X is compound Poisson purely in
terms of the exponent Ψ.

Theorem 4. X is compound Poisson if and only if Ψ is bounded.

Proof. Suppose first that X is compound Poisson. Then m is a finite
measure, b = 0 and σ = 0 (Theorem 3), and

sup
ξ∈Rd

|Ψ(ξ)| ≤ sup
ξ∈Rd

∣∣∣∣
∫

Rd

(
1− eiξ·z

)
m(dz)

∣∣∣∣ ≤ 2m(Rd) <∞,

thanks to (5). This proves that if X is compound Poisson then Ψ is bounded.
We now assume that Ψ is bounded, and prove the converse.
Note that

|Ψ(ξ)| ≥ ReΨ(ξ) ≥
∫

Rd
(1− cos(ξ · z)) m(dz).

Now let us introduce a d-dimensional standard Brownian motion Y :=
{Yt}t≥0, and note that

sup
ξ∈Rd

|Ψ(ξ)| ≥ EReΨ(Yt ) ≥
∫

Rd

(
1− e−t‖z‖2/2

)
m(dz).

Send t → ∞ and apply Fatou’s lemma to deduce that m is finite. And
Theorem 1 implies that σ = 0. It remains to prove that b = 0. But it
follows readily from (5) and the dominated convergence theorem that

lim sup
‖ξ‖→∞

|Ψ(ξ)|
‖ξ‖ = lim sup

‖ξ‖→∞

|b · ξ|
‖ξ‖ = max

1≤j≤d
|bj |.

Therefore, the boundedness of Ψ implies that b = 0, as asserted. �

Theorem 5. If X is a Lévy process on Rd with Lévy measure m then for
all γ > 0 the following are equivalent:

(1)
∫

Rd (1 ∧ ‖z‖γ )m(dz) <∞; and
(2) Vt (γ) :=

∑
s≤t ‖(∆X)s‖γ <∞ for one hence all t ≥ 0 a.s.

Consequently, the random function t 7Ï Xt has bounded variation [a.s.]
iff σ = 0 and

∫
Rd (1 ∧ ‖x‖)m(dx) <∞.

A great deal more is known about the variations of a Lévy process
(Millar, 1971; Monroe, 1972).

Before we set out to prove Theorem 5, let us study some examples.

Example 6. Poisson processes are of bounded variation. Indeed, if X is a
Poisson process with intensity λ ∈ (0 ,∞), then a = σ = 0, m = λδ{1}, and∫∞
−∞(1 ∧ |x|)m(dx) = λ. �
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Example 7. Let X denote an isotropic stable process with index α ∈ (0 , 2).
Then, a = 0, σ = 0, and m(dx) ∝ ‖x‖−(d+α) dx; see Lemma 1. Thus, we
can integrate in spherical coordinates to find that

∫

Rd
(1 ∧ ‖x‖)m(dx) ∝

∫ ∞

0
(1 ∧ r) dr

rα+1

is finite if and only if α ∈ (0 , 1). In particular, the isotropic Cauchy process
[that is, α = 1 here] is the borderline case which has unbounded variation.
Note also that this example shows that there exist Lévy processes which
are not compound Poisson [m(Rd) = ∞], and yet have bounded variation
almost surely. �

Proof of Theorem 5. First, let us handle the matter of bounded variation,
assuming the first portion of the theorem. Then we address the first
portion.

We apply (1) to see that the compound Poisson component of X does
not contribute to the question of whether or not X has bounded variation.
That is, we can assume, without loss of generality, that m{z ∈ Rd : ‖z‖ >
1} = 0. Since Brownian motion has quadratic variation, it has infinite
variation a.s. This implies that unless σ = 0, X cannot have bounded
variation. And since t 7Ï −at [in the process W ] has bounded variation, a
too does not contribute to our problem. In summary, we need only study
the case that a = 0, σ = 0, and m{z ∈ Rd : ‖z‖ > 1} = 0. In that case, X
is pure jump and the first portion of the theorem does the job. It remains
to prove the equivalence of (1) and (2).

The convergence of Vt (γ) does not depend on the continuous [Gaussian]
component W in the decomposition (1). Therefore, we can assume without
loss of generality that a = 0 and σ = 0. Also, since C is compound Poisson,∑

s∈[0,t] ‖(∆C)s‖γ is a finite sum of a.s.-finite random variables. Therefore,
we can assume without loss of generality that m{z ∈ Rd : ‖z‖ > 1} = 0,
whence Ct ≡ 0 for all t . Thus,

∫
Rd (1∧‖z‖γ )m(dz) =

∫
Rd ‖z‖γm(dz). If this

integral is finite, then by Theorem 4 [page 26],

E
∑

s∈[0,t]
‖(∆X)s‖γ = E

∫
‖x‖γ Πt (dx) = t

∫

Rd
‖x‖γm(dx) <∞.

Therefore, for every t ≥ 0 there exists a null set off which Vt (γ) <∞. Since
t 7Ï Vt (γ) is nondecreasing, we can choose the null set to be independent
of t , and this shows that (1)Ñ(2).

Conversely, if (1) fails, then
∫
‖x‖≤1 ‖x‖γm(dx) =∞, under the present

reductions. Let Aε := {z ∈ Rd : ε < ‖z‖ ≤ 1} and note that Πt (Aε ) =∑
s≤t 1l{ε<‖(∆X)s‖≤1} and Vt (γ) ≥ Vt (γ , ε) :=

∫
Aε ‖x‖

γ Πt (dx). From Theorem
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4 [page 26] we know that EVt (γ , ε) = t
∫
Aε ‖x‖

γm(dx) and VarVt (γ , ε) ≤
EVt (γ , ε) [in fact this is an identity]. Therefore, Chebyshev’s inequality
shows that

P
{
Vt (γ) ≤ t

2

∫

Aε
‖x‖γm(dx)

}
≤ 4

(
t
∫

Aε
‖x‖γm(dx)

)−1
.

This shows that if
∫
‖x‖γm(dx) =∞ then Vt (γ) =∞ a.s. for all t ≥ 0. By

monotonicity, this implies (2). �

Conclusion: To us, the most interesting Lévy processes are those that have
a pure-jump component with unbounded variation. The rest are basically
Brownian motion with drift, plus a compound Poisson process.

The preceding conclusion is highlighted in the following section.

A strong law of large numbers

Recall that if x1, x2, . . . are i.i.d. random variables with values in Rd , and if
sn := x1 + · · ·+ xn , then:

(1) lim supn→∞ ‖sn/n‖ and lim infn→∞ ‖sn/n‖ are a.s. constants;
(2) lim supn→∞ ‖sn/n‖ <∞ [a.s.] if and only if E‖x1‖ <∞; and
(3) If and when E‖x1‖ <∞, then we have limn→∞(sn/n) = E[x1] a.s.

The preceding is Kolmogorov’s strong law of large numbers.
Since we may think of Lévy processes as continuous-time random

walks, we might wish to know if the strong law of large numbers has
a continuous-time analogue. It does, as the following shows.

Theorem 8. Let X be a Lévy process in Rd with triple (a , σ ,m). Then,
p := P{lim supt→∞ ‖Xt/t‖ < ∞} is zero or one. And p = 1 if and only if∫
‖x‖≥1 ‖x‖m(dx) <∞. And when p = 1,

lim
t→∞

Xt
t = −a +

∫

‖x‖≥1
xm(dx) a.s.

The preceding yields information about the global [i.e., large time]
growth of a Lévy process. We will soon see an example of a “local” version
[i.e., one that is valid for small t] in Theorem 5 on page 45. For further
information on such properties see the paper by Štatland (1965).

Proof. If τ > 0 is fixed and nonrandom, then

lim sup
t→∞

∥∥∥∥
Xt
t

∥∥∥∥ = lim sup
t→∞

∥∥∥∥
Xt − Xτ

t

∥∥∥∥ a.s.
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Therefore, p ∈ {0 , 1}, by the Kolmogorov zero-one law (Proposition 2 on
page 29).

We use structure theorem (1) and write Xt = σBt − at + Ct + Dt . By
the strong law of large numbers for Brownian motion, Bt/t → 0 a.s. as
t →∞. And

E
(

sup
s∈[2n,2n+1]

‖Ds‖
s

)
≤ 2−n−1

√√√√E
(

sup
s∈[2n,2n+1]

‖Ds‖2
)

= O(2−n/2).

Therefore, the Borel–Cantelli lemma implies that Dt = o(t) a.s. as t →∞.
It therefore suffices to prove that lim sup→∞ ‖Ct/t‖ <∞ a.s. if and only if∫
‖x‖≥1 xm(dx) <∞, and in the case that the latter condition holds,

lim
t→∞

Ct
t =

∫

‖x‖≥1
xm(dx) a.s. (8)

But this is not hard, because we can realize the process Ct as
∑Nt

j=1 xj ,
where: (i) {Nt}t≥0 is a Poisson process with rate λ = m{‖z‖ ≥ 1}; (ii)
x1, x2, . . . are i.i.d. with distribution m(• ∩ {‖z‖ ≥ 1})/m{‖z‖ ≥ 1}; and the
xj ’s and N are independent. Because Nt → ∞ a.s., we can condition on
the process N and apply the Kolmogorov strong law of large numbers to
deduce that limt→∞ ‖Ct/Nt‖ <∞ a.s. if and only if

E‖x1‖ = 1
m{‖z‖ ≥ 1}

∫

‖z‖≥1
‖z‖m(dz) <∞.

And if the latter holds, then

lim
t→∞

Ct
Nt

= Ex1 = 1
m{‖z‖ ≥ 1}

∫

‖z‖≥1
zm(dz) <∞.

The result follows because Nt/t → λ = m{‖z‖ ≥ 1} a.s. as t →∞. �

Symmetry and isotropy

Definition 9. We say that a Lévy process X is symmetric if Ψ is real values;
X is isotropic if there exists a nonrandom (d×d) orthogonal matrix O such
that {OXt}t≥0 has the same distribution as X. �

Lemma 10. The process −X is a Lévy process with exponent Ψ. There-
fore, X is symmetric if and only if the finite-dimensional distributions of
X and −X are the same. On the other hand, X is isotropic if and only
if Ψ is an isotropic—or radial–function; that is, Ψ(ξ) depends on ξ ∈ Rd

only on ‖ξ‖.
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The preceding implies, among many other things, that every isotropic
Lévy process is symmetric. For one-dimensional Lévy processes, the two
notions of symmetry and isotropy are, of course, the same. But the con-
verse is not true in general, viz.,

Example 11 (Processes with stable components). Let X1, . . . , Xd denote d
independent one-dimensional symmetric stable processes with respective
indices α1, . . . , αd ∈ (0 , 2], where d ≥ 2. Consider the d-dimensional Lévy
process defined by Xt := (X1

t , . . . , Xd
t ) and note that Ψ(ξ) =

∑d
j=1 |ξj |α for

all ξ ∈ Rd . Consequently, even though X is manifestly symmetric, it is
isotropic if and only if α = 2 [i.e., Brownian motion]. �

And just to be sure, let me remind you of an interesting example of
an asymmetric Lévy process.

Example 12 (The asymmetric Cauchy process on R). Let X be a Lévy
process with exponent Ψ(ξ) = −|ξ| − iθξ log |ξ|, where |θ| ≤ 2/π and
0 log |0| :=∞. The process X is a Cauchy process on the line. It is called
symmetric if θ = 0, completely asymmetric if |θ| = 2/π , and asymmetric
otherwise. �

Problems for Lecture 7
1. Prove that every Lévy process X on Rd is a strong Markov process. That is,
for all finite stopping times T [in the natural filtration of X], t1, . . . , tk ≥ 0, and
A1, . . . , Ak ∈ B(Rd),

P




k⋂

j=1

{
XT+tj − XT ∈ Aj

}
∣∣∣∣∣∣
FT



 = P




k⋂

j=1

{
Xtj ∈ Aj

}


 a.s.

(Hint: Follow the Math. 6040 proof of the strong Markov property of Brownian
motion.)

2. Consider the degenerate two-dimensional Brownian motion Xt := (Bt , 0) where
B is Brownian motion in dimension one. Compute Ψ, and verify that

0 = lim inf
‖ξ‖→∞

|Ψ(ξ)|
‖ξ‖2 < lim sup

‖ξ‖→∞

|Ψ(ξ)|
‖ξ‖2 = 1

2 .

Thus, it is possible that the lim sup in Theorem 1 is not a bona fide limit.

3. Derive Lemma 10.

4. Let X denote a Lévy process on Rd with stable components that respectively
have indices α1, . . . , αd . Find a necessary and sufficient condition for X to have
bounded-variation paths.
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5 (The Skorohod–Ottaviani inequality). Let Y1, Y2, . . . be a sequence of indepen-
dent random variables with values in Rd , and define Sk := Y1 + · · · + Yk for all
k ≥ 1. Prove that for all n ≥ 1 and λ > 0,

min
1≤j≤n

P {‖Sn − Sj‖ ≤ λ} · P
{

max
1≤j≤n

‖Sj‖ ≥ 2λ
}
≤ P {‖Sn‖ ≥ λ} .

Conclude that if X is a Lévy process on Rd , then for all t, λ > 0,

inf
0≤s≤t

P {‖Xs‖ ≤ λ} · P
{

sup
s∈[0,t]

‖Xs‖ ≥ 2λ
}
≤ P {‖Xt‖ ≥ λ} .

(Hint: Consider the smallest integer j such that ‖Sj‖ ≥ λ.)

6. Suppose f : (0 ,∞)→ R+ is increasing and measurable with f (0) = 0. Suppose
also that X is a d-dimensional Lévy process such that

∫ 1
0 t−1P{‖Xt‖ > f (t)} dt <∞.

(1) Prove that
∞∑

n=1

∫ 1

0
P {‖Xan‖ > f (an)} log(1/a) da <∞.

Conclude that
∑∞

n=1 P{‖Xan‖ > f (an)} <∞ for almost every a ∈ (0 , 1).
(2) Use the Skorohod–Ottaviani inequality (previous problem) to prove that

lim sup
t↓0

‖Xt‖
f (t) <∞ a.s.

(Khintchine, 1939).
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Subordinators

Definition 1. A subordinator T := {Tt}t≥0 is a one-dimensional Lévy pro-
cess such that t 7Ï Tt is nondecreasing. �

Since T0 = 0 all subordinators take nonnegative values only.

Proposition 2. A Lévy process T on R is a subordinator iff its Lévy triple
has the form (a , 0 ,m), where m((−∞ , 0)) = 0 and

∫∞
0 (1 ∧ x)m(dx) <∞.

Proof. T is a subordinator iff its paths are monotone and its jumps are
nonnegative. The monotonicity of the paths is equivalent to their bounded
variation; i.e., σ = 0 and

∫∞
−∞(1 ∧ |x|)m(dx) < ∞ [Theorem 5 on page

36]. And the jumps are nonnegative iff Jt :=
∑

0≤s≤t 1l(−∞,0)((∆T)s) = 0
for all t ≥ 0. But Jt = 0 iff E(Jt ) = 0, by basic facts about PPP’s, and
E(Jt ) = tm((−∞ , 0)). �

One can think of Lévy processes as an extension of the classical family
of random walks [sums of i.i.d. random variables]. In the same way, we
think of subordinators as an extension of random walks that have nonneg-
ative increments. Such objects are the central pieces of renewal theory,
regenerative times, etc., as the following example might suggest.

Example 3. Suppose Z1, Z2, . . . are i.i.d. integer-valued random variables,
and consider the random walk defined by S0 := 0 and

Sn := Z1 + · · ·+ Zn for n ≥ 1.

Let τn denote the nth return time of S to zero; that is, τ0 := 0, and iteratively
define

τn := inf {j > τn−1 : Sj = 0} .

43
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If we define inf∅ :=∞, then we find that the τn ’s are increasing stopping
times. But also, because S has the strong Markov property [in the sense
of Math. 6040], {τj − τj−1}∞j=1 is a sequence of i.i.d. nonnegative random
variables. Thus, τn :=

∑n
j=1(τj − τj−1) is a nondecreasing random walk. In

other words, the successive return times of S to zero form a discrete-time
analogue of a subordinator.

Laplace exponents

It follows that if T is a subordinator, then there exists a ∈ R and a Lévy
measure m, supported on (0 ,∞), such that

∫ 1
0 xm(dx) < ∞ and the Lévy

exponent of X is given by

Ψ(ξ) = −iaξ +
∫ ∞

0

[
1− eizξ + i(zξ)1l(0,1)(z)

]
m(dz) for all ξ ∈ R.

In the present setting,
∫∞
0 (zξ)1l(0,1)(z)m(dz) <∞. Therefore, we can write

E exp(iξTt ) = exp
{
ibξt − t

∫ ∞

0

(
1− eizξ

)
m(dz)

}
(ξ ∈ R), (1)

where

b := a −
∫ 1

0
xm(dx).

Because P{Xt ≥ 0} = 1, both sides of (1) are analytic functions of ξ for
ξ in {z ∈ C : Rez ≥ 0}. In particular, we consider (1) for ξ := iλ, where
λ ≥ 0, and obtain the following: For all t, λ ≥ 0,

Ee−λTt = e−tΦ(λ), where Φ(λ) := bλ +
∫ ∞

0

(
1− e−λz

)
m(dz). (2)

By the uniqueness theorem for Laplace transforms, the function Φ deter-
mines the law of T uniquely.

Definition 4. The function Φ is called the Laplace exponent of the sub-
ordinator T . The constant b is called the drift of T . �

Most people who study subordinators prefer to work with the Laplace
exponent rather than the Lévy exponent because the latter yields a more
natural “parametrization.” The following is an instance of this; it also ex-
plains why b is called the drift of T . In the next section we will see an
even more compelling instance of why we prefer to work with the Laplace,
rather than the Lévy, exponent of subordinators.

The following describes the local behavior of a subordinator; you can
find a good deal more information about this topic in the paper by Štatland
(1965).
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Theorem 5 (A law of large numbers). If T is a subordinator with drift b
and Lévy measure m, then (Tt/t)

P→ b as t ↓ 0.

Proof. Thanks to (2) and the Lévy–Khintchine formula, we can write Tt =
bt + St , where {St}t≥0 is a subordinator with Laplace exponent

Φ(λ) =
∫ ∞

0

(
1− e−λz

)
m(dz).

It suffices to prove that St = o(t) a.s. as t →∞. But

lim
t→0

Eeiξ(St /t) = lim
t→0

exp
{
−t
∫ ∞

0

(
1− e−iξz/t

)
m(dz)

}
= 1 for all ξ ∈ R,

thanks to the dominated convergence theorem. This proves that St/t con-
verges to 0 weakly, and hence in probability [since the limit 0 is nonran-
dom]. �

Stable subordinators

We have seen already one example of a subordinator [called the “Gamma
subordinator”] that has no drift and Lévy measure of the form m(dx)/dx =
αx−1 exp(−λx)1l(0,∞)(x) [see page 12]. Next we introduce another.

Consider, a Borel measure mα on (0 ,∞) with density
mα(dx)

dx := c
x1+α 1l(0,∞)(x),

where c > 0 is a constant. Then, mα is the Lévy measure of some Lévy
process iff α ∈ (0 , 2), yet mα is the Lévy measure of some subordinator iff
α ∈ (0 , 1).

Definition 6. A stable subordinator with index α ∈ (0 , 1) is a subordinator
with zero drift and Lévy measure mα. �

In particular, if T is a stable subordinator with index α ∈ (0 , 1), then
Φ(λ) ∝ λα for an arbitrary [but strictly-positive] constant of proportionality.
By changing the notation slightly, we can assume hereforth that T1 is
normalized so that

Ee−λTt = e−tλα for all λ, t > 0.

We now study the local behavior of stable subordinators.
If T is a stable subordinator of index α ∈ (0 , 1), then Tt = o(t) in

probability as t → 0+. This finding can be sharpened in two different
ways; they are explained by our next two theorems.
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Theorem 7 (Fristedt, 1967). Let T be a stable subordinator with index α ∈
(0 , 1). Then whenever f : (0 ,∞)→ R+ is measurable and nonincreasing
with t 7Ï t−1/αf (t) nondecreasing near t = 0,

lim sup
t↓0

Tt
f (t) =

{
0 if

∫∞
1 [f (t)]−α dt/t <∞,

∞ if
∫∞
1 [f (t)]−α dt/t =∞.

Theorem 8 (Fristedt, 1964; Khintchine, 1939). Let T be a stable subor-
dinator with index α ∈ (0 , 1). Then there exists a positive and finite
constant K such that

lim inf
t↓0

Tt
f (t) = K a.s., where f (t) := t1/α

(ln ln(1/t))(1−α)/α .

Example 9. Thus, for example [a.s.],

lim sup
t↓0

Tt
t1/α · [ln(1/t)]1/α =∞ whereas lim

t↓0

Tt
t1/α · [ln(1/t)]q/α = 0,

for every q > 1. Note also that Theorems 8 and 7 together imply that with
probability one, Tt = t(1+o(1))/α a.s. as t ↓ 0. �

Now we start the groundwork needed to prove Theorems 8 and 7. The
arguments rely on two probability estimates that are interesting in their
own right; namely, we need sharp estimates for P{T1 ≥ z} and P{T1 ≤ ε}
when z is large and ε > 0 is small.

Theorem 10. There exist positive and finite constants c1 and c2—depending
on α ∈ (0 , 1) and c > 0—such that

c1
(
1 ∧ z−α

)
≤ P {T1 > z} ≤ c2

(
1 ∧ z−α

)
for all z > 0.

Proof. Because 1 − e−λT1 ≥ (1 − e−λz)1l{T1>z} for all λ > 0 and z > 1, we
can take expectations to find that

P {T1 > z} ≤ inf
λ>0

1− e−λα

1− e−λz ≤ inf
λ>0

λα
1− e−λz = 1

zα inf
q>0

qα
1− e−q .

This proves one bound. For the other, we note that T1 =
∑

s∈[0,1](∆T)s ,
since T is monotonic, hence of bounded variation. In particular, T1 ≥
sups∈[0,1](∆T)s . Therefore,

P {T1 > z} ≥ P





∑

s∈[0,1]
1{(∆T)s>z} ≥ 1




 = 1− P





∑

s∈[0,1]
1{(∆T)s>z} = 0




 .

The sum of the indicators is Poisson with mean m([z ,∞)), which is pro-
portional to

∫∞
z x−(1+α) dx ∝ z−α for z > 0. Therefore, there exists a
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constant C such that P{T1 > z} ≥ 1 − e−Cz−α for all z > 0. This proves
the theorem. �

The preceding estimates the distribution of T1 near infinity. The fol-
lowing estimates it near zero.

Theorem 11. There exists a positive and finite constant Nα such that

P {T1 ≤ ε} = exp
(
−Nα + o(1)

εα/(1−α)

)
as ε ↓ 0.

Proof. Note that T1 ≤ ε if and only if exp(−λT1) ≥ exp(−λε), where λ > 0
is arbitrary. Therefore, Chebyshev’s inequality tells us that

P {T1 ≤ ε} ≤ inf
λ>0

eλεEe−λT1 = inf
λ>0

eλε−λα = exp
(
− να
ε1/(1−α)

)
,

where
να := αα/(1−α)(1− α),

and this is positive since α ∈ (0 , 1). This proves that if Nα exists then it is
certainly bounded below by να > 0.

In order to derive the more interesting lower bound, I will apply an
elegant rescaling argument (Griffin, 1985). Let us first note that if T(j+1)/n−
Tj/n ≤ ε/n for all 0 ≤ j < n, then certainly

T1 =
∑

0≤j<n

(
T(j+1)/n − Tj/n

)
≤ ε.

Therefore, by the independence of the increments of the process T ,

P {T1 ≤ ε} ≥
∏

0≤j<n
P
{
T(j+1)/n − Tj/n ≤

ε
n

}
=
[
P
{
T1/n ≤

ε
n

}]n
.

Because T1/n has the same distribution as n−1/αT1, we can deduce the
recursive inequality,

P {T1 ≤ ε} ≥
[
P
{
T1 ≤ ε · n(1−α)/α

}]n
.

Now we select n by setting n := [(γ/ε)α/(1−α)], where [•] := the greatest-
integer function. It follows easily from this that

P {T1 ≤ ε} ≥ [P {T1 ≤ γ}][(γ/ε)
α/(1−α)] .

Consequently,

lim inf
ε↓0

εα/(1−α) ln P {T1 ≤ ε} ≥ sup
γ>0

γα/(1−α) ln P {T1 ≤ γ} .
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In particular, the lim inf is a genuine limit and equal to −Nα, which is
strictly greater than −∞ [since P{T1 ≤ γ} > 0 for γ sufficiently large].
This completes the proof. �

Remark 12. We showed in the proof that Nα ≥ να. Large-deviations
methods can be used to show that this inequality is in fact an identity;
and the ensuing proof will show that the constant K in Theorem 7 is
K = α · ββ/α for β := 1− α. Exercise 3 below outlines the starting point of
this approach. �

Proof of Theorem 7. Let tn := 2−n and note that

I(f ) :=
∫ ∞

1

dt
[f (t)]α <∞ iff

∞∑

n=1

tn
[f (tn)]α

<∞.

[Cauchy’s test.] It is easy to check that Tt has the same distribution as
t1/αT1; we simply check the characteristic functions. With this fact in
mind, we apply Theorem 10 to find that

∞∑

n=1
P {Ttn−1 > f (tn)} =

∞∑

n=1
P
{
T1 >

f (tn)
t1/αn

}
≤ const ·

∞∑

n=1

tn
[f (tn)]α

.

Therefore, whenever I(f ) < ∞, the Borel–Cantelli lemma ensures that,
with probability one, Ttn−1 ≤ f (tn) for all but a finite number of n’s. Now we
apply a monotonicity/sandwich argument [as in the proof of the strong law
of large numbers in Math. 6040]: If t ∈ [tn , tn−1], then Tt ≤ Ttn−1 ≤ f (tn) ≤
f (t) for all t sufficiently small; consequently we have limt↓0(Tt/f (t)) ≤ 1 a.s.
Because I(f ) < ∞ implies that I(κf ) < ∞ for arbitrarily small κ > 0, it
follows that Tt/f (t)→ 0 a.s.

The converse is proved similarly:
∞∑

n=1
P {Ttn−1 − Ttn ≤ f (tn−1)} =

∞∑

n=1
P
{
T1 ≤

f (tn−1)
(tn−1 − tn)1/α

}

=
∞∑

n=1
P
{
T1 ≤

f (tn−1)
(2tn)1/α

}

≥ const ·
∞∑

n=2

tn
[f (tn)]α

.

Therefore, I(f ) = ∞ implies that a.s., Ttn−1 − Ttn > f (tn−1) infinitely often
[Borel–Cantelli lemma for independent events]. Since Ttn ≥ 0, this does
the job. �

Now we prove the limit theorems mentioned earlier.
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Proof of Theorem 8. Since Tt has the same distribution as t1/αT1, we
obtain the following from Theorem 11: For all γ > 0,

P {Tt ≤ γf (t)} = P
{
T1 ≤

γ
[
ln ln(1/t)

](1−α)/α

}

= exp
(
−Nαγ−α/(1−α) ln ln t(1 + o(1)

)
,

=
[
ln(1/t)

]−ν+o(1) as t ↓ 0,

where ν := Nαγ−α/(1−α). This sums along t = an , provided that ν > 1 and
a ∈ (0 , 1). Because t 7Ï Tt is nondecreasing, a monotonicity/sandwich
argument [as in the 6040 proof of the LIL] proves that

lim inf
t↓0

Tt
f (t) ≥ N (1−α)/α

α a.s. (3)

For the converse we continue using the notation ν := Nαγ−α/(1−α). But
now we consider the case that ν < 1. Let us also redefine tn := exp(−nq )—
where q > 1 is to be chosen in a little bit—and then note that

P {Ttn−1 − Ttn ≤ γf (tn−1)} = P
{
T1 ≤ γ f (tn−1)

(tn−1 − tn)1/α

}

= exp (−(ν + o(1)) ln ln(1/tn−1))

= n−(νq+o(1)),

since tn−1 − tn ∼ tn as n→∞. It follows that
∑

n
P {Ttn−1 − Ttn ≤ γf (tn−1)} =∞ provided that 1 < q < ν−1.

The Borel–Cantelli lemma for independent events implies that if 1 < q <
ν−1, then

lim inf
n→∞

Ttn−1 − Ttn
f (tn−1)

≤ γ a.s. (4)

At the same time, it is possible to apply Theorem 10 to obtain the following:
For all ε > 0 and n large,

P {Ttn ≥ εf (tn−1)} = P
{
T1 ≥ ε (tn−1/tn)1/α

(ln ln(1/tn−1))(1−α)/α

}

≤ const · (ln ln(1/tn−1))(1−α)

tn−1/tn

= n(1−α)

exp {qnq−1(1 + o(1))} .
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Because q > 1 and ε > 0 is arbitrary, the preceding estimate and the
Borel–Cantelli lemma together imply that Ttn = o(f (tn−1)) a.s. as n → ∞.
Consequently, (4) tells us that

lim inf
t↓0

Tt
f (t) ≤ lim inf

n→∞
Ttn−1

f (tn−1)
≤ γ a.s.,

as long as ν < 1; i.e., γ < N (1−α)/α
α . It follows that the inequality in (3) can

be replaced by an identity; this completes our proof. �

Subordination

Let X denote a symmetric Lévy process on Rd with Lévy exponent Ψ, and
suppose T is an independent subordinator [on R+, of course] with Laplace
exponent Φ. Because Ψ is real [and hence nonnegative], it is not hard to
see that the process Y := {Yt}t≥0, defined as

Yt := XTt for t ≥ 0,
is still a symmetric Lévy process. Moreover, by conditioning we find that

Eeiξ·Yt = E
(

e−TtΨ(ξ)
)

= e−tΦ(Ψ(ξ)) for all t ≥ 0 and ξ ∈ Rd.

We say that Y is subordinated to X via [the subordinator] T . Let us sum-
marize our findings.

Proposition 13 (Subordination). If X is a symmetric Lévy process on Rd

with Lévy exponent Ψ and T is an independent subordinator with Laplace
exponent Φ, then Y := X◦T is a symmetric Lévy process on Rd with Lévy
exponent Φ ◦ Ψ. If X is isotropic, then so is X ◦ T .

If T is a stable subordinator with index α ∈ (0 , 1), then Φ(λ) ∝ λα.
Since the Lévy exponent of standard Brownian motion is Ψ(ξ) = 1

2‖ξ‖2,
we immediately obtain the following.

Theorem 14 (Bochner). Let X denote standard d-dimensional Brownian
motion, and T an independent stable subordinator with index α ∈ (0 , 1).
Then X ◦ T is an isotropic stable process with index 2α.

Because 2α ∈ (0 , 2) whenever α ∈ (0 , 1), the preceding tells us that
we can always realize any isotropic stable process via a subordination of
Brownian motion!

Theorem 15. Let X be a d-dimensional random variable whose law is
isotropic stable with index α ∈ (0 , 2). Then there exist c1, c2 ∈ (0 ,∞)
such that c1

zα ≤ P {‖X‖ > z} ≤ c2
zα for all z > 1.
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This theorem improves on Proposition 2 (page 11), which asserted that
E(‖X‖β) <∞ if β < α, but not if β ≥ α.

Proof. We know that X has the same law as Y1, where Y := {Yt}t≥0 is
an isotropic stable process on Rd . We can realize Y as follows: Yt = BTt
where B is d-dimensional Brownian motion, and T an independent stable
subordinator with index α/2. Therefore, by scaling,

P {‖X‖ > z} = P {‖BT1‖ > z} = P
{
T1 >

z2

‖B1‖2

}
.

It follows easily from Theorem 10 [after conditioning on B] that there are
constants c1 and c2 such that for all z > 0,

c1E
[
1 ∧ ‖B1‖α

zα

]
≤ P {‖X‖ > z} ≤ c2E

[
1 ∧ ‖B1‖α

zα

]
.

And by the dominated convergence theorem, the two expectations are
equal to z−αE(‖B1‖α)(1 + o(1)) as z →∞. �

Problems for Lecture 8
Throughout these problems, T := {Tt}t≥0 denotes a subordinator with drift b,
Lévy measure m, and Laplace exponent Φ.

1. Prove that E(Tt/t) = limλ↓0 Φ(λ)/λ =
∫∞

0 xm(dx) for all t ≥ 0. Construct an
example where E(Tt ) =∞ for all t > 0.

2. Let B denote one-dimensional Brownian motion, and define
Tt := inf{s > 0 : Bs > t} (t ≥ 0, inf∅ :=∞).

(1) Prove that {Tt}t≥0 is a subordinator, and for all s, t, q ≥ 0,

P
(
Tt+s − Ts ≤ q

∣∣Fs
)

= t√
2π

∫ q

0

e−t2/(2u)

u3/2 du a.s.

(2) Conclude that Tt =
∫∞

0 xΠt (dx), for a Poisson point process {Πt}t≥0
with intensity dt × ρ(dx), where ρ(A) := (2π)−1/2 ∫

A x−3/2 dx.
(3) Show that the Laplace exponent of T is

Φ(λ) :=
∫ ∞

0

(
1− e−λx

) dx
x3/2 .

Conclude that T is a stable subordinator of index 1/2 (see Lévy, 1992,
Théorème 46.1, p. 221).

3 (Girsanov transformations). Let T be a subordinator with drift b and Laplace
exponent Φ. Define {Ft}t≥0 to be the natural filtration of T .

(1) Prove that M (λ)
t := exp(−λTt + tΦ(λ)) defines a nonnegative mean-one

cadlag martingale with respect to {Ft}t≥0;
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(2) For every λ > 0 and t ≥ 0 define P(λ)(A) := E[M (λ)
t ; A] for all A ∈ Ft .

Prove that P(λ) is defined consistently as a probability measure on the
measurable space (Ω ,F∞), where F∞ := ∨t≥0Ft ;

(3) Prove that T is a subordinator under the measure P(λ). Compute the
drift, and more generally Laplace exponent, of T under the new measure
P(λ);

(4) Prove that P(λ){limt↓0(Tt/t) = Φ′(λ)} = 1. Compare with Theorem 5 on
page 45;

(5) Prove that when t, λ > 0, E(λ)(Tt ) = tΦ′(λ) and Var(λ)(Tt ) = −tΦ′′(λ),
where E(λ) and Var(λ) respectively denote the expectation and variance
operators for P(λ);

(6) Examine all of the preceding in the special case that T is a stable sub-
ordinator with index α ∈ (0 , 1).

4. Prove that if the Lévy measure m of a Lévy process X is supported in a
compact set and

∫
Rd ‖x‖γ m(dx) < ∞ for some γ ∈ (0 , 1], then we can write

Xt = −at + σBt + Tt − St , where T and S are independent subordinators, and B
is an independent Brownian motion (Millar, 1971).



Lecture 9

The Strong Markov
Property

Throughout, X := {Xt}t≥0 denotes a Lévy process on Rd with triple (a , σ,m),
and exponent Ψ. And from now on, we let {Ft}t≥0 denote the natural fil-
tration of X, all the time remembering that, in accord with our earlier
convention, {Ft}t≥0 satisfies the usual conditions.

Transition measures and the Markov property

Definition 1. The transition measures of X are the probability measures

Pt (x ,A) := P {x + Xt ∈ A}

defined for all t ≥ 0, x ∈ Rd , and A ∈ B(Rd). In other words, each Pt (x , •)
is the law of Xt started at x ∈ Rd . We single out the case x = 0 by setting
µt (A) := Pt (0 , A); thus, µt is the distribution of Xt for all t > 0. �

Note, in particular, that µ0 = δ0 is the point mass at 0 ∈ Rd .

Proposition 2. For all s, t ≥ 0, and measurable f : Rd → R+,

E[f (Xt+s) |Fs] =
∫

Rd
f (y)Pt (Xs , dy) a.s.

53
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Consequently, for all x0 ∈ Rd , 0 < t1 < t2 < · · · < tk , and measurable
f1, . . . , fk : Rd → R+,

E




k∏

j=1
fj (x0 + Xtj )



 (1)

=
∫

Rk
Pt1 (x0 , dx1)

∫

Rk
Pt2−t1 (x1 , dx2) · · ·

∫

Rd
Ptk−tk−1 (xk−1 , dxk)

k∏

j=1
fj (xj ).

Property (1) is called the Chapman–Kolmogorov equation. That prop-
erty has the following ready consequence: Transition measures determine
the finite-dimensional distributions of X uniquely.

Definition 3. Any stochastic process {Xt}t≥0 that satisfies the Chapman-
Kolmogorov equation is called a Markov process. This definition continues
to make sense if we replace (Rd ,B(Rd)) by any measurable space on which
we can construct infinite families of random variables. �

Thus, Lévy processes are cadlag Markov processes that have special
“addition” properties. In particular, as Exercise below 1 shows, Lévy pro-
cesses have the important property that the finite-dimensional distributions
of X are described not only by {Pt (x , ·)}t≥0,x∈Rd but by the much-smaller
family {µt (·)}t≥0.

Note, in particular, that if f : Rd → R+ is measurable, t ≥ 0, and x ∈ Rd ,
then

Ef (x + Xt ) =
∫

Rd
f (y)Pt (x , dy) =

∫

Rd
f (x + y)µt (dy).

Therefore, if we define
µ̃t (A) := µt (−A) for all t ≥ 0 and A ∈ B(Rd),

where −A := {−a : a ∈ A}, then we have the following convolution
formula, valid for all measurable f : Rd → R+, x ∈ Rd , and t ≥ 0:

Ef (x + Xt ) = (f ∗ µ̃t )(x).
And, more generally, for all measurable f : Rd → R+, x ∈ Rd , and s, t ≥ 0

E[f (Xt+s) |Fs] = (f ∗ µ̃t )(Xs) a.s.
[Why is this more general?]

Proposition 4. The family {µt}t≥0 of Borel probability measure on Rd is
a “convolution semigroup” in the sense that µt ∗ µs = µt+s for all s, t ≥ 0.
Moreover, µ̂t (ξ) = exp(−tΨ(ξ)) for all t ≥ 0 and ξ ∈ Rd . Similarly, {µ̃t}t≥0
is a convolution semigroup with ˆ̃µt (ξ) = exp(−tΨ(−ξ)).
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Proof. The assertion about µ̃ follows from the assertion about µ [or you
can repeat the following with µ̃ in place of µ].

Since µt is the distribution of Xt , the characteristic function of Xt is
described by µ̂t (ξ) = exp(−tΨ(ξ)). The proposition follows immediately
from this, because µ̂t (ξ) · µ̂s(ξ) = exp(−(t + s)Ψ(ξ)) = µ̂t+s(ξ). �

The strong Markov property

Theorem 5 (The strong Markov property). Let T be a finite stopping time.
Then, the process XT := {XT

t }t≥0, defined by XT
t := XT+t − XT is a Lévy

process with exponent Ψ and independent of FT .

Proof. XT is manifestly cadlag [because X is]. In addition, one checks that
whenever 0 < t1 < · · · < tk and A1, . . . , Ak ∈ B(Rd),

P




k⋂

j=1

{
XT+tj − XT ∈ Aj

}
∣∣∣∣∣∣
FT



 = P




k⋂

j=1

{
Xtj ∈ Aj

}


 a.s.;

see Exercise 2 on page 32. This readily implies that the finite-dimensional
distributions of XT are the same as the finite-dimensional distributions of
X, and the result follows. �

Theorem 5 has a number of deep consequences. The following shows
that Lévy processes have the following variation of strong Markov prop-
erty. The following is attractive, in part because it can be used to study
processes that do not have good additivity properties.

Corollary 6. For all finite stopping times T , every t ≥ 0, and all measur-
able functions f : Rd → R+.

E
[
f (XT+t ) | FT

]
=
∫

Rd
f (y)Pt (XT , dy) a.s.

Let T be a finite stopping time, and then define F(T) = {F(T)
t }t≥0 to

be the natural filtration of the Lévy process XT . The following is a useful
corollary of the strong Markov property.

Corollary 7 (Blumenthal’s zero-one law; Blumenthal, 1957). Let T be a
finite stopping time. Then F(T)

0 is trivial; i.e., P(A) ∈ {0 , 1} for all A ∈ F(T)
0 .
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The following are nontrivial examples of elements of F(T)
0 :

Υ1 :=
{

lim inf
t↓0

‖XT+t − XT‖
t1/α = 0

}
where α > 0 is fixed;

Υ2 :=
{

lim sup
t↓0

‖XT+t − XT‖√
2t ln ln(1/t)

= 1
}

; or

Υ3 :=
{
∃tn ↓ 0 such that XT+tn − XT > 0 for all n ≥ 1

}
in dimension one, etc.

Proof of Blumenthal’s zero-one law. The strong Markov property [Corol-
lary 6] reduces the problem to T ≡ 0. And of course we do not need to
write F(0) since F(0)

t is the same object as Ft .
For all n ≥ 1 defineAn to be the completion of the sigma-algebra gen-

erated by the collection {Xt+2−n − X2−n}t∈[0,2−n]. By the Markov property,
A1,A2, . . . are independent sigma-algebras. Their tail sigma-algebra T is
the smallest sigma-algebra that contains ∪∞i=NAi for all N ≥ 1. Clearly T
is complete, and Kolmogorov’s zero-one law tells us that T is trivial. Be-
cause ∪∞i=NAi contains the sigma-algebra generated by all increments of
the form Xu+v−Xu where u, v ∈ [2−m , 2−m+1] for some m ≥ N , and since
Xu → 0 as u ↓ 0, it follows that T contains ∩s≥0Xs , where Xs denotes the
sigma-algebra generated by {Xr}r∈[0,s]. Since T is complete, this implies
F0 ⊆ T [in fact,T = F0] as well, and hence F0 is trivial becauseT is. �

Consider, for example, the set Υ1 introduced earlier. We can apply the
Blumenthal zero-one, and deduce the following:

For every α > 0, P
{

lim inf
t↓0

‖XT+t − XT‖
t1/α = 0

}
= 0 or 1.

You should construct a few more examples of this type.

Feller semigroups and resolvents

Define a collection {Pt}t≥0 of linear operators by

(Ptf )(x) := Ef (x + Xt ) =
∫

Rd
f (y)Pt (x , dy) = (f ∗ µ̃t )(x) for t ≥ 0, x ∈ Rd .

[Since X0 = 0, P0 = δ0 is point mass at zero.] The preceding is well defined
for various measurable functions f : Rd → R. For instance, everything is
fine if f is nonnegative, and also if (Pt |f |)(x) <∞ for all t ≥ 0 and x ∈ Rd

[in that case, we can write Ptf = Ptf+ − Ptf−].
The Markov property of X [see, in particular, Proposition 4] tells us

that (Pt+sf )(x) = (Pt (Psf ))(x). In other words,
Pt+s = PtPs = PsPt for all s, t ≥ 0, (2)
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where PtPsf is shorthand for Pt (Psf ) etc. Since Pt and Ps commute, in
the preceding sense, there is no ambiguity in dropping the parentheses.

Definition 8. The family {Pt}t≥0 is the semigroup associated with the Lévy
process X. The resolvent {Rλ}λ>0 of the process X is the family of linear
operators defined by

(Rλf )(x) :=
∫ ∞

0
e−λt (Ptf )(x) dt = E

∫ ∞

0
e−λtf (x + Xt ) dt (λ > 0).

This can make sense also for λ = 0, and we write R in place of R0. Finally,
Rλ is called the λ-potential of f when λ > 0; when λ = 0, we call it the
potential of f instead. �

Remark 9. It might be good to note that we can cast the strong Markov
property in terms of the semigroup {Pt}t≥0 as follows: For all s ≥ 0, finite
stopping times T , and f : Rd → R+ measurable, E[f (XT+s) |FT ] = (Psf )(XT )
almost surely. �

Formally speaking,

Rλ =
∫ ∞

0
e−λtPt dt (λ ≥ 0)

defines the Laplace transform of the [infinite-dimensional] function t 7Ï Pt .
Once again, Rλf is defined for all Borel measurable f : Rd → R, if either
f ≥ 0; or if Rλ|f | is well defined.

Recall that C0(Rd) denotes the collection of all continuous f : Rd → R
that vanish at infinity [f (x)→ 0 as ‖x‖ → ∞]; C0(Rd) is a Banach space in
norm ‖f‖ := supx∈Rd |f (x)|.

The following are easy to verify:
(1) Each Pt is a contraction [more precisely nonexpansive] on C0(Rd).

That is, ‖Ptf‖ ≤ ‖f‖ for all t ≥ 0;
(2) {Pt}t≥0 is a Feller semigroup. That is, each Pt maps C0(Rd) to

itself and limt↓0 ‖Ptf − f‖ = 0;
(3) If λ > 0, then λRλ is a contraction [nonexpansive] on C0(Rd);
(4) If λ > 0, then λRλ maps C0(Rd) to itself.

The preceding describe the smoothness behavior of Pt and Rλ for fixed t
and λ. It is also not hard to describe the smoothness properties of them
as functions of t and λ. For instance,

Proposition 10. For all f ∈ C0(Rd),
lim
t↓0

sup
s≥0
‖Pt+sf − Psf‖ = 0 and lim

λ↑∞
‖λRλf − f‖ = 0.
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Proof. We observe that

‖Ptf − f‖ = sup
x∈Rd

|Ef (x + Xt )− f (x)| ≤ E
(

sup
x∈Rd

|f (x + Xt )− f (x)|
)
.

Now every f ∈ C0(Rd) is uniformly continuous and bounded on all of Rd .
Since X is right continuous and f is bounded, it follows from the bounded
convergence theorem that limt↓0 ‖Ptf−f‖ = 0. But the semigroup property
implies that ‖Pt+sf − Psf‖ = ‖Ps(Ptf − f )‖ ≤ ‖Ptf − f‖, since Ps is a
contraction on C0(Rd). This proves the first assertion. The second follows
from the first, since λRλ =

∫∞
0 e−tPt/λ dt by a change of variables. �

Proposition 11. If f ∈ C0(Rd)∩Lp(Rd) for some p ∈ [1 ,∞), then ‖Ptf‖Lp(Rd) ≤
‖f‖Lp(Rd) for all t ≥ 0 and ‖λRλf‖Lp(Rd) ≤ ‖f‖Lp(Rd) for all λ > 0.

In words, the preceding states that Pt and λRλ are contractions on
Lp(Rd) for every p ∈ [1 ,∞) and t, λ > 0.

Proof. If f ∈ C0(Rd) ∩ Lp(Rd), then for all t ≥ 0,
∫

Rd
|(Ptf )(x)|p dx =

∫

Rd
|Ef (x + Xt )|p dx ≤

∫

Rd
E
(
|f (x + Xt )|p

)
dx

=
∫

Rd
|f (y)|p dy.

This proves the assertion about Pt ; the one about Rλ is proved similarly. �

The Hille–Yosida theorem

One checks directly that for all µ, λ ≥ 0,
Rλ − Rµ = (µ − λ)RλRµ. (3)

This is called the resolvent equation, and has many consequences. For
instance, the resolvent equation implies readily the commutation property
RµRλ = RλRµ . For another consequence of the resolvent eqution, suppose
g = Rµf for some f ∈ C0(Rd) and µ > 0. Then, g ∈ C0(Rd) and by the
resolvent equation, Rλf − g = (µ − λ)Rλg . Consequently, g = Rλh, where
h := f + (λ − µ)Rλg ∈ C0(Rd). In other words, Rµ(C0(Rd)) = Rλ(C0(Rd)),
whence

Dom[L] :=
{
Rµf : f ∈ C0(Rd)

}
does not depend on µ > 0.

And Dom[L] is dense in C0(Rd) [Proposition 10].
For yet another application of the resolvent equation, let us suppose

that Rλf ≡ 0 for some λ > 0 and f ∈ C0(Rd). Then the resolvent equation
implies that Rµf ≡ 0 for all µ. Therefore, f = limµ↑0 µRµf = 0. This implies
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that every Rλ is a one-to-one and onto map from C0(Rd) to Dom[L]; i.e., it
is invertible!

Definition 12. The [infinitesimal] generator of X is the linear operator
L : Dom[L]→ C0(Rd) that is defined uniquely by

L := λI − R−1
λ ,

where If := f defines the identity operator I on C0(Rd). The space Dom[L]
is the domain of L. �

The following is perhaps a better way to think about L; roughly speak-
ing, it asserts that Ptf − f ' tLf for t small, and λRλf − f ' λ−1Lf for λ
large.

Theorem 13 (Hille XXX, Yosida XXX). If f ∈ Dom[L], then

lim
λ↑∞

sup
x∈Rd

∣∣∣∣
λ(Rλf )(x)− f (x)

1/λ − (Lf )(x)
∣∣∣∣ = lim

t↓0
sup
x∈Rd

∣∣∣∣
(Ptf )(x)− f (x)

t − (Lf )(x)
∣∣∣∣ = 0.

Because f = P0f , the Hille–Yosida theorem implies, among other
things, that (∂/∂t)Pt |t=0 = L, where the partial derivative is really a right
derivative. See Exercise 4 for a consequence in partial integro-differential
equations.

Proof. Thanks to Proposition 10 and the definition of the generator, Lf =
λf − R−1

λ f for all f ∈ Dom[L], whence

λRλLf = λRλf − f
1/λ → Lf in C0(Rd) as λ ↑ ∞.

This proves half of the theorem. For the other half recall that Dom[L] is
the collection of all functions of the form f = Rλh, where h ∈ C0(Rd) and
λ > 0. By the semigroup property, for such λ and h we have

PtRλh =
∫ ∞

0
e−λsPt+sh ds = eλt

∫ ∞

t
e−λsPsh ds

= eλt
(
Rλh −

∫ t

0
e−λsPsh ds

)
.

Consequently, for all f = Rλh ∈ Dom[L],

Ptf − f
t =

(
eλt − 1

t

)
Rλh −

eλt
t

∫ t

0
e−λsPsh ds

→ λRλh − h in C0(Rd) as t ↓ 0.

But λRλh − h = λf − R−1
λ f = Lf . �
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The form of the generator

Let S denote the collection of all rapidly-decreasing test functions f : Rd →
R. That is, f ∈ S if and only if f ∈ C∞(Rd), and f and all of its partial deriva-
tives vanish faster than any polynomial. In other words, if D is a differential
operator [of finite order] and n ≥ 1, then supx∈Rd (1 + ‖x‖n)|(Df )(x)| < ∞.
It is easy to see that S ⊂ L1(Rd) ∩C0(Rd) and S is dense in C0(Rd). And it
is well known that if f ∈ S, then f̂ ∈ S as well, and vice versa.

It is possible to see that if f , f̂ ∈ L1(Rd), then for all t ≥ 0 and λ > 0,

P̂tf (ξ) = e−tΨ(−ξ)f̂ (ξ), R̂λf (ξ) = f̂ (ξ)
λ + Ψ(−ξ) for all ξ ∈ Rd. (4)

Therefore, it follows fairly readily that when f ∈ Dom[L] ∩ L1(Rd), Lf ∈
L1(Rd), and f̂ ∈ L1(Rd), then we have

L̂f (ξ) = −Ψ(−ξ)f̂ (ξ) for every ξ ∈ Rd. (5)

It follows immediately from these calculations that: (i) Every Pt and Rλ
map S to S; and (ii) Therefore, S is dense in Dom[L]. Therefore, we can
try to understand L better by trying to compute Lf not for all f ∈ Dom[L],
but rather for all f in the dense subcollection S. But the formula for
the Fourier transform of Lf [together with the estimate |Ψ(ξ)| = O(‖ξ‖2)]
shows that L : S → S and

(Lf )(x) = − 1
(2π)d

∫

Rd
e−iξ·xΨ(−ξ)f̂ (ξ) dξ for all x ∈ Rd and f ∈ S.

Consider the simplest case that the process X satisfies Xt = at for some
a ∈ Rd; i.e., Ψ(ξ) = −i(a · ξ). In that case, we have

(Lf )(x) = 1
(2π)d ·

∫

Rd
(a · iξ)e−iξ·x f̂ (ξ) dξ = − 1

(2π)d

∫

Rd
e−iξ·x(a · ∇̂f (ξ)) dξ

= −a · (∇f )(x),
thanks to the inversion formula. The very same computation works in the
more general setting, and yields

Theorem 14. If f ∈ S, then Lf = Cf + Jf , where

(Cf )(x) = −a · (∇f )(x) + 1
2
∑∑

1≤i,j≤d
(σ ′σ )ij

∂2

∂xi∂xj
f (x),

and

(Jf )(x) :=
∫

Rd

[
f (x + z)− f (x)− z · (∇f )(x)1l[0,1)(‖z‖)

]
m(dz) for all x ∈ Rd,

Moreover, J is the generator of the non-Gaussian component; and C =
−a · ∇+ 1

2∇′σ ′σ∇ is the generator of the Gaussian part.
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Here are some examples:
• If X is Brownian motion on Rd , then L = 1

2∆ is one-half of the
Laplace operator [on S];
• If X is the Poisson process on R with intensity λ ∈ (0 ,∞), then

(Lf )(x) = λ[f (x + 1) − f (x)] for f ∈ S [might be easier to check
Fourier transforms];
• If X is the isotropic stable process with index α ∈ (0 , 2), then for

all f ∈ S,

(Lf )(x) = const ·
∫

Rd

[ f (x + z)− f (x)− z · (∇f )(x)1l[0,1](‖z‖)
‖z‖d+α

]
dz.

Since L̂f (ξ) ∝ −f̂ (ξ)·‖ξ‖α, L is called the “fractional Laplacian” with
fractional power α/2. It is sometimes written as L = −(−∆)α/2;
the notation is justified [and explained] by the symbolic calculus
of pseudo-differential operators.

Problems for Lecture 9
1. Prove that Pt (x ,A) = Pt (A − x) for all t ≥ 0, x ∈ Rd , and A ∈ B(Rd), where
A − x := {a − x : a ∈ A}. Conclude that the Chapman–Kolmogorov equation is
equivalent to the following formula for E

∏k
j=1 fj (x0 + Xtj ):

∫

Rd
Pt1 (dx1)

∫

Rd
Pt2−t1 (dx2) · · ·

∫

Rd
Ptk−tk−1 (dxk)

k∏

j=1
fj (x0 + · · ·+ xj ),

using the same notation as Proposition 2.

2. Suppose Y ∈ L1(P) is measurable with respect to σ ({Xr}r≥t ) for a fixed non-
random t ≥ 0. Prove that E(Y |Ft ) = E(Y |Xt ) a.s.

3. Verify that −X := {−Xt}t≥0 is a Lévy process; compute its transition measures
P̃t (x , dy) and verify the following duality relationship: For all measurable f , g :
Rd → R+ and z ∈ Rd ,∫

Rd
f (x) dx

∫

Rd
g(y)Pt (x , dy) =

∫

Rd
g(y) dy

∫

Rd
f (x) P̃t (y , dx).

4. Prove that u(s , x) := (Psf )(x) solves [weakly] the partial integro-differential
equation

∂u
∂s (s , x) = (Lu)(s , x) for all s > 0 and x ∈ Rd,

subject to u(0 , x) = f (x).

5. Derive the resolvent equation (3).

6. Verify (4) and (5).
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7. First, improve Proposition 11 in the case p = 2 as follows: Prove that there
exists a unique continuous extension of Pt to all of L2(Rd). Denote that by Pt still.
Next, define

Dom2[L] :=
{
f ∈ L2(Rd) :

∫

Rd
|Ψ(ξ)|2 · |f̂ (ξ)|2 dξ <∞

}
.

Then prove that limt↓0 t−1(Ptf − f ) exists, as a limit in L2(Rd), for all f ∈ Dom2[L].
Identify the limit when f ∈ Cc(Rd).



Lecture 10

Potential theory

Throughout, X := {Xt}t≥0 denotes a Lévy process on Rd , and {Ft}t≥0
denotes its natural filtration. We also write {Pt}t≥0 and {Rλ}λ≥0 for the
semigroup and resolvent of X respectively.

Potential measures

For all λ ≥ 0 and A ∈ B(Rd) define

Uλ(A) := E
∫ ∞

0
e−λs1lA(Xs) ds =

∫ ∞

0
e−λsP{Xs ∈ A} ds. (1)

It is easy to see that when λ > 0, λUλ is a Borel probability measure on
Rd . Moreover,

Uλ(A) = (Rλ1lA)(0),

where {Rλ}λ≥0 denotes the resolvent of X. Consequently, (4) (p. 60) implies
that

Ûλ(ξ) = 1
λ + Ψ(−ξ) for all ξ ∈ Rd , λ > 0. (2)

Definition 1. Uλ is called the λ-potential measure of X; the 0-potential
measure of X is denoted by U instead of U0. �

Remark 2. In general, U [= U0] is only sigma finite. For example, let X
denote Brownian motion on Rd , where d ≥ 3. Then, for all measurable
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functions φ : Rd → R+,
∫

Rd
φ dU = E

∫ ∞

0
φ(Xs) ds = 1

(2π)d

∫ ∞

0
ds
∫

Rd
dx φ(x)e−‖x‖2/(2s)

= 1
(2π)d

∫

Rd
dx φ(x)

∫ ∞

0
ds e−‖x‖2/(2s) ∝

∫

Rd

φ(x)
‖x‖d−2 dx.

That is, U(A) ∝
∫
A ‖x‖−d+2 dx when d ≥ 3; note that U(Rd) = ∞. When

d = 3, U(A) is the socalled “Newtonian potential” of A; and for general d ≥ 3
it is the “(d − 2)-dimensional Riesz potential of A.” The other λ-potentials
can be represented [in all dimensions] in terms of Bessel functions. �

The range of a Lévy process

Define T(x , r) to be the first hitting time of B(x , r); i.e.,
T(x , r) := inf{s > 0 : Xs ∈ B(x , r)} (inf∅ :=∞).

Proposition 3. Uλ(A) > 0 for all open sets A ⊆ Rd that contain the origin
and all λ ≥ 0. Moreover, for all x ∈ Rd and λ, r > 0,

Uλ(B(x , r))
Uλ(B(0 , 2r)) ≤ E

(
e−λT(x ,r) ; T(x , r) <∞

)
≤ Uλ(B(x , 2r))

Uλ(B(0 , r)) .

Remark 4. Let τλ denote an independent Exp(λ) random variable; that is,
P{τλ > z} = e−λz for z > 0. Then we can interpret the expectation in
Proposition 3 as follows:

E
(

e−λT(x ,r) ; T(x , r) <∞
)

= P{T(x , r) < τλ},

or equivalently, as the Laplace transform
∫∞
0 e−λtP{T(x , r) < t} dt . �

Proof. We can write T in place of T(x , r), and note that: (i)

Uλ(B(x , r)) = E
(∫ ∞

0
e−λ(s+T)1lB(x,r)(Xs+T − XT + XT ) ds ; T <∞

)
;

and (ii) ‖XT − x‖ ≤ r a.s. on {T <∞} because X is cadlag. Therefore, the
strong Markov property tells us that

Uλ(B(x , r)) ≤ E
(∫ ∞

0
e−λ(s+T)1lB(0,2r)(Xs+T − XT ) ds ; T <∞

)

= E
(

e−λT ; T <∞
)
· Uλ(B(0 , 2r)).

This implies the first inequality provided that we prove that Uλ(B(0 , q)) is
never zero; but that is easy. Indeed, the preceding display tells us that
supx∈Rd Uλ(B(x , r)) ≤ Uλ(B(0 , 2r)). Therefore, if Uλ(B(0 , q)) = 0 for some
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q > 0, it follows that Uλ(B(x , q/2)) = 0 for all x ∈ Rd . We can integrate
the latter λ-potential over all x to find that

0 =
∫

Rd
dx
∫

Rd
Uλ(dz) 1lB(x,q/2)(z) =

∫

Rd
Uλ(dz)

∫

Rd
dx 1lB(z,q/2)(x),

and this is impossible because the right-most term is simply the volume
of B(0 , q/2) times the total mass of Uλ [which is λ−1].

It remain to establish the second inequality. We continue to write T in
place of T(x , r), and note that

Uλ(B(x , 2r)) ≥ E
(∫ ∞

0
e−λ(s+T)1lB(x,2r)(Xs+T − XT + XT ) ds ; T <∞

)

≥ E
(∫ ∞

0
e−λ(s+T)1lB(x,r)(Xs+T − XT ) ds ; T <∞

)
,

because ‖XT‖ ≤ r a.s. on {T < ∞} and hence ‖XT+s − XT + XT‖ ≤
‖Xs+T − XT‖+ ‖XT‖ ≤ 2r a.s. on {‖Xs+T − XT‖ ≤ r}. Another application
of the strong Markov property does the job. �

Proposition 3 has many uses; I mention one next.

Theorem 5 (Hawkes, 1986; Kesten, 1969). The following are equivalent:
(1) X(R+) a.s. has positive Lebesgue measure;
(2) Every Uλ is absolutely continuous with a bounded density;
(3) κ ∈ L1(Rd), where

κ(ξ) := Re
(

1
1 + Ψ(ξ)

)
for all ξ ∈ Rd.

Moreover, if κ 6∈ L1(Rd), then X(R+) has zero Lebesgue measure a.s.

Example 6. Let X be an isotropic stable process in Rd with index α ∈ (0 , 2].
Then, the range of X has positive Lebesgue measure iff

∫

Rd

dξ
1 + ‖ξ‖α ∝

∫ ∞

0

rd−1

1 + rα dr <∞ ⇔ α > d.

In particular, the range of planar Brownian motion has zero Lebesgue
measure [theorem of Lévy]. And the range of a one-dimensional isotropic
Cauchy process has zero Lebesgue measure as well. By contrast, let X be a
one-dimensional asymmetric Cauchy process, so that Ψ(ξ) = |ξ|+iθξ ln |ξ|,
for some θ ∈ [−2/π , 2/π]. Note that if X is asymmetric (i.e., θ 6= 0), then

Re
(

1
1 + Ψ(ξ)

)
= ReΨ(ξ)
|1 + Ψ(ξ)|2 = 1 + o(1)

θ2|ξ|(ln |ξ|)2 as |ξ| → ∞.
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Therefore, while the range of the symmetric Cauchy process on the line
has zero Lebesgue measure, the range of an asymmetric Cauchy process
has positive Lebesgue measure. �

Corollary 7. If X is a d-dimensional Lévy process where d ≥ 2, then
X(R+) has zero Lebesgue measure a.s.

Proof of Theorem 5. Let τλ denote an independent Exp(λ) random vari-
able and apply Proposition 3 to find that

Uλ(B(x , r))
Uλ(B(0 , 2r)) ≤ P{T(x , r) < τλ} ≤

Uλ(B(x , 2r))
Uλ(B(0 , r)) .

Note that T(x , r) < τλ if and only if X((0 , τλ)) ∩ B(x , r) 6= ∅. Equivalently,
T(x , r) < τλ if and only if

x ∈ S(ε) :=
{
z ∈ Rd : dist(x ,X((0 , τλ)) < ε

}
.

Consequently,
∫

Rd
P {T(x , r) < τλ} dx =

∫

Rd
P {x ∈ S(r)} dx = E

∫

Rd
1lS(r)(x) dx = E|S(r)|,

where | · · · | denotes the Lebesgue measure. Also,
∫

Rd
Uλ(B(x , r)) dx =

∫

Rd
dx

∫

Rd
Uλ(dz) 1lB(x,r)(z)

=
∫

Rd
Uλ(dz)

∫

Rd
dx 1lB(z,r)(x) = crd

λ ,

where c denotes the volume of a ball of radius one in Rd . To summarize,
we obtain the following: For all r > 0,

crd
λUλ(B(0 , 2r)) ≤ E|S(r)| ≤ 2dcrd

λUλ(B(0 , r)) for all r > 0.

Note that S(r) decreases to the closure of X((0 , τλ)) as r ↓ 0. Because
X is cadlag it has at most countably-many jumps. Therefore, the differ-
ence between X((0 , τλ)) and its closure is at most countable, hence has
zero Lebesgue measure. Therefore, the monotone convergence theorem
implies that

c
λLλ

≤ E |X((0 , τλ))| ≤
2dc
λLλ

, (3)

where
Lλ := lim inf

r↓0

Uλ(B(0 , r))
rd , Lλ := lim sup

r↓0

Uλ(B(0 , r))
rd .

Note that
E|X((0 , τλ))| = λ

∫ ∞

0
e−λtE|X((0 , t))| dt.
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[This can be obtained by conditioning first on X.] It follows from the mono-
tonicity of t 7Ï E|X((0 , t))| that E|X((0 , τλ))| > 0 if and only if E|X((0 , t))| > 0
for all t > 0. And, in particular, E|X((0 , τλ))| > 0 for some λ > 0 iff
E|X((0 , τλ))| > 0 for all λ > 0. And this implies that Lλ < ∞ for some
λ > 0 iff Lλ <∞ for all λ > 0 iff E|X(R+)| = limt↑∞ E|X((0 , t))| > 0.

Now we begin to prove the theorem.
Suppose |X(R+)| > 0 a.s. Then, E|X(R+)| > 0, whence Lλ < ∞ for

all λ > 0. Recall that Uλ(B(x , r)) ≤ Uλ(B(0 , 2r)), and that the latter is
O(rd). Thus, Uλ(B(x , r)) ≤ const · |B(0 , r)| uniformly in x ∈ Rd and r > 0,
whence it follows from a covering argument that Uλ(A) ≤ const · |A| for
all A ∈ B(Rd). In other words, (1)Ñ(2).

Conversely, if (2) holds, then Lλ < ∞ and hence E|X(R+)| > 0 by
(3). Choose and fix R > 0 so large that E|X((0 , R))| > 0. By the Markov
property, Zn := |X((nR , (n + 1)R])| are i.i.d. random variables (why?). Be-
cause |X(R+)| ≥ supn≥1 Zn , it follows from the Borel–Cantelli lemma for
independent events that |X(R+)| ≥ E|X((0 , R))| > 0 a.s. Thus, (2)Ñ(1). It
remains to prove the equivalence of (3) with (1) and (2).

The key computation is the following: For all uniformly-continuous
nonnegative φ ∈ L1(Rd) such that φ̂ ≥ 0,

∫

Rd
φ dU1 = 1

(2π)d

∫

Rd
φ̂(ξ)κ(ξ) dξ. (4)

Let us first complete the proof of the theorem, assuming (4); and then we
establish (4).

Define, for every r > 0,

fr(x) := 1
(2r)d 1lC(0,r)(x), φr(x) := (fr ∗ fr)(x) for all x ∈ Rd,

where C(0 , r) := {z ∈ Rd : max1≤j≤d |zj | ≤ r} is a cube of side 2r about the
origin. One can check directly that: (i) Every φr is uniformly continuous
and in L1(Rd); (ii)

∫
Rd φr(x) dx = 1 so that |φ̂r(ξ)| ≤ 1; and (iii) φ̂r(ξ) =

|f̂r(ξ)|2 ≥ 0. Moreover,

f̂r(ξ) = 1
(2r)d

d∏

j=1

∫ r

−r
eizξj dz = 1

rd
d∏

j=1

∫ r

0
sin(zξj ) dz =

d∏

j=1

1− cos(rξj )
rξj

.

Two applications of the triangle inequality show that
1

(4r)d 1lC(0,r)(x) ≤ φr(x) ≤ 1
(2r)d 1lC(0,2r)(x).

Therefore,
Uλ(C(0 , r))

(4r)d ≤
∫
φr dUλ ≤

Uλ(C(0 , 2r))
(2r)d .
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By the triangle inequality, B(0 , r) ⊂ C(0 , r) and C(0 , 2r) ⊂ B(2
√
d r).

Therefore, it follows that Uλ has a bounded density iff lim supr↓0
∫
φr dUλ <

∞ iff lim infr↓0
∫
φr dUλ < ∞. If κ ∈ L1(Rd), then

∫
Rd φ̂r(ξ)κ(ξ) dξ →∫

Rd κ(ξ) dξ as r ↓ 0, since φ̂r(ξ) is bounded uniformly in r and ξ , and
converges to 1 as r ↓ 0. Thus, (3)Ñ(2). And conversely, if (2) holds, then
by (4) and Fatou’s lemma,
∫

Rd
κ(ξ) dξ ≤ lim inf

r↓0

∫
φ̂r(ξ)κ(ξ) dξ = (2π)d lim inf

r↓0

∫
φr dU1

≤ (2π)d lim inf
r↓0

U1(C(0 , 2r))
(2r)d <∞.

It remains to verify the truth of (4). Indeed, we first note that the
left-hand side is (R1φ)(0) so that whenever φ, φ̂ ∈ L1(Rd),
∫

Rd
φ dU1 = E

∫ ∞

0
e−tφ(Xt ) dt = E

∫ ∞

0
e−t dt

∫

Rd
dξ e−iξ·Xt φ̂(ξ)

= 1
(2π)d

∫

Rd

φ̂(ξ)
1 + Ψ(−ξ) dξ = 1

(2π)d

∫

Rd

φ̂(ξ)
1 + Ψ(ξ) dξ.

This proves (4) for all nonnegative φ ∈ L1(Rd) such that φ̂ ∈ L1(Rd) is
nonnegative.1

In order to prove (4) in full generality, suppose φ ∈ L1(Rd) is uniformly
continuous and φ̂ ≥ 0, and let φε denote the density of Bε where B is
Brownian motion. Clearly, φ ∗ φε ∈ L1(Rd), and its Fourier transform
is φ̂(ξ) exp(−ε‖ξ‖2/2) is both nonnegative and in L1(Rd). What we have
proved so far is enough to imply that (4) holds with φ replaced by φ ∗ φε ;
i.e., ∫

Rd
(φ ∗ φε ) dU1 = 1

(2π)d

∫

Rd
Re
(

φ̂(ξ)
1 + Ψ(−ξ)

)
e−ε‖ξ‖2/2 dξ

Now we let ε ↓ 0; the left-hand side converges to
∫
φ dU1 by Fejer’s the-

orem; and the right-hand side converges to the right-hand side of (4) by
the monotone convergence theorem. �

Proof of Corollary 7. Suppose there exists a Lévy process X on Rd , with
d ≥ 2, whose range X(R+) has positive Lebesgue measure. Let Ψ de-
note the Lévy exponent of X and apply Theorem 5 to find that

∫
Rd Re(1 +

Ψ(ξ))−1 dξ <∞. We will derive a contradiction from this.
Denote by (a , σ ,m) the Lévy triple of X. Suppose first that σ is not

zero. Because σ is nonnegative definite we can find an orthogonal matrix

1If φ, φ̂ ∈ L1(Rd) then the inversion formula holds. Therefore, φ is—up to a null set—uniformly
continuous. In fact, φ ∈ C0(Rd) by the Riemann–Lebesgue lemma.
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O and a diagonal matrix Λ of eigenvalues of σ such that σ = OΛO′. Let
λ1 ≤ · · · ≤ λd denote the ordered eigenvalues of σ and suppose λk is the
first first strictly positive eigenvalue of σ . Then,

ReΨ(ξ) ≥ 1
2ξ
′σξ = 1

2

∥∥∥
√

ΛO′ξ
∥∥∥

2
= 1

2

d∑

j=1
λj
∣∣(O′ξ)j

∣∣2 ≥ λk
2

d∑

j=k

∣∣(O′ξ)j
∣∣2 .

In particular,

ReΨ(Oξ) ≥ λk
4 ‖ξ‖

2 = λk
4 ‖Oξ‖

2 for all ξ ∈ Ck,

where C1 := Rd and for all k = 2, . . . , d, Ck is the cone

Ck :=




z = (z1 , . . . , zd) ∈ Rd :
k−1∑

j=1
z2
j ≤ 2

d∑

j=k
z2
j




 .

Because ReΨ(ξ) ≥ 0, this shows that

Re
(

1
1 + Ψ(Oξ)

)
= ReΨ(Oξ)
|1 + Ψ(Oξ)|2 ≥

ReΨ(Oξ)
1 + |Ψ(Oξ)|2 ≥

λk
4

‖Oξ‖2
1 + |Ψ(Oξ)|2 ,

and hence,
∫

Rd
κ(ξ) dξ ≥ λk

4 ·
∫

Ck

‖Oξ‖2
1 + |Ψ(Oξ)|2 dξ

≥ const ·
∫

Ck

dξ
1 + ‖ξ‖2 ,

since |Ψ(ξ)| ≤ const · (1 + ‖ξ‖2). Integrate in spherical coordinates to find
that κ 6∈ L1(Rd). Theorem 5 tells us that |X(R+)| = 0 a.s. in this case.

It remains to consider the case that σ = 0. But then |Ψ(ξ)| = o(‖ξ‖2)
by Theorem 1 (page 34), and therefore,

E exp
(
iξ · Xt√

t

)
= e−tΨ(ξ/

√
t) → 1 as t ↓ 0.

Therefore, Xt/
√
t → 0 in probability as t ↓ 0. But then

Uλ(B(0 , r)) =
∫ ∞

0
e−λtP {‖Xt‖ ≤ r} dt = r2

∫ ∞

0
e−λr2sP {‖Xr2s‖ ≤ r} ds.

Therefore, lim infr↓0 r−dUλ(B(0 , r)) = ∞ by Fatou’s lemma. Theorem 5
implies that |X(R+)| = 0 a.s., and hence the result. �
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Problems for Lecture 10
Throughout, X is a Lévy process with exponent Ψ, and let Pt (x , dy), Pt , and Uλ
respectively denote the transition measures, semigroup, and λ-potential of X.

1. Suppose ρ is a Borel measure on Rd . Choose and fix some finite c > 0. We
say that ρ is c-weakly unimodal if ρ(B(x , r)) ≤ cρ(B(0 , 2r)) for all r > 0. Prove
that there exists a finite constant K := K(c , d), such that

ρ(B(x , 2r)) ≤ Kρ(B(0 , r)) for all r > 0.
Consequently, ρ(B(x , r)) ≤ Kρ(B(0 , r)) for all r > 0. Verify that Uλ is c-weakly
unimodal for some c ∈ (0 ,∞) (Khoshnevisan and Xiao, 2003).

2. Suppose U(A 	 A) < ∞ and U(A) > 0, where U denotes the potential of X,
A ∈ B(Rd), and A	 A := {a − b : a, b ∈ A}. Then prove that for all t > 0,

sup
x∈Rd

P {x + Xs ∈ A for some s ≥ t} ≤
∫∞
t P {Xs ∈ A	 A} ds

U(A) .

In particular, supx∈Rd P{x + Xs ∈ A for some s ≥ t} → 0 as t →∞.



Lecture 11

Recurrence and
Transience

The recurrence/transience dichotomy

Definition 1. We say that X is recurrent if lim inft→∞ ‖Xt‖ = 0 a.s. We
say that X is transient if lim inft→∞ ‖Xt‖ =∞ a.s. �

In other words, X is recurrent when for all ε > 0 we can find possibly
random times 0 < t1 < t2 < · · · , tending to infinity, such that Xtn lies in
the ball B(0 , ε) := {z ∈ Rd : ‖z‖ < ε}.1 And X is transient means that for
every compact set K there exists a random finite time τ such that Xt+τ 6∈ K
for all t > 0. As it turns out, recurrence and transience are dichotomous:
Either X is recurrent, or it is transient.

Theorem 2. The following are equivalent:
(1) X is transient;
(2) X is not recurrent;
(3) U0(B(0 , r)) <∞ for all r > 0.

The proof relies on a convenient series of equivalences.

Proposition 3. The following are equivalent:
(1) supx∈Rd U0(B(x , r)) <∞ for all r > 0;
(2) U0(B(0 , r)) <∞ for all r > 0;

1Note that I omit writing “a.s.” when it is clear from the context. This is likely to happen in the future
as well.
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(3) U0(B(0 , r)) <∞ for some r > 0;
(4)
∫∞
0 1lB(0,r)(Xs) ds <∞ a.s. for all r > 0;

(5) limz↑∞ supx∈B(0,2r) P{
∫∞
0 1lB(x,r)(Xs) ds > z} < 1 for all r > 0.

Proof. Let
J(x , r) :=

∫ ∞

0
1lB(x,r)(Xs) ds.

Since U0(B(a , r)) = EJ(a , r), we readily obtain (1)Ñ(2) and (2)Ñ(3). Also
(2)Ñ(1), because Uλ(B(x , r)) ≤ Uλ(B(0 , 2r)) uniformly in x, thanks to Propo-
sition 3 (page 64); we can let λ ↓ 0 to obtain (2) from (1).

Suppose (3) holds; i.e., U0(B(0 , r)) < ∞ for some r > 0. It is not hard
to see that there exists a number N ≥ 1 such that B(0 , 2r) is a union
of N balls of radius r. [The key observation is that N does not depend
on r by scaling.] Consequently, U0(B(0 , 2r)) ≤ N supx∈Rd U0(B(x , r/2)) ≤
NU0(B(0 , r)) thanks to Proposition 3. This shows that (3)Ñ(2), and hence
(1)–(3) are equivalent.

Next we prove that (1) and (5) are equivalent: Chebyshev’s inequality
tells us that (1)Ñ(5). Therefore, we are concerned with the complementary
implication.

Suppose (5) holds, and fix some r > 0. We can find γ > 0 and δ ∈ (0 , 1)
such that

sup
x∈B(0,2r)

P {J(x , r) > γ} ≤ δ.

Choose and fix a ∈ B(0 , 2r), and define

T := inf
{
s > 0 :

∫ t

0
1lB(a,r)(Xs) ds > γ

}
(inf∅ :=∞).

For every integer n ≥ 0, it is not hard to see that if
∫∞
0 1lB(a,r)(Xr) dt >

(n + 1)γ , then certainly T < ∞; this follows because the process X has
cadlag paths and B(a , r) is open. Moreover,

∫ T
0 1lB(a,r)(Xs) ds = γ a.s. on

{T <∞}. Therefore, we can write

P
{∫ ∞

0
1lB(a,r)(Xs) ds > (n + 1)γ

}
= P

{
T <∞ ,

∫ ∞

T
1lB(a,r)(Xs) ds > nγ

}
.

Because X is cadlag and B(a , r) is open, it follows that XT ∈ B(a , r) a.s. on
{T <∞}. Therefore, the strong Markov property implies that a.s.,

P
(∫ ∞

0
1lB(a,r)(Xs+T ) ds > nγ

∣∣∣∣ FT

)
≤ sup

x∈B(0,2r)
P {J(x , r) > nγ}
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We can iterate this to find that

sup
a∈B(0,2r)

P {J(a , r) > (n + 1)γ} ≤
(

sup
x∈B(0,2r)

P {J(x , r) > γ}
)n+1

≤ δ(n+1).

This shows, in particular, that (5)Ñ(1); in fact,

sup
a∈B(0,2r)

E
[
J(a , r)
γ

]
≤
∞∑

n=0
sup

x∈B(0,2r)
P {J(x , r) > nγ} <∞.

And (4)Ñ(5) because J(x , r) ≤ J(0 , 3r) uniformly for all x ∈ B(0 , 2r). Since
(1)Ñ(4), this proves the equivalence of (1), (2), (3), (4), and (5). �

We now derive the recurrence–transience dichotomy.

Proof of Theorem 2. Clearly, (1)Ñ (2). And if X is transient, then the last
hitting time L := sup{t > 0 : Xt ∈ B(0 , r)} of the ball B(0 , r) is a.s. finite.
Therefore, J(0 , r) ≤ L <∞ a.s., and Proposition 3 implies that (1)Ñ (3).

Next, we suppose that (3) holds, so that J(0 , r) <∞ a.s. for all r > 0. If
(2) did not hold, that is if X were recurrent, then

Tn := inf {s > n : Xs ∈ B(0 , r/2)} (inf∅ :=∞)

would be finite a.s. for all n ≥ 1. And by the Markov property,

P
{∫ ∞

n
1lB(0,r)(Xt ) dt ≥ z

}
≥ P

{∫ ∞

Tn
1lB(0,r)(Xt ) dt ≥ z

}

= P
{∫ ∞

0
1lB(0,r)(XTn+t ) dt ≥ z

}
.

Because XTn ∈ B(0 , r/2) a.s., it would follow from the strong Markov prop-
erty that

P
{∫ ∞

n
1lB(0,r)(Xt ) dt ≥ z

}
≥ P

{∫ ∞

0
1lB(0,r/2)(Xt ) dt ≥ z

}
= P{J(0 , r/2) ≥ z}.

The left-hand side tends to zero as n goes to ∞, for all z > 0. Therefore,
J(0 , r/2) = 0 a.s. Because B(0 , r/2) is open, X0 = 0, and X has cadlag paths,
this leads us to a contradiction; i.e., (3) Ñ (2). It remains to prove that
(3)Ñ (1).
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Let us assume that (2) holds; i.e., that X is recurrent. Then the following
are all a.s.-finite stopping times:

T1 := inf {s > 0 : ‖Xs‖ > r} ,
T2 := inf {s > T1 : ‖Xs‖ < r/2} ,

S2 := inf {s > 0 : ‖XT2+t − XT2‖ > r/2} ,
T3 := inf {s > T2 + S2 : ‖Xs‖ < r/2} ,

S3 := inf {s > 0 : ‖XT3+s − XT3‖ > r/2} ,

etc. Because X is assumed to be recurrent, these are all a.s.-finite stopping
times. And it is easy to see that

J(0 , r) =
∫ ∞

0
1lB(0,r)(Xs) ds ≥ T1 +

∞∑

j=1
Sj ≥

∞∑

j=1
Sj .

By the strong Markov property, the Sj ’s are i.i.d. And since X is cadlag, the
Sj ’s are a.s. strictly positive. From this we can deduce that

∑∞
j=1 Sj = ∞

a.s., 2 and hence (3)Ñ (2). This completes the proof. �

The Port–Stone theorem

The following well-known result of Port and Stone (1967, 1971) character-
izes recurrence in terms of the Lévy exponent Ψ.3

Theorem 4 (Port and Stone, 1967, 1971). X is transient iff Re(1/Ψ) is
locally integrable near the origin.

Example 5. Consider standard Brownian motion in Rd , so that Ψ(ξ) =
1
2‖ξ‖2. Then, for every R > 0,

∫

B(0,R)
Re
(

1
Ψ(ξ)

)
dξ =

∫

B(0,R)

2
‖ξ‖2 dξ ∝

∫ R

0
rd−3 dr

is infinite if and only if d ≤ 2. Thus, standard Brownian motion is recurrent
iff d ≤ 2. On the other hand, Brownian motion with nonzero drift is
transient in all dimensions d ≥ 1 [why?].

2Indeed, we can find δ > 0 such that p := P{Sj ∈ [δ, 1/δ]} > 0, and note that
∑n

j=1 Sj ≥∑n
j=1 Sj1l[δ,1/δ](Sj ) ∼ np as n→∞, thanks to the strong law of large numbers.

3Port and Stone prove this for [discrete-time] random walks in 1967. The continuous-time version is
proved similarly, in great generality, in 1971.
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Somewhat more generally, if X denotes an isotropic stable process in
Rd with index α ∈ (0 , 2], then for every R > 0,

∫

B(0,R)
Re
(

1
Ψ(ξ)

)
dξ ∝

∫

B(0,R)

1
‖ξ‖α dξ ∝

∫ R

0
rd−α−1 dr

is infinite if and only if d > α. Thus, X is recurrent iff d ≤ α. In particular,
α ≥ 1 is the criterion for recurrence in dimension d = 1. And in dimension
d = 2, only Brownian motion [α = 2] is recurrent. In dimensions three of
higher, all isotropic stable processes are transient. �

A partial proof of Theorem 4. Define

G(r) :=
∫

C(2r)
Re
(

1
Ψ(ξ)

)
dξ for all r > 0, (1)

where C(t) := {z ∈ Rd : max1≤j≤d |zj | ≤ t} for t > 0. Because B(0 , R) ⊂
C(R) ⊂ B(0 , R

√
d) for all R > 0, Theorem 4 is equivalent to the statement

that X is recurrent iff G(r) <∞ for all r > 0. I will prove half of this, and
only make some remarks on the harder half.

Consider probability density functions {φr}r>0 defined by

φr(x) :=
d∏

j=1

(
1− cos(2rxj )

2πrx2
j

)
for all x ∈ Rd. (2)

Then, φ̂r is the normalized Pólya kernel,

φ̂r(ξ) =
d∏

j=1

(
1− |ξj |2r

)+
for every r > 0 (ξ ∈ Rd), (3)

where z+ := max(z , 0), as usual. Since 1− cos z ≥ z2/4 for all z ∈ [−2 , 2],
we conclude that for every x, ξ ∈ Rd and r > 0,

φr(x) ≥
( r

2π

)d
1lC(1/r)(x), and φ̂r(ξ) ≤ 1lC(2r)(ξ). (4)

Because φr, φ̂r ∈ L1(Rd) are both real-valued functions, and Ûλ(ξ) =
(1 + Ψ(ξ))−1, we may apply Parseval’s identity and (4) to find that

Uλ(C(2r)) ≥
∫

Rd
φ̂r dUλ = 1

(2π)d

∫

Rd
φr(ξ)Re

(
1

λ + Ψ(ξ)

)
dξ

≥ rd
(2π)2d

∫

C(1/r)
Re
(

1
λ + Ψ(ξ)

)
dξ.

Therefore, Fatou’s lemma implies that U0(C(2r)) ≥ const · rdG(1/(2r)) for
all r > 0. Theorem 2 then tells us that if X is transient then G(t) <∞ for
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all t > 0. This proves the easier half of the theorem. For the other half
we start similarly: By Parseval’s identity,

∫

Rd
φr dUλ = 1

(2π)d

∫

Rd
φ̂r(ξ)Re

(
1

λ + Ψ(ξ)

)
dξ

≤ 1
(2π)d

∫

C(2r)
Re
(

1
λ + Ψ(ξ)

)
dξ.

The left-most term is at least (r/(2π))dUλ(C(1/r)); see (4). Therefore, we
can let λ ↓ 0 and apply Theorem 2, which tells us that if X is recurrent,
then lim infλ↓0

∫
C(2r) Re(λ + Ψ(ξ))−1 dξ = ∞ for all r > 0 From here, the

remaining difficulty is to prove that one can always “take the limit inside
the expectation.” See Port and Stone (1967, 1971) for the [difficult] details
in the context of [discrete-time] random walks; the extension to continuous
time is performed similarly. �

Problems for Lecture 11

1. Describe exactly when X is recurrent when:
(1) X denote an isotropic stable process in Rd with index α ∈ (0 , 2);
(2) X is a nonstandard Brownian motion with exponent Ψ(ξ) = 1

2‖σξ‖2;
(3) X is a process with stable components; i.e., Ψ(ξ) =

∑d
j=1 |ξj |αj for

α1 ≥ α2 ≥ · · · ≥ αd all in (0 , 2];
(4) X is a the Poisson process on the line with intensity λ ∈ (0 ,∞).

2. A Lévy process X is said to satisfy the sector condition (Kanda, 1976) if
|Ψ(ξ)| = O(ReΨ(ξ)) as ‖ξ‖ → ∞.

(1) Verify that every symmetric Lévy process satisfies the sector con-
dition, and find an example that does not.

(2) Prove Theorem 4 [completely!] in the case that X satisfies the
sector condition.

3. Let X and X′ be two i.i.d. Lévy processes on Rd . Prove that if X is
recurrent, then Yt := Xt − X′t [the socalled “symmetrization of X”] is also
recurrent. Construct an example that shows that the converse is not always
true.

4. Let B denote a d-dimensional Brownian motion, and T an independent
subordinator with Laplace exponent Φ. Prove that X ◦ T is recurrent if
and only if

∫ 1
0 s(d−2)/2 ds/Φ(s) =∞.
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5. Suppose X is a transient Lévy process in Rd , and V : Rd → R+ is
measurable, bounded, and has compact support. Prove that there exists
θ > 0 such that E(eθ

∫∞
0 V (Xs) ds) <∞.

6. Let B := {Bt}t≥0 denote Brownian motion in Rd , where d ≥ 3. Prove
that if ε > 0 is fixed but arbitrary, then a.s.:

lim inf
r↓0

1
r2+ε

∫ ∞

0
1lB(0,r)(Bs) ds =∞, lim sup

r↓0

1
r2−ε

∫ ∞

0
1lB(0,r)(Bs) ds = 0.

7. Let X denote a Lévy process on Rd with exponent Ψ. A point x ∈ Rd is
possible if for all r > 0 there exists t > 0 such that P{Xt ∈ B(x , r)} > 0.
Let P denote the collection of all possible points of X. Demonstrate the
following assertions:

(1) P is a closed additive subsemigroup of Rd;
(2) Uλ is supported on P for all λ > 0;
(3) X is recurrent if and only if limt→∞ ‖Xt − x‖ = 0 for all x ∈ P.





Lecture 12

Excessive Functions

Absolute continuity considerations

Definition 1. A Lévy process is said to have transition densities if there
exists a measurable function pt (x) : (0 ,∞)×Rd → R+ such that Pt (x , dy) =
pt (y−x) dy; equivalently, for all t > 0, x ∈ Rd , and measurable f : Rd → R+,

(Ptf )(x) = Ef (x + Xt ) = (p̃t ∗ µt )(x) = (pt ∗ µ̃t )(x) =
∫

Rd
f (y)pt (y − x) dx,

where g̃(x) := g(−x). The function pt (x) is called the transition density
of X. �

Example 2. If X is d-dimensional Brownian motion, then it has transition
densities,

pt (x) = 1
(2π)d e−‖x‖2/(2t).

And, more generally, if X is an isotropic stable process with index α ∈ (0 , 2]
with exponent Ψ(ξ) = c‖ξ‖α, then X has transition densities given by the
inversion formula, viz.,

pt (x) = 1
(2π)d

∫

Rd
e−iξ·x−ct‖ξ‖α dξ.

This integral can be computed when α = 2 [see above], and also when
α = 1, in which case,

pt (x) =
Γ
(d+1

2
)

π(d+1)/2td/2

(
1 + ‖x‖

2

t2

)−(d+1)/2
.

See also the remarks that follow Lemma 10 on page 1. �

79



80 12. Excessive Functions

It is quite natural to ask, “what are the necessary and sufficient condi-
tions on Ψ that guarantee that X has transition densities”? This is an open
problem that has been unresolved for a very long time. However it is
possible to construct simple sufficient conditions (see Exercise 2 on page
83).

Definition 3. A Lévy process is said to have a λ-potential density for some
λ ≥ 0 if there exists a measurable function uλ(x) : Rd → R+ ∪ {∞} such
that Uλ(dx) = uλ(x) dx; equivalently, (Rλf )(x) =

∫
Rd f (y)uλ(y − x) dx for all

x ∈ Rd and measurable f : Rd → R+. If this property holds for all λ > 0,
then we say that X has potential densities. �

Remark 4. (1) If it exists, then λuλ is a [probability] density for λ > 0
fixed;

(2) If X has transition densities, then X has potential densities, and
we can write

uλ(x) =
∫ ∞

0
e−λtpt (x) dt.

The converse is not true in general; see Exercise 1 below. �

Recall that if f ∈ C0(Rd) then Rλf ∈ C0(Rd); this is called the “Feller
property.” As it turns out, Lévy processes that have λ-potential densities
satisfy a stronger property.

Proposition 5 (Hawkes, 1979). If X has potential densities {uλ}λ>0, then
X has the “strong Feller property;” that is, Rλf ∈ Cb(Rd) for all bounded
and measurable f : Rd → R and every λ > 0.

Proof. Because

(Rλf )(x) =
∫

Rd
f (y)uλ(y − x) dy = (f̃ ∗ uλ)(x) [f̃ (x) := f (−x)],

this proposition follows from a general property of convolutions; namely,
h ∗ g ∈ Cb(Rd) whenever h, g ∈ L1(Rd) and g is bounded.1 �

1Indeed we first find, for all ε > 0, a function k ∈ Cc(Rd) such that ‖k − h‖L1(Rd ) ≤ ε , which implies
that supx |(h ∗ g)(x) − (k ∗ g)(x)| ≤ supx |g(x)|ε . Because k ∗ g is continuous, it follows that h ∗ g
is uniformly within (1 + supx |g(x)|)ε of a continuous function. This proves the continuity of h ∗ g ;
boundedness is trivial.
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Excessive functions

Definition 6. A function f : Rd → R is said to be λ-excessive if f ≥ 0 is
measurable and exp(−λt)Ptf ↑ f as t ↓ 0 [pointwise]. �

Potentials of nonnegative measurable functions are the archetypal ex-
amples. Indeed, if g : Rd → R+ is measurable, then

e−λtPt (Rλg) =
∫ ∞

t
e−λsPsg ds ↑ Rλg as t ↓ 0.

Proposition 7. If f : Rd → R+ is λ-excessive, then αRαf ↑ f as α ↑ ∞.

Proof. Because of a change of variables,

µRµ+λf = µ
∫ ∞

0
e−(µ+λ)tPtf dt =

∫ ∞

0
e−s e−λ(s/µ)Ps/µf ds.

The monotone convergence theorem implies that µRµ+λf ↑ f as µ ↑ ∞.
This is equivalent to the statement of the result. �

Proposition 8. Choose and fix some λ > 0 and suppose X has potential
densities. If f and g are λ-excessive for the same λ > 0, and f ≤ g a.e.,
then f (x) ≤ g(x) for all x ∈ Rd .

Proof. We have µ(Rµ+λf )(x) = µ
∫

Rd f (y)uµ+λ(y − x) dy and a similar ex-
pression for µ(Rµ+λg)(x). Therefore, µ(Rµ+λf )(x) ≤ µ(Rµ+λg)(x) for all
x ∈ Rd and µ > 0. Now let µ ↑ ∞. �

Proposition 9 (Hawkes). If X has a potential densities {πλ}λ>0, then for
every λ > 0 there exist a lower semicontinuous modification uλ of πλ ,
and uλ is itself a λ-potential density.

From now on, we always choose a lower semicontinuous version of
the λ-potential densities when they exist.

Proof. By the Lebesgue differentiation theorem, for every λ > 0,

πλ(−x) = lim
ε↓0

Uλ(B(−x , ε))
|B(0 , ε)| = lim

ε↓0

(Rλ1lB(0,ε))(x)
|B(0 , ε)| for almost all x ∈ Rd.

Therefore, the resolvent equation (3, page 58) tells us that
πλ(−x)− πµ(−x) = (µ − λ)

(
πλ ∗ πµ

)
(−x) for almost all x ∈ Rd.

Because Rλ1lB(0,ε) is λ-excessive, it follows from Fatou’s lemma that: (i)
µRµ+λπλ ≤ πλ a.e.; and (ii) µ 7Ï µRµ+λπλ is nondecreasing. Define uλ :=
limµ↑∞ µ(Rµ+λπλ), and observe that uλ is lower semicontinuous by the
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strong Feller property. Also, uλ ≤ πλ a.e. It remains to prove that this
a.e.-inequality is an a.e.-equality.

For all bounded measurable φ : Rd → R+,
∫

Rd
uλ(x)φ(x) dx = lim

µ↑∞

∫

Rd
µ
(
Rµ+λπλ

)
(x)φ(x) dx

= lim
µ↑∞

µ
∫

Rd
φ(x) dx

∫

Rd
Uµ+λ(dy) πλ(y − x)

= lim
µ↑∞

µ
∫

Rd
(Rλφ)(y)Uµ+λ(dy) = lim

µ↑∞
µ
(
Rµ+λRλφ

)
(0).

Thanks to the resolvent equation (3, page 58), µ(Rµ+λRλφ)(0) = (Rλφ)(0)−
(Rµφ)(0), and (Rµφ)(0) = E

∫∞
0 e−µsφ(Xs) ds→ 0 as µ ↑ ∞, by the monotone

convergence theorem. Consequently,
∫

Rd
uλ(x)φ(x) dx = (Rλφ)(0) =

∫

Rd
πλ(x)φ(x) dx,

which implies that πλ = uλ a.e. �

Lévy processes that hit points

Theorem 10. Let X be a Lévy process on R that has a bounded and
positive λ-potential density. Then P{Tx < ∞} > 0 for all x ∈ R, where
Tx := inf{s > 0 : Xs = x}.

Remark 11. (1) We are restricting attention to one dimension be-
cause there are no Lévy processes in Rd with d ≥ 2 that have a
bounded λ-potential; see Corollary 7 (page 66).

(2) We will see later on [Lemma ??, page ??] that if uλ is continuous for
all λ > 0, then it is positive everywhere. And a sufficient criterion
for the continuity of uλ [for all λ] is that

∫∞
−∞ |1 + Ψ(ξ)|−1 dξ <

∞. �

Proof. First of all, we can note that Tz < ∞ if and only if z ∈ X(R+).
Therefore, by the Tonelli theorem,

0 < E|X(R+)| =
∫

Rd
P {Tz <∞} dz.

Therefore, Theorem 5 tells us that
|Z| > 0, where Z := {z ∈ R : P{Tz <∞} > 0} .

By the Markov property, for all x ∈ R and s > 0,

P {Xt = x for some t > s} =
∫ ∞

−∞
P {Tx−y <∞} µs(dy),
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where µs denotes the law of Xs . Consequently, we multiply both sides by
exp(−λs) and integrate [ds] to find that
∫ ∞

0
e−λsP {Xt = x for some t > s} ds =

∫ ∞

−∞
P {Tx−y <∞}uλ(y) dy.

Since P{Tx−y <∞} > 0 and uλ(y) > 0 for all y ∈ x−Z, the left-hand side
is positive. But the left-hand side is at most λ−1P{Tx <∞}. �

Problems for Lecture 12
1. Let N := {Nt}t≥0 denote a rate-α Poisson process on R, where α ∈ (0 ,∞).
Prove that Xt := Nt−αt is a Lévy process which does not have transition densities,
but X has λ-potential densities for every λ ≥ 0.

2. Let X be a Lévy process in Rd with exponent Ψ such that e−tReΨ ∈ L1(Rd) for
all t > 0. Then prove that X has transition densities given by

pt (x) := 1
(2π)d

∫

Rd
e−iξ·x−tΨ(ξ) dξ.

Prove, in addition, that (t , x) 7Ï pt (x) is uniformly continuous for (t , x) ∈ (η ,∞)×
Rd , for every η > 0 fixed.

3. Let X denote a Lévy process on Rd with Lévy exponent Ψ, and T an independent
subordinator with Laplace exponent Φ.

(1) Verify that the subordinated process Yt := XTt is a Lévy process; compute
its Lévy exponent in terms of Ψ and Φ.

(2) Prove that if T and X both have transition densities, then so does Y . Do
this by expressing the transition densities of Y in terms of those of X
and T .

(3) Suppose T has transition densities and X has a λ-potential density for all
λ > 0. Then prove that Y has a λ-potential density for all λ > 0; do this
by expressing the latter potential densities in terms of the corresponding
one for X, and the transition densities of T .

4. Prove that if {Pt}t≥0 is the semigroup of a Lévy process on Rd , then:
(1) Pt : Cb(Rd)→ Cb(Rd) for all t ≥ 0;
(2) If the process has transition densities, then Pt maps bounded and mea-

surable functions to Cb(Rd) for all t ≥ 0.

5 (Hawkes’ estimates). Consider a Lévy process X on Rd that has transition den-
sities pt (x). Prove that the following are equivalent:

(1) pt is bounded for all t > 0;
(2) pt ∈ L2(Rd) for all t > 0;
(3) exp(−tReΨ) ∈ L1(Rd) for all t > 0, where Ψ denotes the Lévy exponent

of X.
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(Hint: Prove first that pt ∗ ps = pt+s a.e.)

6 (Meyer–type inequalities). Let X denote a Lévy process on Rd and {Rλ}λ>0 its
resolvent. The main goal of this problem is to establish the following Meyer–type
inequalities: For all bounded and measurable f : Rd → R:

E
(

sup
t≥0

∣∣∣∣
∫ t

0
e−λsf (Xs) ds

∣∣∣∣
2)
≤ 10E

(
sup
t≥0

∣∣e−λt (Rλf )(Xt )
∣∣2
)
,

and

E
(

sup
t≥0

∣∣∣∣
∫ t

0
e−λsf (Xs) ds

∣∣∣∣
2)
≥ 1

10E
(

sup
t≥0

∣∣e−λt (Rλf )(Xt )
∣∣2
)
.

(1) First prove that for all bounded and measurable f : Rd → R,

E
(∣∣∣∣
∫ ∞

0
e−λsf (Xs) ds

∣∣∣∣
2
)
≤ 4E

(
sup
t≥0

∣∣e−λt (Rλf )(Xt )
∣∣2
)
.

(Hint: Expand the left-hand side as a double integral.)
(2) Prove that for all bounded and measurable f : Rd → R,

e−λt (Rλf )(Xt ) = E
(∫ ∞

0
e−λsf (Xs) ds

∣∣∣∣ Ft

)
−
∫ t

0
e−λsf (Xs) ds,

where {Ft}t≥0 denotes the natural filtration of X.
(3) Conclude by proving the Meyer–type inequalities mentioned above.



Lecture 13

Energy and Capacity

Polar and essentially-polar sets

Choose and fix a Borel set G ⊂ Rd , and define the stopping time TG to be
the entrance time of G :

TG := inf {s > 0 : Xs ∈ G or Xs− ∈ G} (inf∅ :=∞). (1)

In other words, TG is the first time, if ever, that the closure of the range
of the process X enters the set G .

Definition 1. A Borel set G ⊆ Rd is called polar if P{TG < ∞} = 0;
otherwise G is said to be nonpolar. Similarly, G is called essentially polar
if P{TG−x < ∞} = 0 for almost all x ∈ Rd; otherwise G is deemed
essentially nonpolar. �

We are abusing notation slightly; “essentially nonpolar” is being treated
as an equivalent to “not essentially polar.”

We can note that
∫

Rd
P {TG−x <∞} dx =

∫

Rd
P
{
X(R+) ∩ (G − x) 6= ∅

}
dx.

But X(R+)∩(G−x) is nonempty if and only if x is an element of G	X(R+).
Therefore, Fubini’s theorem tells us that

G is essentially polar iff E
∣∣∣G 	 X(R+)

∣∣∣ = 0.

Or equivalently,

G is essentially polar iff E
∣∣∣X(R+)	 G

∣∣∣ = 0.
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(Why?) In particular, set G := {x} to see that a singleton is essentially
polar if and only if the range of X(R+) has positive Lebesgue measure
with positive probability. [This ought to seem familiar!]

Our goal is to determine all essentially-polar sets, and relate them to
polar sets in most interesting cases. To this end define for all λ > 0 and
Borel probability measures ν and µ on Rd the following:

Eλ(µ , ν) := 1
(2π)d

∫

Rd
µ̂(ξ) ν̂(ξ) Re

(
1

λ + Ψ(ξ)

)
dξ. (2)

And if µ(dx) = f (x) dx and ν(dx) = g(x) dx, then we may write Eλ(f , g ) in
place of Eλ(µ , ν) as well. Also define

Capλ(G) :=
[

inf
µ∈M1(G)

Eλ(µ , µ)
]−1

, (3)

where M1(G) denotes the collection of all probability measures µ such that
µ(Gc) = 0, inf∅ :=∞, and ∞−1 := 0.
Definition 2. Eλ(µ , ν) is called the mutual λ-energy between µ and ν, and
Capλ(G) the λ-capacity of G . �

Our goal is to prove the following:
Theorem 3. If Capλ(G) > 0 then G is essentially nonpolar. And if
Capλ(G) = 0, then G is polar.

Because of the preceding, we care mostly whether or not a given set
G has positive λ-capacity. Therefore, let me remind you that Capλ(G) > 0
if and only if there exists a probability measure µ, supported in G , such
that

∫
Rd |µ̂(ξ)|2Re(1 + Ψ(ξ))−1 dξ <∞.

Note that Capλ(G) = Capλ(G + x) for all x ∈ Rd . As a consequence of
Theorem 3 we find then that G is polar if and only if P{TG−x < ∞} = 0
for all x ∈ Rd . That is: (a) All polar sets are essentially polar; and (b)
The difference between polarity and essential polarity is about at most a
Lebesgue-null set of shifts of G . As the following shows, there is in fact
no difference in almost all cases of interest.
Proposition 4. Suppose Uλ is absolutely continuous for some λ > 0. Then,
a Borel set G is essentially polar if and only if it is polar.

An energy identity

Theorem 5 (Foondun and Khoshnevisan, 2010, Corollary 3.7). If f is a
probability density on Rd , then

∫

Rd
(Rλf )(x)f (x) dx = Eλ(f , f ) for all λ > 0. (4)
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Proof. If f ∈ C0(Rd) with f̂ ∈ L1(Rd), then (4) follows from direct compu-
tations. Indeed, we can use the fact that ûλ(ξ) = Re(λ+Ψ(ξ))−1 ≥ 0 [see (2,
p. 63)] together with Fubini’s theorem and find that

∫

Rd
(Rλf )(x)f (x) dx = 1

(2π)d

∫

Rd
|f̂ (ξ)|2Re

(
1

λ + Ψ(ξ)

)
dξ. (5)

But in the present case, Fubini’s theorem is not applicable. Instead, we
proceed in two steps: First we prove that

∫

Rd
(Rλf )(x)f (x) dx ≥ Eλ(f , f ). (6)

This holds trivially unless the left-hand side is finite, which we now assume
is the case. Because f is a density function, Lusin’s theorem tells us that
for all δ > 0 there exists a compact set Kδ ⊂ Rd such that

∫

Kc
δ

f (x) dx ≤ δ, and Rλf is continuous on Kδ.

In particular,
∫

Rd
(Rλf )(x)f (x) dx ≥

∫

Kδ

(Rλf )(x)f (x) dx = lim
ε↓0

∫

Kδ
((Rλf ) ∗ φε ) (x)f (x) dx,

where φε denotes the density of Bε for a d-dimensional Brownian motion
B. Let fδ := f1lKδ and note that f̂δ → f̂ , pointwise, as δ ↓ 0.

Since (Rλf ) ∗ φε = Rλ(f ∗ φε ) ≥ Rλ(fδ ∗ φε ) and φε = φε/2 ∗ φε/2, we can
apply Tonelli’s theorem to find that
∫

Rd
(Rλf )(x)f (x) dx ≥ lim inf

ε↓0

∫

Rd
(Rλ(fδ ∗ φε )) (x)fδ(x) dx

= lim inf
ε↓0

∫

Rd
(Rλ(fδ ∗ φε/2)) (x) (fδ ∗ φε/2) (x) dx

= 1
(2π)d lim inf

ε↓0

∫

Rd
|f̂δ(ξ)|2e−ε‖ξ‖2/2Re

(
1

λ + Ψ(−ξ)

)
dξ,

thanks to (5). This proves that
∫

Rd
(Rλf )(x)f (x) dx ≥ 1

(2π)d lim inf
δ↓0

∫

Rd
|f̂δ(ξ)|2Re

(
1

1 + Ψ(ξ)

)
dξ,

and Fatou’s lemma proves (6). The converse bound is much easier: We
merely note that, as above,
∫

Rd
(Rλ(f ∗ φε )) (x)f (x) dx =

∫

Rd
(Rλ(f ∗ φε/2)) (x) (f ∗ φε/2) (x) dx

= 1
(2π)d

∫

Rd
|f̂ (ξ)|2e−ε‖ξ‖2/2Re

(
1

λ + Ψ(ξ)

)
dξ.
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Then we let ε ↓ 0; the right-most term converges to Eλ(f , f ) by the dom-
inated convergence theorem, and the lim inf of the left-most term is at
most

∫
Rd (Rλf )(x)f (x) dx by Fatou’s lemma. �

Proof of Theorem 3

Theorem 3 will follow immediately from Lemmas 7 and 9 below.
Define

(Jλf )(x) :=
∫ ∞

0
e−λsf (x + Xs) ds.

Lemma 6. For all f ∈ L1(Rd) ∩ L2(Rd) and λ > 0,
∫

Rd
E
[
(Jλf )(x)

]
dx = 1

λ ,
∫

Rd
E
(
|(Jλf )(x)|2

)
dx = 1

λEλ(f , f ).

Proof. The first computation follows because f is a probability density and
hence

∫
Rd (Jλf )(x) dx = λ−1. Now we begin with the second computation of

the lemma:

E
(
|(Jλf )(x)|2

)
= 2

∫ ∞

0
e−λs ds

∫ ∞

s
e−λt dt E

[
f (x + Xs) · f (x + Xt )

]

= 2
∫ ∞

0
e−λs ds

∫ ∞

s
e−λt dt E

[
f (x + Xs) · (Pt−sf )(x + Xs)

]

= 2
∫ ∞

0
e−2λsE

[
f (x + Xs) · (Rλf )(x + Xs)

]
ds,

thanks to the Markov property. Therefore,
∫

Rd
E
(
|(Jλf )(x)|2

)
dx = 1

λ

∫

Rd
f (y) · (Rλf )(y) dy.

And the lemma follows from Theorem 5. �

Lemma 7. Regardless of the value of λ > 0,

E (|G 	 X(R+)|) =
∫

Rd
P {TG−x <∞} dx ≥ 1

λ · Capλ(G).

Remark 8. It is important to note that TG−x < ∞ if and only if the Lévy
processx + Xt [which starts at x ∈ Rd at time zero] everh hits G; more
precisely, there exists t > 0 such that x+Xt ∈ G or x+Xt− ∈ G . Therefore,
the preceding states that if G has positive λ-capacity, then X hits G , starting
from almost every starting point x ∈ Rd . In fact, this property is one way
of thinking about the essential nonpolarity of G . �
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Proof. Let us begin with a simple fact from classical function theory.
The Paley–Zygmund inequality.1 Suppose Y : Rd × Ω → R+ is nonneg-
ative and measurable, Y 6≡ 0, Y ∈ L2(Rd × Ω), and

∫
Rd EY (x) dx = c > 0.

Then, ∫

Rd
P {Y (x) > 0} dx ≥ c2

∫
Rd E

(
|Y (x)|2

)
dx

,

where 1/∞ := 0.
Let f be a probability density that is supported on the closed [say] ε-

enlargment Gε of G . We apply Lemma 6 together with the Paley-Zygmund
inequality [with Y (x) := (Jλf )(x)] and obtain

∫

Rd
P {(Jλf )(x) > 0} dx ≥ 1

λ · Eλ(f , f )
.

If (Jλf )(x) > 0, then certainly x + Xs ∈ Gε for some s > 0; i.e., TGε−x <∞.
Therefore, ∫

Rd
P {TGε−x <∞} dx ≥ 1

λ · sup
g

1
Eλ(g , g ) ,

where the supremum is taken over all probability densities g that are
supported on Gε . Let hε be a probability density, supported on B(0 , ε),
and observe that ρ ∗ hε is a probability density supported on Gε whenever
ρ ∈M1(G). Because of (2), Eλ(ρ ∗ hε , ρ ∗ hε ) ≤ Eλ(ρ , ρ), and hence

∫

Rd
P {TGε−x <∞} dx ≥ 1

λ · Capλ(G).

Note that
⋂

ε>0
{TGε−x <∞} =

⋂

ε>0
{x + X(R+) ∩ Gε 6= ∅} =

{
x + X(R+) ∩ G 6= ∅

}
.

Therefore,
∫

Rd
P
{
x + X(R+) ∩ G 6= ∅

}
dx ≥ 1

λ · Capλ(G).

Now the left-hand side is the expectation of the Lebesgue measure of the
random set G 	 X(R+) [check!]. Because X is cadlag, the set difference
between X(R+) and its closure has zero measure (in fact, is countable).

1Here is the proof: By the Cauchy–Schwarz inequality,

c =
∫

Rd
Ef (x) dx =

∫

Rd×Ω
1l{f>0}(x , ω) · f (x , ω) dx P(dω)

≤
(∫

Rd×Ω
1l{f>0}(x , ω) dx P(dω) ·

∫

Rd×Ω
|f (x , ω)|2 dx P(dω)

)1/2

=
(∫

Rd
P{f (x) > 0} dx

)1/2
·
(∫

Rd
E
(
|f (x)|2

)
dx
)1/2

. �
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Therefore, the Lebesgue measure of G	X(R+) is the same as the Lebesgue
measure of G 	 X(R+). This proves the result. �

Lemma 9. P{TG ≤ n} ≤ eλn · Capλ(G) for all n, λ > 0.

Proof. This is trivial unless
P {TG ≤ n} > 0, (7)

which we assume is the case.
For all measurable f : Rd → R+,

E ( (Jλf )(0) | FTG∧n) ≥
∫ ∞

TG
e−λsE

[
f (Xs)

∣∣FTG∧n
]

ds · 1l{TG≤n}

= e−λn
∫ ∞

0
e−λsE

[
f (Xs+TG∧n)

∣∣FTG
]

ds · 1l{TG≤n}

= e−λn
∫ ∞

0
e−λs(Psf )(XTG∧n) ds · 1l{TG≤n},

thanks to the strong Markov property. Therefore,
E ( (Jλf )(0) | FTG∧n) ≥ e−λn(Rλf )(XTG ) · 1l{TG≤n}.

The expectation of the term on the left-hand side is 1, thanks to Lemma 6
and the optional stopping theorem. Therefore,

1 ≥ e−λnE
[
(Rλf )(XTG )

∣∣TG ≤ n
]
· P{TG ≤ n}

= e−λn
∫

Rd
(Rλf ) dρ · P{TG ≤ n},

where ρ(A) := P(XTG ∈ A |TG ≤ n). In accord with (7), ρ ∈M1(G).
We apply the preceding with f := ρ ∗ φε , where φε denotes the density

of Bε for a d-dimensional Brownian motion. Because∫

Rd
(Rλf ) dρ =

∫

Rd
(Rλ(ρ ∗ φε/2)) (x) (ρ ∗ φε/2) (x) dx,

it follows from Theorem 5 that

eλn ≥ 1
(2π)d

∫

Rd
e−ε‖ξ‖2/2|ρ̂(ξ)|2Re

(
1

λ + Ψ(ξ)

)
dξ · P {TG ≤ n} .

Let ε ↓ 0 and appeal to the monotone convergence theorem to finish. �

Problems for Lecture 13

1. Prove that Capλ(G) > 0 for some λ > 0 iff Capλ(G) > 0 for all λ > 0.

2. Prove Proposition 4. (Hint: Inspect the proof of Theorem 10 on page
82.)
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