SIMPLE LINEAR REGRESSION
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1. LINE-FITTING

Points (z1,91), ..., (zn,yn) are given; e.g. on a scatterplot.

What is “the best line” that describes the relationship be-
tween the x’s and the y’s?

To understand this better, let us focus on a line L(x) = « + Bz where
a, B € R are fixed but otherwise arbitrary.

“Fitting L to the points (z;,y;)” means estimating y; by L(xz;) for all
i=1,...,n. Theerror, ¢;, in estimating y; by L(x;) is called the i residual.

We choose “the best line of fit” according to the least squares principle
of C. Gauss:' Minimize > | e? among all possible lines of the form L(z) =

a+Bx. This is done by doing a little calculus: For a fixed line L(z) = a+(z,

n n

(1) doer = (Llzi)—y:)* =D (a+ B — i)
=1

i=1 i=1

Call this .##(«, ). Then we are asked to find a and b that minimize .77 .
But this is a two-variable calculus problem. It turns out to be enough to
solve:

(2) W =0 and
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1Sometimes7 people have reason to use other, more “robust,” principles. A common
alternative in such a case is the principle of “least absolute deviation.” It seeks to find a
line that minimizes > , |es|. Occasionally, this is also called the “# ! method”; this is
to distinguish it from least squares which is also sometimes called the “.#? method.”
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First,

o -
# = 2(a+ Bri — i)

i=1

n n
= 2an—|—252xi — 22?/1’: and
=1 =1

0 (0,8) _

95 ;2(04 + B — i)

n n n
= QOszi —1—252:1:? — Qinyi.
i=1 i=1 i=1

These are called the normal equations. Now (2) is transformed into two
equations in two unknowns [« and f]:

_ 5
() aT + ﬁx_ - fy
a+ 0T =7.
Multiply the second equation of (4) by T, and then subtract from the
first equation to find that 3(z2 — (%)2) = Ty — T - §. You should rec-
ognize this, in statistical terms, as fVar(z) = Cov(z,y). Equivalently,
B = Cov(z,y)/Var(x) = Corr(x,y)SD,/SD,. Plug this into the second equa-

tion of (4) to find that a =7 — OT for the computed 5. To summarize,

Theorem 1.1. The least-squares line through (x1,y1), ..., (Tn, Yn) is unique
and defined by
_ 5 — o SD,
(5) L(z) =9+ B(xr —Z), where (= Corr(z,y) .
SD,,
2. THE MEASUREMENT-ERROR MODEL
Let Y = (Y1,...,Y,) be a random sample of n i.i.d. copies of the response
variable. The measurement-error model posits the following:
(6) Y,=a+ 68X, +¢ i=1,...,n.
Here, X = (Xy,...,X,) is a non-random vector of constants—the explana-

tory variables—and « and ( are unknown parameters. This model also
assumes that the g;’s are i.i.d. N(0,0?) for an unknown parameter o > 0.
The Y;’s are random only because the ¢;’s are (and not the X;’s).

According to the principle of least squares (Theorem 1.1), the best least-
squares estimates of a and (3 are, respectively,

15 Y.V
(7) B= ”IZZ':;X’YZ f; and a=Y —ax.
n > i (X — X)

The more imortant parameter is #. For instance, consider the test,
(8) Hy: =0 vs. Hy: [3#0.
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This is testing the hypothesis that the explanatory variable X has a (linear)
effect on Y. R
So we need the distribution of 5. Note that
S~ YT Y (X - X -
o CEPYCRACTSI N /N
Zi:l(Xi - X) i=1

where

f = — X, —X)“.
ok n;( i—X)

(10) b; =

Recall that the X;’s are not random. Therefore, neither are the b;’s. Also
recall,

Lemma 2.1. IfVi,...,V,, are independent and V; ~ N (u;,0?), then for all
non-random c¢1,...,Cn, Yy ¢Vi ~ N(u,0?) where = py + -+ + p,, and
0‘2 :0’%+...+0‘%.

Consequently, 5 ~ N(X", biE[Yi], 2™, b2Var(Y;)). But V; = a+ X, +
g;. So, ElY;] = a + 3X;, and Var(Y;) = Var(e;) = 2. It is easy to check
that: (i) Y0, b, = 0; (i) i, b;:X; = 1; and (iii) Y1, b2 = 1/(ns%). This
proves that

11 ~ N — .

(1) i~ (5)

Therefore, E [3] = (. That is, E is an unbiased estimator of 3. Moreover,

if we knew o2, then we could perform the test of hypothesis (8) at any

predescribed level, say at 95%. The trouble is that we generally do not
2

know o°.
Because the Y;’s have variance 02, we can estimate 0% by s3, = £ Y% | (V;—
Y)2 But then we need the joint distribution of (3,s%). The key to this

theory is that B is independent of s%(. We just determined the distribution

2 1

of B, and we will see later on that the Hy-distribution of 5%( is essentially
x2. The rest will be smooth sailing.
To recap, we need to accomplish two things:

(1) Derive the independence of 3 and s%,; and

(2) Honestly compute the distribution of s3, under Hj.
Just about all of this semester’s work is concerned with accomplishing these
two goals (for more general models).



