An Introduction to Parabolic SPDEs

Lectures in Probability and Stochastic Processes XI
Indian Statistical Institute, Delhi Centre
November 25–29, 2016

Davar Khoshnevisan

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar
The Heat Equation

\[u = u(t, x) \quad t \geq 0 \quad 0 \leq x \leq 1 \]
The Heat Equation

- \(u = u(t, x) \) \(\quad t \geq 0 \quad 0 \leq x \leq 1 \)
- The heat equation on \([0, 1]\) with Dirichlet zero-boundary and initial value \(u_0 \in L^2[0, 1]\) is

\[
\begin{align*}
\dot{u} &= u'' \quad \text{on} \quad (0, \infty) \times [0, 1], \\
\quad u(0) &= u_0, \\
\quad u(t, 0) &= u(t, 1) = 0 \quad \forall t > 0.
\end{align*}
\]
The Heat Equation

1. \(u = u(t, x) \quad t \geq 0 \quad 0 \leq x \leq 1 \)
2. The heat equation on \([0, 1]\) with Dirichlet zero-boundary and initial value \(u_0 \in L^2[0, 1] \) is

\[
\begin{cases}
\dot{u} = u'' \quad \text{on} \ (0, \infty) \times [0, 1], \\
u(0) = u_0, \\
u(t, 0) = u(t, 1) = 0 \quad \forall t > 0.
\end{cases}
\]

3. Define \(e_n(x) := \sqrt{2} \sin(n\pi x) \) for \(0 \leq x \leq 1 \).
The Heat Equation

- \(u = u(t, x) \quad t \geq 0 \quad 0 \leq x \leq 1 \)

The heat equation on \([0, 1]\) with Dirichlet zero-boundary and initial value \(u_0 \in L^2[0, 1]\) is

\[
\begin{cases}
\dot{u} = u'' & \text{on } (0, \infty) \times [0, 1], \\
u(0) = u_0, \\
u(t, 0) = u(t, 1) = 0 & \forall t > 0.
\end{cases}
\]

- Define \(e_n(x) := \sqrt{2} \sin(n\pi x)\) for \(0 \leq x \leq 1\).

- \(u_0 = \sum_{n=1}^{\infty} (u_0, e_n) e_n\)

\[\langle f, g \rangle := \int_0^1 f(x)g(x) \, dx\]
The Heat Equation

- \(u = u(t, x) \quad t \geq 0 \quad 0 \leq x \leq 1 \)
- The heat equation on \([0, 1]\) with Dirichlet zero-boundary and initial value \(u_0 \in L^2[0, 1]\) is

\[
\begin{cases}
\dot{u} = u'' \quad \text{on } (0, \infty) \times [0, 1], \\
u(0) = u_0, \\
u(t, 0) = u(t, 1) = 0 \quad \forall t > 0.
\end{cases}
\]

- Define \(e_n(x) := \sqrt{2} \sin(n \pi x) \) for \(0 \leq x \leq 1\).
- \(u_0 = \sum_{n=1}^{\infty} (u_0, e_n) e_n \) \[(f, g) := \int_0^1 f(x)g(x) \, dx \].
- \(u(t) = \sum_{n=1}^{\infty} u_n(t)e_n, \) where \(u_n(t) := (u(t), e_n). \)
The Heat Equation

- \(u = u(t, x) \quad t \geq 0 \quad 0 \leq x \leq 1 \)
- The heat equation on \([0, 1]\) with Dirichlet zero-boundary and initial value \(u_0 \in L^2[0, 1] \) is

\[
\begin{cases}
\dot{u} = u'' \quad \text{on } (0, \infty) \times [0, 1], \\
u(0) = u_0, \\
u(t, 0) = u(t, 1) = 0 \quad \forall t > 0.
\end{cases}
\]

- Define \(e_n(x) := \sqrt{2} \sin(n \pi x) \) for \(0 \leq x \leq 1 \).
- \(u_0 = \sum_{n=1}^{\infty} (u_0, e_n)e_n \quad \text{[}(f, g) := \int_0^1 f(x)g(x) \, dx\text{]} \).
- \(u(t) = \sum_{n=1}^{\infty} u_n(t)e_n \), where \(u_n(t) := (u(t), e_n) \).
- \(\dot{u}_n(t) = (\dot{u}(t), e_n) \)
The Heat Equation

- \(u = u(t, x) \quad t \geq 0 \quad 0 \leq x \leq 1 \)

The heat equation on \([0, 1]\) with Dirichlet zero-boundary and initial value \(u_0 \in L^2[0, 1] \) is

\[
\begin{align*}
\dot{u} &= u'' \quad \text{on } (0, \infty) \times [0, 1], \\
u(0) &= u_0, \\
u(t, 0) &= u(t, 1) = 0 \quad \forall t > 0.
\end{align*}
\]

Define \(e_n(x) := \sqrt{2} \sin(n\pi x) \) for \(0 \leq x \leq 1 \).

- \(u_0 = \sum_{n=1}^{\infty} (u_0, e_n)e_n \quad [(f, g) := \int_0^1 f(x)g(x) \, dx]. \)
- \(u(t) = \sum_{n=1}^{\infty} u_n(t)e_n \), where \(u_n(t) := (u(t), e_n) \).
- \(\dot{u}_n(t) = (\dot{u}(t), e_n) = (u''(t), e_n) \)
The Heat Equation

- \(u = u(t, x) \quad t \geq 0 \quad 0 \leq x \leq 1 \)
- The heat equation on \([0, 1]\) with Dirichlet zero-boundary and initial value \(u_0 \in L^2[0, 1] \) is

\[
\begin{align*}
\dot{u} &= u'' \quad \text{on } (0, \infty) \times [0, 1], \\
u(0) &= u_0, \\
u(t, 0) &= u(t, 1) = 0 \quad \forall t > 0.
\end{align*}
\]

- Define \(e_n(x) := \sqrt{2} \sin(n\pi x) \) for \(0 \leq x \leq 1 \).
- \(u_0 = \sum_{n=1}^{\infty} (u_0, e_n)e_n \quad \text{[}(f, g) := \int_0^1 f(x)g(x) \, dx]\).
- \(u(t) = \sum_{n=1}^{\infty} u_n(t)e_n \), where \(u_n(t) := (u(t), e_n) \).
- \(\dot{u}_n(t) = (\dot{u}(t), e_n) = (u''(t), e_n) = (u(t), e_n') \)
The Heat Equation

- \(u = u(t, x) \quad t \geq 0 \quad 0 \leq x \leq 1 \)

The heat equation on \([0, 1]\) with Dirichlet zero-boundary and initial value \(u_0 \in L^2[0, 1] \) is

\[
\begin{cases}
\dot{u} = u'' & \text{on } (0, \infty) \times [0, 1], \\
u(0) = u_0, \\
u(t, 0) = u(t, 1) = 0 & \forall t > 0.
\end{cases}
\]

- Define \(e_n(x) := \sqrt{2} \sin(n\pi x) \) for \(0 \leq x \leq 1 \).
- \(u_0 = \sum_{n=1}^{\infty} (u_0, e_n)e_n \quad [(f, g) := \int_0^1 f(x)g(x) \, dx] \).
- \(u(t) = \sum_{n=1}^{\infty} u_n(t)e_n \), where \(u_n(t) := (u(t), e_n) \).
- \(\dot{u}_n(t) = (\dot{u}(t), e_n) = (u''(t), e_n) = (u(t), e_n'') = -n^2\pi^2(u(t), e_n) \).
The Heat Equation

- \(u = u(t, x) \quad t \geq 0 \quad 0 \leq x \leq 1 \)

The heat equation on \([0, 1]\) with Dirichlet zero-boundary and initial value \(u_0 \in L^2[0, 1] \) is

\[
\begin{cases}
\dot{u} = u'' & \text{on } (0, \infty) \times [0, 1], \\
 u(0) = u_0, \\
 u(t, 0) = u(t, 1) = 0 & \forall t > 0.
\end{cases}
\]

- Define \(e_n(x) := \sqrt{2} \sin(n\pi x) \) for \(0 \leq x \leq 1 \).
- \(u_0 = \sum_{n=1}^\infty (u_0, e_n) e_n \)
- \((f, g) := \int_0^1 f(x)g(x) \, dx \).
- \(u(t) = \sum_{n=1}^\infty u_n(t) e_n \), where \(u_n(t) := (u(t), e_n) \).
- \(\dot{u}_n(t) = (\dot{u}(t), e_n) = (u''(t), e_n) = (u(t), e''_n) = -n^2\pi^2(u(t), e_n) = -n^2\pi^2 u_n(t) \)
The Heat Equation

- \(u = u(t, x) \quad t \geq 0 \quad 0 \leq x \leq 1 \)

The heat equation on \([0, 1]\) with Dirichlet zero-boundary and initial value \(u_0 \in L^2[0, 1] \) is

\[
\begin{align*}
\dot{u} &= u'' \quad \text{on } (0, \infty) \times [0, 1], \\
u(0) &= u_0, \\
u(t, 0) &= u(t, 1) = 0 \quad \forall t > 0.
\end{align*}
\]

- Define \(e_n(x) := \sqrt{2} \sin(n\pi x) \) for \(0 \leq x \leq 1 \).
- \(u_0 = \sum_{n=1}^{\infty} (u_0, e_n) e_n \)
- \(u(t) = \sum_{n=1}^{\infty} u_n(t) e_n \), where \(u_n(t) := (u(t), e_n) \).
- \(\dot{u}_n(t) = (\dot{u}(t), e_n) = (u''(t), e_n) = (u(t), e''_n) = -n^2\pi^2(u(t), e_n) \)
 \(= -n^2\pi^2 u_n(t) \Rightarrow u_n(t) = u_n(0)e^{-n^2\pi^2 t} \)
The Heat Equation

- \(u = u(t, x) \quad t \geq 0 \quad 0 \leq x \leq 1 \)

The heat equation on \([0, 1]\) with Dirichlet zero-boundary and initial value \(u_0 \in L^2[0, 1] \) is

\[
\begin{cases}
\dot{u} = u'' \quad \text{on } (0, \infty) \times [0, 1], \\
u(0) = u_0, \\
u(t, 0) = u(t, 1) = 0 \quad \forall t > 0.
\end{cases}
\]

- Define \(e_n(x) := \sqrt{2} \sin(n\pi x) \) for \(0 \leq x \leq 1 \).
- \(u_0 = \sum_{n=1}^{\infty} (u_0, e_n)e_n \) \quad \([(f, g) := \int_0^1 f(x)g(x) \, dx] \).
- \(u(t) = \sum_{n=1}^{\infty} u_n(t)e_n \), where \(u_n(t) := (u(t), e_n) \).
- \(\dot{u}_n(t) = (\dot{u}(t), e_n) = (u''(t), e_n) = (u(t), e_n''(t)) = -n^2\pi^2(u(t), e_n) = -n^2\pi^2u_n(t) \Rightarrow u_n(t) = u_n(0)e^{-n^2\pi^2t} = (u_0, e_n)e^{-n^2\pi^2t} \).
The Heat Equation

\[e_n(x) = \sqrt{2} \sin(n\pi x) \]

Theorem

Consider the heat equation

\[
\begin{cases}
\dot{u} = u'' & \text{on } (0, \infty) \times [0, 1], \\
u(0) = u_0, \\
u(t, 0) = u(t, 1) = 0 & \forall t > 0,
\end{cases}
\]

where \(u_0 \in L^2[0, 1] \). Then,

\[
u(t, x) = \sum_{n=1}^{\infty} \langle u_0, e_n \rangle e^{-n^2\pi^2 t} e_n(x).
\]
The Heat Equation

\(e_n(x) = \sqrt{2} \sin(n\pi x) \)

Theorem

Consider the heat equation

\[
\begin{cases}
\dot{u} = u'' & \text{on } (0, \infty) \times [0, 1], \\
u(0) = u_0, \\
u(t, 0) = u(t, 1) = 0 & \forall t > 0,
\end{cases}
\]

where \(u_0 \in L^2[0, 1] \). Then,

\[
u(t, x) = \sum_{n=1}^{\infty} (u_0, e_n) e^{-n^2\pi^2t} e_n(x).
\]

- The series converges uniformly for \((t, x) \in [\varepsilon, \infty) \times [0, 1]\) for every \(\varepsilon > 0 \).
The Heat Equation

Graph showing the solution to the heat equation with time and temperature axes.

Legend:
- \(<\)
- \(<\)
- \(<\)
- \(\geq\)
- \(\leq\)
- \(-\)
- \(\rightarrow\)
- \(\leftarrow\)
- \(+\)
The Heat Equation

\[e_n(x) = \sqrt{2} \sin(n\pi x) \]

- Define the heat kernel, \(p_t(x, y) := \sum_{n=1}^{\infty} e_n(x)e_n(y)e^{-n^2\pi^2t}. \)
The Heat Equation

\[e_n(x) = \sqrt{2} \sin(n\pi x) \]

- Define the **heat kernel**, \(p_t(x, y) := \sum_{n=1}^{\infty} e_n(x)e_n(y)e^{-n^2\pi^2 t} \).
- \((P_t\varphi)(x) := \int_0^1 p_t(x, y)\varphi(y) \, dy = \sum_{n=1}^{\infty} e_n(x)(\varphi, e_n) \exp(-n^2\pi^2 t) \) solves our heat equation.
The Heat Equation

\[e_n(x) = \sqrt{2} \sin(n\pi x) \]

- Define the heat kernel, \(p_t(x, y) := \sum_{n=1}^{\infty} e_n(x)e_n(y)e^{-n^2\pi^2t}. \)

\[(P_t\varphi)(x) := \int_0^1 p_t(x, y)\varphi(y) \, dy = \sum_{n=1}^{\infty} e_n(x)(\varphi, e_n) \exp(-n^2\pi^2t) \]
solves our heat equation.

- \(\{P_t\}_{t \geq 0} \) is a semigroup: \(P_{t+s} = P_tP_s = P_sP_t \) \(\forall s, t \geq 0 \), provided that we define \(P_0\varphi := \varphi. \)

 \[\iff (P_{t+s}\varphi)(x) = [P_t(P_s\varphi)](x). \]
The Heat Equation

\[e_n(x) = \sqrt{2} \sin(n\pi x) \]

- Define the heat kernel, \(p_t(x, y) := \sum_{n=1}^{\infty} e_n(x)e_n(y)e^{-n^2\pi^2 t} \).
- \((P_t\varphi)(x) := \int_{0}^{1} p_t(x, y)\varphi(y)\,dy = \sum_{n=1}^{\infty} e_n(x)(\varphi, e_n)\exp(-n^2\pi^2 t) \)
solves our heat equation.
- \(\{P_t\}_{t\geq 0} \) is a semigroup: \(P_{t+s} = P_tP_s = P_sP_t \forall s, t \geq 0 \), provided that we define \(P_0\varphi := \varphi \).
 \[\iff (P_{t+s}\varphi)(x) = [P_t(P_s\varphi)](x) \]
- \(\{P_t\}_{t\geq 0} \) is known as the heat semigroup.
The Heat Equation

\(e_n(x) = \sqrt{2} \sin(n\pi x) \)

- Define the **heat kernel**, \(p_t(x, y) := \sum_{n=1}^{\infty} e_n(x)e_n(y)e^{-n^2\pi^2 t}. \)
- \(\langle P_t \varphi \rangle(x) := \int_0^1 p_t(x, y)\varphi(y) \, dy = \sum_{n=1}^{\infty} e_n(x)(\varphi, e_n) \exp(-n^2\pi^2 t) \) solves our heat equation.
- \(\{P_t\}_{t \geq 0} \) is a semigroup: \(P_{t+s} = P_t P_s = P_s P_t \) \(\forall s, t \geq 0 \), provided that we define \(P_0 \varphi := \varphi. \) \(\iff \langle P_{t+s} \varphi \rangle(x) = \langle P_t (P_s \varphi) \rangle(x). \)
- \(\{P_t\}_{t \geq 0} \) is known as the **heat semigroup**.
- \(p_t(x,y) := \) the transition probability that Brownian motion goes from \(x \) to \(y \) in \(t \) units of time before hitting \(\{0,1\} \).
The Heat Equation

\[e_n(x) = \sqrt{2} \sin(n \pi x) \]

- Define the heat kernel, \(p_t(x, y) := \sum_{n=1}^{\infty} e_n(x)e_n(y)e^{-n^2 \pi^2 t} \).

- \((P_t \varphi)(x) := \int_0^1 p_t(x, y)\varphi(y) \, dy = \sum_{n=1}^{\infty} e_n(x)(\varphi, e_n) \exp(-n^2 \pi^2 t) \) solves our heat equation.

- \(\{P_t\}_{t \geq 0} \) is a semigroup: \(P_{t+s} = P_t P_s = P_s P_t \ \forall \ s, t \geq 0 \), provided that we define \(P_0 \varphi := \varphi \). \[\iff (P_{t+s} \varphi)(x) = [P_t(P_s \varphi)](x) \].

- \(\{P_t\}_{t \geq 0} \) is known as the heat semigroup.

- \(p_t(x, y) := \) the transition probability that Brownian motion goes from \(x \) to \(y \) in \(t \) units of time before hitting \(\{0, 1\} \).

- Therefore, \(\forall x \in [0, 1] \) and \(t \geq 0 \),

\[(P_t \varphi)(x) = E_x [\varphi(W(t)); T > t], \]

where

\[T := \inf \{t > 0 : W(t) \notin [0, 1]\} \quad \text{[} \inf \emptyset := \infty \text{].} \]
White Noise on \([0, 1]\)

- Let \(X_1, X_2, \ldots\) be i.i.d. \(N(0, 1)\)s

Lemma

\[W'_{N} (\phi) = \sum_{N}^{\infty} N \sum_{n=1}^{N} X_n (\phi e_n) \] is linear.

Proof.

Since \(\|\phi\|_{L^2(0,1)}^2 = \sum_{n=1}^{\infty} (\phi e_n)^2\),

\[
E (|W'_N (\phi) - W'_N (\phi + M\phi)|^2) = N + M \sum_{n=N+1}^{\infty} (\phi e_n)^2 \to 0 \quad \text{as} \quad N, M \to \infty.
\]

\[W' (\phi) := \lim_{N \to \infty} W'_N (\phi) = \sum_{n=1}^{\infty} X_n (\phi e_n). \]
White Noise on \([0, 1]\)

- Let \(X_1, X_2, \ldots\) be i.i.d. \(N(0, 1)\)s
- Define \(\forall \phi \in L^2[0, 1] \text{ and } N \geq 1, W'_N(\phi) := \sum_{n=1}^{N} X_n(\phi, e_n)\).
White Noise on $[0, 1]$

- Let X_1, X_2, \ldots be i.i.d. $N(0, 1)$s
- Define $\forall \varphi \in L^2[0, 1]$ and $N \geq 1$, $W'_N(\varphi) := \sum_{n=1}^{N} X_n(\varphi, e_n)$.
- $\varphi \mapsto W'_N(\varphi)$ is linear.
White Noise on $[0, 1]$

- Let X_1, X_2, \ldots be i.i.d. $N(0, 1)$s
- Define $\forall \varphi \in L^2[0, 1]$ and $N \geq 1$, $W'_N(\varphi) := \sum_{n=1}^{N} X_n(\varphi, e_n)$.
- $\varphi \mapsto W'_N(\varphi)$ is linear.

Lemma

$\{W'_N(\varphi)\}_{N=1}^{\infty}$ is a Cauchy sequence in $L^2(\Omega)$.
White Noise on \([0, 1]\)

- Let \(X_1, X_2, \ldots\) be i.i.d. \(N(0, 1)\)s
- Define \(\forall \varphi \in L^2[0, 1]\) and \(N \geq 1\), \(W'_N(\varphi) := \sum_{n=1}^{N} X_n(\varphi, e_n)\).
- \(\varphi \mapsto W'_N(\varphi)\) is linear.

Lemma

\(\{W'_N(\varphi)\}_{N=1}^\infty\) is a Cauchy sequence in \(L^2(\Omega)\).

Proof.

Since \(\|\varphi\|_{L^2[0,1]}^2 = \sum_{n=1}^{\infty} (\varphi, e_n)^2\),

\[
E \left(\left| W'_N(\varphi) - W'_{N+M}(\varphi) \right|^2 \right) = \sum_{n=N+1}^{N+M} (\varphi, e_n)^2 \to 0,
\]
as \(N, M \to \infty\).
White Noise on $[0, 1]$

- Let X_1, X_2, \ldots be i.i.d. $N(0, 1)$s
- Define $\forall \varphi \in L^2[0, 1]$ and $N \geq 1$, $W'_N(\varphi) := \sum_{n=1}^{N} X_n(\varphi, e_n)$.
- $\varphi \mapsto W'_N(\varphi)$ is linear.

Lemma

$\{W'_N(\varphi)\}_{N=1}^{\infty}$ is a Cauchy sequence in $L^2(\Omega)$.

Proof.

Since $\|\varphi\|_{L^2[0,1]}^2 = \sum_{n=1}^{\infty} (\varphi, e_n)^2$,

$$
E \left(\left| W'_N(\varphi) - W'_{N+M}(\varphi) \right|^2 \right) = \sum_{n=N+1}^{N+M} (\varphi, e_n)^2 \to 0,
$$
as $N, M \to \infty$.

- $W'(\varphi) := \lim_{N \to \infty} W'_N(\varphi) = \sum_{n=1}^{\infty} X_n(\varphi, e_n)$.

D. Khoshnevisan (U. Utah) Intro to SPDEs LPS XI, Delhi 6 / 16
White Noise on $[0, 1]$

$W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n)$

Definition

$W' := \{W'(\varphi)\}_{\varphi \in L^2[0,1]}$ is called **white noise**.
White Noise on $[0,1]$

$W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n)$

Definition

$W' := \{W'(\varphi)\}_{\varphi \in L^2[0,1]}$ is called white noise.

Proposition

W' is a centered Gaussian random field with $E[W'(\varphi) W'(\psi)] = \langle \psi \rangle$ for all $\psi \in L^2[0,1]$.
White Noise on $[0, 1]$

$W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n)$

Definition

$W' := \{W'(\varphi)\}_{\varphi \in L^2[0,1]}$ is called **white noise**.

Proposition

- $\varphi \mapsto W'(\varphi)$ is linear.
White Noise on $[0, 1]$

\[W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n) \]

Definition

\[W' := \{W'(\varphi)\}_{\varphi \in L^2[0,1]} \] is called **white noise**.

Proposition

- $\varphi \mapsto W'(\varphi)$ is linear.
- W' is a centered Gaussian random field with

\[
E \left[W'(\varphi)W'(\psi) \right] = (\varphi, \psi) \quad \forall \varphi, \psi \in L^2[0,1].
\]
White Noise on $[0,1]$

$W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n)$

Definition

$W' := \{W'(\varphi)\}_{\varphi \in L^2[0,1]}$ is called **white noise**.

Proposition

- $\varphi \mapsto W'(\varphi)$ is linear.
- W' is a centered Gaussian random field with

\[
E[W'(\varphi) W'(\psi)] = (\varphi, \psi) \quad \forall \varphi, \psi \in L^2[0,1].
\]

Proof.

$E[W'(\varphi) W'(\psi)] = \sum_{n=1}^{\infty} (\varphi, e_n) (\psi, e_n)$.

D. Khoshnevisan (U. Utah) Intro to SPDEs LPS XI, Delhi 7 / 16
White Noise on $[0, 1]$

$W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n)$

- $\forall x \in [0, 1] : W(x) := W'(1_{[0, x]})$
White Noise on $[0, 1]$

$W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n)$

- $\forall x \in [0, 1]: W(x) := W'(1_{[0,x]}) = \sum_{n=1}^{\infty} X_n(1_{[0,x]}, e_n)$
White Noise on $[0, 1]$

$W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n)$

- $\forall x \in [0, 1]: W(x) := W'(1_{[0,x]}) = \sum_{n=1}^{\infty} X_n(1_{[0,x]}, e_n)$

 $= \sum_{n=1}^{\infty} X_n \int_{0}^{x} e_n(y) \, dy$
White Noise on $[0, 1]$

$W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n)$

- $\forall x \in [0, 1]: W(x) := W'(\mathbb{1}_{[0,x]}) = \sum_{n=1}^{\infty} X_n(\mathbb{1}_{[0,x]}, e_n) = \sum_{n=1}^{\infty} X_n \int_0^x e_n(y) \, dy$
- $E[W(x)W(y)] = (\mathbb{1}_{[0,x]}, \mathbb{1}_{[0,y]}) = \min(x, y)$; i.e., $W = \text{Brownian motion on } [0, 1]$.

Informally, $W'(x) = \sum_{n=1}^{\infty} X_n e_n(x)$ and $E[W'(x)W'(y)] = \delta_0(x - y)$.

D. Khoshnevisan (U. Utah)
Intro to SPDEs
LPS XI, Delhi
White Noise on $[0, 1]$

$W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n)$

- $\forall x \in [0, 1]: W(x) := W'(\mathbb{1}_{[0,x]}) = \sum_{n=1}^{\infty} X_n(\mathbb{1}_{[0,x]}, e_n)$

 $= \sum_{n=1}^{\infty} X_n \int_0^x e_n(y) \, dy$

- $E[W(x)W(y)] = (\mathbb{1}_{[0,x]}, \mathbb{1}_{[0,y]}) = \min(x, y)$; i.e., $W =$ Brownian motion on $[0, 1]$.

- Also, $\forall \varphi : [0, 1] \rightarrow \mathbb{R}$ smooth,
White Noise on $[0, 1]$

$W' (\varphi) := \sum_{n=1}^{\infty} X_n (\varphi, e_n)$

- $\forall x \in [0, 1] : W(x) := W' (1_{[0,x]}) = \sum_{n=1}^{\infty} X_n (1_{[0,x]}, e_n)$
 $= \sum_{n=1}^{\infty} X_n \int_{0}^{x} e_n (y) dy$

- $E[W(x)W(y)] = (1_{[0,x]}, 1_{[0,y]}) = \min(x, y)$; i.e., $W = \text{Brownian motion on } [0, 1]$.

- Also, $\forall \varphi : [0, 1] \to \mathbb{R}$ smooth,

 $- \langle W, \varphi' \rangle = -\sum_{n=1}^{\infty} X_n \int_{0}^{1} \varphi'(x) \int_{0}^{x} e_n (y) dy \, dx$
White Noise on \([0,1]\)

\[W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n) \]

- \(\forall x \in [0,1]: W(x) := W'(\mathbb{1}_{[0,x]}) = \sum_{n=1}^{\infty} X_n(\mathbb{1}_{[0,x]}, e_n)\)
 \[= \sum_{n=1}^{\infty} X_n \int_0^x e_n(y) \, dy\]
- \(E[W(x)W(y)] = (\mathbb{1}_{[0,x]}, \mathbb{1}_{[0,y]}) = \min(x,y)\); i.e., \(W\) = Brownian motion on \([0,1]\).

- Also, \(\forall \varphi : [0,1] \to \mathbb{R}\) smooth,

\[- (W, \varphi') = - \sum_{n=1}^{\infty} X_n \int_0^1 \varphi'(x) \int_0^x e_n(y) \, dy \, dx\]

\[= \sum_{n=1}^{\infty} X_n \int_0^1 \varphi(x)e_n(x) \, dx\]
White Noise on $[0, 1]$

$W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n)$

- $\forall x \in [0, 1]: W(x) := W'(\mathbb{1}_{[0,x]}) = \sum_{n=1}^{\infty} X_n(\mathbb{1}_{[0,x]}, e_n)$
 $= \sum_{n=1}^{\infty} X_n \int_{0}^{x} e_n(y) \, dy$

- $\mathbb{E}[W(x)W(y)] = (\mathbb{1}_{[0,x]}, \mathbb{1}_{[0,y]}) = \min(x, y)$; i.e., W = Brownian motion on $[0, 1]$.

- Also, $\forall \varphi : [0, 1] \to \mathbb{R}$ smooth,

 $$- (W, \varphi') = - \sum_{n=1}^{\infty} X_n \int_{0}^{1} \varphi'(x) \int_{0}^{x} e_n(y) \, dy \, dx$$

 $$= \sum_{n=1}^{\infty} X_n \int_{0}^{1} \varphi(x) e_n(x) \, dx = \sum_{n=1}^{\infty} X_n(\varphi, e_n)$$

W' is the distributional derivative of W.
White Noise on $[0, 1]$

$W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n)$

- $\forall x \in [0, 1]: W(x) := W'(1_{[0,x]}) = \sum_{n=1}^{\infty} X_n(1_{[0,x]}, e_n)$
 $= \sum_{n=1}^{\infty} X_n \int_0^x e_n(y) \, dy$

- $E[W(x)W(y)] = (1_{[0,x]}, 1_{[0,y]}) = \min(x, y)$; i.e., $W = \text{Brownian motion on } [0, 1]$.

- Also, $\forall \varphi : [0, 1] \to \mathbb{R}$ smooth,

$$-\langle W, \varphi' \rangle = -\sum_{n=1}^{\infty} X_n \int_0^1 \varphi'(x) \int_0^x e_n(y) \, dy \, dx$$

$$= \sum_{n=1}^{\infty} X_n \int_0^1 \varphi(x)e_n(x) \, dx = \sum_{n=1}^{\infty} X_n(\varphi, e_n) = W'(\varphi).$$
White Noise on $[0, 1]$

$W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n)$

- $\forall x \in [0, 1]: \ W(x) := W'(\mathbb{1}_{[0,x]}) = \sum_{n=1}^{\infty} X_n(\mathbb{1}_{[0,x]}, e_n) = \sum_{n=1}^{\infty} X_n \int_0^x e_n(y) \, dy$

- $E[W(x)W(y)] = (\mathbb{1}_{[0,x]}, \mathbb{1}_{[0,y]}) = \min(x, y)$; i.e., $W = \text{Brownian motion on } [0, 1]$.

- Also, $\forall \varphi : [0, 1] \to \mathbb{R}$ smooth,

\[
- \langle W, \varphi' \rangle = - \sum_{n=1}^{\infty} X_n \int_0^1 \varphi'(x) \int_0^x e_n(y) \, dy \, dx
\]

\[
= \sum_{n=1}^{\infty} X_n \int_0^1 \varphi(x) e_n(x) \, dx
\]

$= \sum_{n=1}^{\infty} X_n(\varphi, e_n) = W'(\varphi)$.

\Rightarrow W' is the distributional derivative of W.

D. Khoshnevisan (U. Utah)
Intro to SPDEs
LPS XI, Delhi
8 / 16
White Noise on $[0, 1]$

$W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n)$

- $\forall x \in [0, 1] : W(x) := W'(1_{[0,x]}) = \sum_{n=1}^{\infty} X_n(1_{[0,x]}, e_n) = \sum_{n=1}^{\infty} X_n \int_{0}^{x} e_n(y) dy$

- $\mathbb{E}[W(x)W(y)] = (1_{[0,x]}, 1_{[0,y]}) = \min(x, y)$; i.e., W = Brownian motion on $[0, 1]$.

Also, $\forall \varphi : [0, 1] \to \mathbb{R}$ smooth,

$$- \langle W, \varphi' \rangle = -\sum_{n=1}^{\infty} X_n \int_{0}^{1} \varphi'(x) \int_{0}^{x} e_n(y) dy dx$$

$$= \sum_{n=1}^{\infty} X_n \int_{0}^{1} \varphi(x)e_n(x) dx = \sum_{n=1}^{\infty} X_n(\varphi, e_n) = W'(\varphi).$$

$\Rightarrow W'$ is the distributional derivative of W.

$W'(\varphi) := \int_{0}^{1} \varphi dW := \int_{0}^{1} \varphi(x)W'(x) dx$. [Wiener integral]
White Noise on $[0, 1]$

$W'(\varphi) := \sum_{n=1}^{\infty} X_n(\varphi, e_n)$

- $\forall x \in [0, 1]: W(x) := W'(\mathbb{1}_{[0,x]}) = \sum_{n=1}^{\infty} X_n(\mathbb{1}_{[0,x]}, e_n) = \sum_{n=1}^{\infty} X_n \int_0^x e_n(y) \, dy$

- $E[W(x)W(y)] = (\mathbb{1}_{[0,x]}, \mathbb{1}_{[0,y]}) = \min(x, y)$; i.e., $W = \text{Brownian motion on } [0, 1]$.

- Also, $\forall \varphi : [0, 1] \to \mathbb{R}$ smooth,

$$-\langle W, \varphi' \rangle = -\sum_{n=1}^{\infty} X_n \int_0^1 \varphi'(x) \int_0^x e_n(y) \, dy \, dx = \sum_{n=1}^{\infty} X_n \int_0^1 \varphi(x)e_n(x) \, dx = \sum_{n=1}^{\infty} X_n(\varphi, e_n) = W'(\varphi).$$

$\Rightarrow W'$ is the distributional derivative of W.

$W'(\varphi) := \int_0^1 \varphi \, dW := \int_0^1 \varphi(x)W'(x) \, dx$. [Wiener integral]

Informally, $W'(x) = \sum_{n=1}^{\infty} X_n e_n(x)$ & $E[W'(x)W'(y)] = \delta_0(x - y)$.
White Noise on \([0, 1]\)

- Pointwise, we should scale \(W(x + \varepsilon) - W(x)\) by \(\sqrt{\varepsilon}\); that is,

\[
\frac{W(x + \varepsilon) - W(x)}{\sqrt{\varepsilon}} \overset{(d)}{=} W(1).
\]

Weakly, we should scale \(W(x + \varepsilon) - W(x)\) by \(\varepsilon\); that is, for all \(\phi\) smooth on \([0, 1]\) that vanish on the boundary, and all \(\varepsilon > 0\) small,

\[
\int_0^1 \phi(x) \cdot W(x + \varepsilon) - W(x) \varepsilon \, dx = \int_0^1 \phi(x) - \phi(x - \varepsilon) \varepsilon W(x) \, dx.
\]

\(a.s.\) \(\rightarrow jmn\) \(\phi'\) as \(\varepsilon \downarrow 0 = W' = \int_0^1 \phi \, dW\).
White Noise on \([0, 1]\)

- Pointwise, we should scale \(W(x + \varepsilon) - W(x)\) by \(\sqrt{\varepsilon}\); that is,

\[
\frac{W(x + \varepsilon) - W(x)}{\sqrt{\varepsilon}} \overset{(d)}{=} W(1).
\]

- Weakly, we should scale \(W(x + \varepsilon) - W(x)\) by \(\varepsilon\); that is, for all smooth \(\varphi\) on \([0, 1]\) that vanish on the boundary, and all \(\varepsilon > 0\) small,

\[
\int_{0}^{1} \varphi(x) \cdot \frac{W(x + \varepsilon) - W(x)}{\varepsilon} \, dx = - \int_{0}^{1} \frac{\varphi(x) - \varphi(x - \varepsilon)}{\varepsilon} W(x) \, dx.
\]
White Noise on [0, 1]

- **Pointwise**, we should scale $W(x + \varepsilon) - W(x)$ by $\sqrt{\varepsilon}$; that is,

$$
\frac{W(x + \varepsilon) - W(x)}{\sqrt{\varepsilon}} \overset{(d)}{=} W(1).
$$

- **Weakly**, we should scale $W(x + \varepsilon) - W(x)$ by ε; that is, for all smooth ϕ on [0, 1] that vanish on the boundary, and all $\varepsilon > 0$ small,

$$
\int_0^1 \phi(x) \cdot \frac{W(x + \varepsilon) - W(x)}{\varepsilon} \, dx = -\int_0^1 \frac{\phi(x) - \phi(x - \varepsilon)}{\varepsilon} W(x) \, dx
\overset{a.s.}{\longrightarrow} - (\phi', W) \quad \text{as } \varepsilon \downarrow 0
$$
White Noise on \([0, 1]\)

- Pointwise, we should scale \(W(x + \varepsilon) - W(x)\) by \(\sqrt{\varepsilon}\); that is,
 \[
 \frac{W(x + \varepsilon) - W(x)}{\sqrt{\varepsilon}} \overset{(d)}{=} W(1).
 \]

- Weakly, we should scale \(W(x + \varepsilon) - W(x)\) by \(\varepsilon\); that is, for all smooth \(\varphi\) on \([0, 1]\) that vanish on the boundary, and all \(\varepsilon > 0\) small,
 \[
 \int_0^1 \varphi(x) \cdot \frac{W(x + \varepsilon) - W(x)}{\varepsilon} \, dx = -\int_0^1 \frac{\varphi(x) - \varphi(x - \varepsilon)}{\varepsilon} W(x) \, dx
 \]
 \[\xrightarrow{\text{a.s.}} - (\varphi', W) \quad \text{as } \varepsilon \downarrow 0\]
 \[= W'(\varphi) = \int_0^1 \varphi \, dW.\]
The Itô Integral

- $\dot{W}(\varphi) = \int_0^1 \varphi \, dW$ has been defined for all $\varphi \in L^2[0,1]$ — this is the Wiener integral.
The Itô Integral

- \(\dot{W}(\varphi) = \int_0^1 \varphi \, dW \) has been defined for all \(\varphi \in L^2[0,1] \) — this is the Wiener integral.
- Also \(\int_0^x \varphi \, dW := \int_0^1 \varphi \mathbb{1}_{[0,x]} \, dW \) for \(0 \leq x \leq 1 \).
The Itô Integral

- $\dot{W}(\varphi) = \int_0^1 \varphi \, dW$ has been defined for all $\varphi \in L^2[0,1]$ — this is the Wiener integral.
- Also $\int_0^x \varphi \, dW := \int_0^1 \varphi \mathbb{1}_{[0,x]} \, dW$ for $0 \leq x \leq 1$.
- There exists a generalization that covers some random φ — this is the Itô integral, which we next recall quickly.
The Itô Integral

- \(\dot{W}(\varphi) = \int_0^1 \varphi \, dW \) has been defined for all \(\varphi \in L^2[0,1] \) — this is the Wiener integral.
- Also \(\int_0^x \varphi \, dW := \int_0^1 \varphi \mathbb{1}_{[0,x]} \, dW \) for \(0 \leq x \leq 1 \).
- There exists a generalization that covers some random \(\varphi \) — this is the Itô integral, which we next recall quickly.
- Let \(\mathcal{F}_x \supseteq \sigma \{ W(y); \ y \leq x \} \) [completed and augmented].

Simple functions

\[\Phi(x) := \sum_{n=1}^N \Phi_n(x) \] for \(\Phi_n \in L^2(\Omega/\mathcal{F}_a/P) \):

- \(\dot{W}(\Phi) := \sum_{n=1}^N \dot{W}(\Phi_n) \) (Elementary functions)

Fact: This definition is coherent.

\[E[\dot{W}(\Phi) \dot{W}(\Psi)] = E[(\Phi \Psi)] \] (Itô isometry).
The Itô Integral

- \(\dot{W}(\varphi) = \int_0^1 \varphi \, dW \) has been defined for all \(\varphi \in L^2[0, 1] \) — this is the Wiener integral.
- Also \(\int_0^x \varphi \, dW := \int_0^1 \varphi \mathbb{1}_{[0,x]} \, dW \) for \(0 \leq x \leq 1 \).
- There exists a generalization that covers some random \(\varphi \) — this is the Itô integral, which we next recall quickly.
- Let \(\mathcal{F}_x \supseteq \sigma\{W(y); \ y \leq x\} \) [completed and augmented].
- (Simple functions) \(\Phi(x) := X \mathbb{1}_{[a,b]}(x) \) for \(X \in L^2(\Omega, \mathcal{F}_a, \mathbb{P}) \):
 \[
 \dot{W}(\Phi) := \int \Phi \, dW := X \left[W(b) - W(a) \right]
 \]
The Itô Integral

- $\dot{W}(\varphi) = \int_0^1 \varphi \, dW$ has been defined for all $\varphi \in L^2[0, 1]$ — this is the Wiener integral.
- Also $\int_0^x \varphi \, dW := \int_0^1 \varphi 1_{[0,x]} \, dW$ for $0 \leq x \leq 1$.
- There exists a generalization that covers some random φ — this is the Itô integral, which we next recall quickly.
- Let $\mathcal{F}_x \supseteq \sigma\{W(y); y \leq x\}$ [completed and augmented].
- (Simple functions) $\Phi(x) := X 1_{[a,b]}(x)$ for $X \in L^2(\Omega, \mathcal{F}_a, P)$:

$$\dot{W}(\Phi) := \int \Phi \, dW := X \left[W(b) - W(a) \right]$$

- (Elementary functions) $\Phi = \sum_{n=1}^N \Phi_n$ where Φ_1, \ldots, Φ_N are simple functions with disjoint support: $\dot{W}(\Phi) := \sum_{n=1}^N \dot{W}(\Phi_n)$.

Fact: This definition is coherent.

$E[\dot{W}(\Phi) \dot{W}(\Psi)] = E[\Phi \Psi]$ [Itô isometry].
The Itô Integral

- $\dot{W}(\varphi) = \int_0^1 \varphi \, dW$ has been defined for all $\varphi \in L^2[0,1]$ — this is the Wiener integral.
- Also $\int_0^x \varphi \, dW := \int_0^1 \varphi \mathbb{1}_{[0,x]} \, dW$ for $0 \leq x \leq 1$.
- There exists a generalization that covers some random φ — this is the Itô integral, which we next recall quickly.
- Let $\mathcal{F}_x \supseteq \sigma\{W(y); \, y \leq x\}$ [completed and augmented].
- (Simple functions) $\Phi(x) := X \mathbb{1}_{[a,b]}(x)$ for $X \in L^2(\Omega, \mathcal{F}_a, \mathbb{P})$:

$$\dot{W}(\Phi) := \int \Phi \, dW := X \left[W(b) - W(a) \right]$$

- (Elementary functions) $\Phi = \sum_{n=1}^N \Phi_n$ where Φ_1, \ldots, Φ_N are simple functions with disjoint support: $\dot{W}(\Phi) := \sum_{n=1}^N \dot{W}(\Phi_n)$.
- Fact: This definition is coherent.
The Itô Integral

- \(\dot{W}(\varphi) = \int_0^1 \varphi \, dW \) has been defined for all \(\varphi \in L^2[0,1] \) — this is the Wiener integral.
- Also \(\int_0^x \varphi \, dW := \int_0^1 \varphi \mathbb{1}_{[0,x]} \, dW \) for \(0 \leq x \leq 1 \).
- There exists a generalization that covers some random \(\varphi \) — this is the Itô integral, which we next recall quickly.
- Let \(\mathcal{F}_x \supseteq \sigma \{ W(y); y \leq x \} \) [completed and augmented].
- (Simple functions) \(\Phi(x) := X \mathbb{1}_{[a,b]}(x) \) for \(X \in L^2(\Omega, \mathcal{F}_a, P) \):
 \[
 \dot{W}(\Phi) := \int \Phi \, dW := X \left[W(b) - W(a) \right]
 \]
- (Elementary functions) \(\Phi = \sum_{n=1}^N \Phi_n \) where \(\Phi_1, \ldots, \Phi_N \) are simple functions with disjoint support: \(\dot{W}(\Phi) := \sum_{n=1}^N \dot{W}(\Phi_n) \).
- Fact: This definition is coherent.
- \(E \left[\dot{W}(\Phi) \dot{W}(\Psi) \right] = E[(\Phi, \Psi)] \) [Itô isometry].
The Itô Integral

- Equivalently,

\[E(\|\dot{W}(\Phi) - \dot{W}(\Psi)\|^2) = E(\|\Phi - \Psi\|_{L^2[0,1]}^2) = \|\Phi - \Psi\|_{L^2(\Omega \times [0,1])}^2. \]
The Itô Integral

- Equivalently,

\[E(\|\dot{W}(\Phi) - \dot{W}(\Psi)\|^2) = E(\|\Phi - \Psi\|_{L^2[0,1]}^2) = \|\Phi - \Psi\|_{L^2(\Omega \times [0,1])}^2. \]

- Let \(\mathcal{E} \) denote the collection of all \textit{elementary functions} endowed with inner product \(\langle \Phi, \Psi \rangle := E[\langle \Phi, \Psi \rangle] \).
The Itô Integral

- Equivalently,
 \[E(|\dot{W}(\Phi) - \dot{W}(\Psi)|^2) = E(\| \Phi - \Psi \|^2_{L^2[0,1]}) = \| \Phi - \Psi \|^2_{L^2(\Omega \times [0,1])}. \]

- Let \(\mathcal{E} \) denote the collection of all \textit{elementary functions} endowed with inner product \(\langle \Phi, \Psi \rangle := E[(\Phi, \Psi)] \).

- \(\dot{W} \) is a linear isometry from \(\mathcal{E} \) to \(L^2(\Omega \times [0,1]) \).
The Itô Integral

- Equivalently,
 \[E(|\dot{W}(\Phi) - \dot{W}(\Psi)|^2) = E(\|\Phi - \Psi\|_{L^2[0,1]}^2) = \|\Phi - \Psi\|_{L^2(\Omega \times [0,1])}^2. \]

- Let \(\mathcal{E} \) denote the collection of all *elementary functions* endowed with inner product \(\langle \Phi, \Psi \rangle := E[\langle \Phi, \Psi \rangle] \).
- \(\dot{W} \) is a linear isometry from \(\mathcal{E} \) to \(L^2(\Omega \times [0,1]) \).
- Let \(\mathcal{P} \) denote the completion of \(\mathcal{E} \) in the norm of \(L^2(\Omega \times [0,1]) \).
The Itô Integral

- Equivalently,

\[
E(|\dot{W}(\Phi) - \dot{W}(\Psi)|^2) = E(\|\Phi - \Psi\|_{L^2[0,1]}^2) = \|\Phi - \Psi\|^2_{L^2(\Omega \times [0,1])}.
\]

- Let \(\mathcal{E} \) denote the collection of all \emph{Elementary functions} endowed with inner product \(\langle \Phi, \Psi \rangle := E[(\Phi, \Psi)] \).
- \(\dot{W} \) is a linear isometry from \(\mathcal{E} \) to \(L^2(\Omega \times [0,1]) \).
- Let \(\mathcal{P} \) denote the completion of \(\mathcal{E} \) in the norm of \(L^2(\Omega \times [0,1]) \).
- \(\dot{W} \) continuously extends to a linear isometry from the collection \(\mathcal{P} \) of all \emph{Predictable processes} to \(L^2(\Omega \times [0,1]) \).
The Itô Integral

- Equivalently,
 \[E(|\dot{W}(\Phi) - \dot{W}(\Psi)|^2) = E(\|\Phi - \Psi\|_{L^2[0,1]}^2) = \|\Phi - \Psi\|_{L^2(\Omega \times [0,1])}^2. \]

- Let \(\mathcal{E} \) denote the collection of all \textit{elementary functions} endowed with inner product \(\langle \Phi, \Psi \rangle := E(\Phi, \Psi). \)

- \(\dot{W} \) is a linear isometry from \(\mathcal{E} \) to \(L^2(\Omega \times [0,1]). \)

- Let \(\mathcal{P} \) denote the completion of \(\mathcal{E} \) in the norm of \(L^2(\Omega \times [0,1]). \)

- \(\dot{W} \) continuously extends to a linear isometry from the collection \(\mathcal{P} \) of all \textit{predictable processes} to \(L^2(\Omega \times [0,1]). \)

\textbf{Theorem (Itô, Meyer, …)}

\textit{If} \(\Phi \) \textit{is} \(\mathcal{F} \)-\textit{adapted and càdlàg and} \(\|\Phi\|_{L^2(\Omega \times [0,1])}^2 = E(\|\Phi\|_{L^2[0,1]}^2) < \infty, \)
\textit{then} \(\Phi \in \mathcal{P}. \)
The Itô Integral

- Equivalently,
 \[E(|\dot{W}(\Phi) - \dot{W}(\Psi)|^2) = E(\|\Phi - \Psi\|^2_{L^2[0,1]}) = \|\Phi - \Psi\|^2_{L^2(\Omega \times [0,1])}. \]

- Let \(\mathcal{E} \) denote the collection of all \textit{elementary functions} endowed with inner product \(\langle \Phi, \Psi \rangle := E(\langle \Phi, \Psi \rangle) \).
- \(\dot{W} \) is a linear isometry from \(\mathcal{E} \) to \(L^2(\Omega \times [0,1]) \).
- Let \(\mathcal{P} \) denote the completion of \(\mathcal{E} \) in the norm of \(L^2(\Omega \times [0,1]) \).
- \(\dot{W} \) continuously extends to a linear isometry from the collection \(\mathcal{P} \) of all \textit{predictable processes} to \(L^2(\Omega \times [0,1]) \).

Theorem (Itô, Meyer, ...)

\(\text{If } \Phi \text{ is } \mathcal{F} \text{-adapted and càdlàg and } \|\Phi\|^2_{L^2(\Omega \times [0,1])} = E(\|\Phi\|^2_{L^2[0,1]}) < \infty, \text{ then } \Phi \in \mathcal{P}. \)

- \(\forall \Phi \in \mathcal{P} : \quad \dot{W}(\Phi) = \int_0^1 \Phi \, dW = \int_0^1 \Phi(x) W'(x) \, dx \) [Itô’s integral].
The Itô Integral

- Equivalently,

\[
E(|\dot{W}(\Phi) - \dot{W}(\Psi)|^2) = E(\|\Phi - \Psi\|_{L^2[0,1]}^2) = \|\Phi - \Psi\|_{L^2(\Omega \times [0,1])}^2.
\]

- Let \(E \) denote the collection of all \textit{elementary functions} endowed with inner product \(\langle \Phi, \Psi \rangle := E((\Phi, \Psi)). \)

- \(\dot{W} \) is a linear isometry from \(E \) to \(L^2(\Omega \times [0,1]) \).

- Let \(P \) denote the completion of \(E \) in the norm of \(L^2(\Omega \times [0,1]) \).

- \(\dot{W} \) continuously extends to a linear isometry from the collection \(P \) of all \textit{predictable processes} to \(L^2(\Omega \times [0,1]) \).

Theorem (Itô, Meyer, ...)

If \(\Phi \) is \(\mathcal{F} \)-adapted and càdlàg and \(\|\Phi\|_{L^2(\Omega \times [0,1])}^2 = E(\|\Phi\|_{L^2[0,1]}^2) < \infty \), then \(\Phi \in P \).

- \(\forall \Phi \in P : \quad \dot{W}(\Phi) = \int_0^1 \Phi \, dW = \int_0^1 \Phi(x) W'(x) \, dx \) [Itô’s integral].

- \(\int_0^x \Phi \, dW := \int_0^1 \Phi 1_{[0,x]} \, dW \) for all \(0 \leq x \leq 1 \).
The Itô Integral

Theorem (Itô, Meyer, …)

If $\Phi \in \mathcal{P}$, then $M(x) := \int_0^x \Phi \, dW$ ($0 \leq x \leq 1$) defines a continuous L^2-martingale with quadratic variation,

$$\langle M \rangle(x) = \int_0^x |\Phi(y)|^2 \, dy \quad (0 \leq x \leq 1).$$
The Itô Integral

Theorem (Itô, Meyer, ...)

If \(\Phi \in \mathcal{P} \), then \(M(x) := \int_0^x \Phi \, dW \) \((0 \leq x \leq 1)\) defines a continuous \(L^2 \)-martingale with quadratic variation,

\[
\langle M \rangle(x) = \int_0^x |\Phi(y)|^2 \, dy \quad (0 \leq x \leq 1).
\]

- We have ensured by default that if \(\Phi \in \mathcal{P} \), then \(\mathbb{E}(\|\Phi\|_{L^2[0,1]}^2) < \infty \).
The Itô Integral

Theorem (Itô, Meyer, ...)

If $\Phi \in \mathcal{P}$, then $M(x) := \int_0^x \Phi \, dW$ ($0 \leq x \leq 1$) defines a continuous L^2-martingale with quadratic variation,

$$\langle M \rangle(x) = \int_0^x |\Phi(y)|^2 \, dy \quad (0 \leq x \leq 1).$$

- We have ensured by default that if $\Phi \in \mathcal{P}$, then $E(\|\Phi\|^2_{L^2[0,1]}) < \infty$.
- Being an element of \mathcal{P} requires more than the above integrability.
The Itô Integral

Theorem (Itô, Meyer, ...)

If $\Phi \in \mathcal{P}$, then $M(x) := \int_0^x \Phi \, dW$ ($0 \leq x \leq 1$) defines a continuous L^2-martingale with quadratic variation,

$$\langle M \rangle(x) = \int_0^x |\Phi(y)|^2 \, dy \quad (0 \leq x \leq 1).$$

- We have ensured by default that if $\Phi \in \mathcal{P}$, then $E(\|\Phi\|^2_{L^2[0,1]}) < \infty$.
- Being an element of \mathcal{P} requires more than the above integrability.
- This notion of predictability is slightly non-standard.
Space-Time White Noise

- Let X_1, X_2, \ldots be i.i.d. Brownian motions on \mathbb{R}_+
Space-Time White Noise

- Let X_1, X_2, \ldots be i.i.d. Brownian motions on \mathbb{R}_+
- Define $\forall t > 0$ and $x \in [0, 1]$,

$$W(t, x) := \sum_{n=1}^{\infty} X_n(t) (1_{[0,x]} e_n).$$
Space-Time White Noise

- Let X_1, X_2, \ldots be i.i.d. Brownian motions on \mathbb{R}_+
- Define $\forall t > 0$ and $x \in [0, 1]$,

$$ W(t, x) := \sum_{n=1}^{\infty} X_n(t) (\mathbb{1}_{[0,x], e_n}). $$

- $W := \{W(t, x)\}_{t \geq 0, x \in [0,1]}$ is a mean-zero Gaussian process with

$$ \mathbb{E}[W(t, x)W(s, y)] = \min(s, t) \min(x, y). $$
Space-Time White Noise

- Let X_1, X_2, \ldots be i.i.d. Brownian motions on \mathbb{R}_+
- Define $\forall t > 0$ and $x \in [0, 1],

$$W(t, x) := \sum_{n=1}^{\infty} X_n(t)(\mathbb{1}_{[0,x]}, e_n).$$

- $W := \{W(t, x)\}_{t \geq 0, x \in [0,1]}$ is a mean-zero Gaussian process with

$$\mathbb{E}[W(t, x)W(s, y)] = \min(s, t)\min(x, y).$$

- W is continuous a.s.
Space-Time White Noise

- Let X_1, X_2, \ldots be i.i.d. Brownian motions on \mathbb{R}_+
- Define $\forall t > 0$ and $x \in [0, 1],$

 $$W(t, x) := \sum_{n=1}^{\infty} X_n(t)(\mathbb{I}_{[0, x]} \cdot e_n).$$

- $W := \{W(t, x)\}_{t \geq 0, x \in [0, 1]}$ is a mean-zero Gaussian process with

 $$\mathbb{E}[W(t, x)W(s, y)] = \min(s, t) \min(x, y).$$

- W is continuous a.s.
- $W :=$ **space-time Brownian sheet.**
Let X_1, X_2, \ldots be i.i.d. Brownian motions on \mathbb{R}_+

Define $\forall t > 0$ and $x \in [0, 1]$,

$$W(t, x) := \sum_{n=1}^{\infty} X_n(t)(\mathbb{1}_{[0,x]} , e_n).$$

$W := \{W(t, x)\}_{t \geq 0, x \in [0,1]}$ is a mean-zero Gaussian process with

$$E[W(t, x)W(s, y)] = \min(s, t)\min(x, y).$$

W is continuous a.s.

$W := \text{space-time Brownian sheet}.$

Wish to define space-time white noise \dot{W} as the weak mixed derivative $\partial_t \partial_x W$ of W.

Space-Time White Noise

$W(t, x) = \sum_{n=1}^{\infty} X_n(t)(\mathbb{1}_{[0,x]}, e_n)$.

- If $\varphi \in L^2(\mathbb{R}_+ \times [0, 1])$ then $\varphi(t, x) = \sum_{n=1}^{\infty} (\varphi(t), e_n)e_n(x)$.
Space-Time White Noise

\[W(t, x) = \sum_{n=1}^{\infty} X_n(t)(\mathbb{1}_{[0,x]}, e_n). \]

- If \(\varphi \in L^2(\mathbb{R}_+ \times [0, 1]) \) then \(\varphi(t, x) = \sum_{n=1}^{\infty} (\varphi(t), e_n) e_n(x). \)
- Define \(\dot{W}(\varphi) := \int_{\mathbb{R}_+ \times [0,1]} \varphi \, dW := \sum_{n=1}^{\infty} \int_{0}^{\infty} (\varphi(t), e_n) \, dX_n(t). \)
Space-Time White Noise

\[W(t, x) = \sum_{n=1}^{\infty} X_n(t)(\mathbf{1}_{[0,x]}, e_n). \]

- If \(\varphi \in L^2(\mathbb{R}_+ \times [0, 1]) \) then \(\varphi(t, x) = \sum_{n=1}^{\infty} (\varphi(t), e_n)e_n(x). \)
- Define \(\dot{W}(\varphi) := \int_{\mathbb{R}_+ \times [0,1]} \varphi \, dW := \sum_{n=1}^{\infty} \int_0^{\infty} (\varphi(t), e_n) \, dX_n(t). \)

Proposition

- Informally, \(\dot{W}(t, x) = \sum_{n=1}^{\infty} \dot{X}_n(t)e_n(x) \) and \(\mathbb{E}[\dot{W}(t, x) \, \dot{W}(s, y)] = \delta_0(t-s)\delta_0(x-y). \)
Space-Time White Noise

\[W(t, x) = \sum_{n=1}^{\infty} X_n(t)(\mathbb{1}_{[0,x]}, e_n). \]

- If \(\varphi \in L^2(\mathbb{R}_+ \times [0,1]) \) then \(\varphi(t, x) = \sum_{n=1}^{\infty} (\varphi(t), e_n)e_n(x). \)
- Define \(\dot{W}(\varphi) := \int_{\mathbb{R}_+ \times [0,1]} \varphi \, dW := \sum_{n=1}^{\infty} \int_0^\infty (\varphi(t), e_n) \, dX_n(t). \)

Proposition

- \(\varphi \mapsto \dot{W}(\varphi) \) is linear.
Space-Time White Noise

\[W(t, x) = \sum_{n=1}^{\infty} X_n(t) (\mathbb{1}_{[0,x]} , e_n). \]

- If \(\varphi \in L^2(\mathbb{R}_+ \times [0,1]) \) then \(\varphi(t, x) = \sum_{n=1}^{\infty} (\varphi(t), e_n) e_n(x). \)
- Define \(\dot{W}(\varphi) := \int_{\mathbb{R}_+ \times [0,1]} \varphi \, dW := \sum_{n=1}^{\infty} \int_0^{\infty} (\varphi(t), e_n) \, dX_n(t). \)

Proposition

- \(\varphi \mapsto \dot{W}(\varphi) \) is linear.
- \(\dot{W} \) is a centered Gaussian random field with

\[
E \left[\dot{W}(\varphi) \dot{W}(\psi) \right] = (\varphi, \psi) \quad \forall \varphi, \psi \in L^2(\mathbb{R}_+ \times [0,1]).
\]
Space-Time White Noise

\[W(t, x) = \sum_{n=1}^{\infty} X_n(t) (1_{[0, x]} , e_n). \]

- If \(\varphi \in L^2(\mathbb{R}_+ \times [0, 1]) \) then \(\varphi(t, x) = \sum_{n=1}^{\infty} (\varphi(t), e_n)e_n(x) \).
- Define \(\hat{W}(\varphi) := \int_{\mathbb{R}_+ \times [0,1]} \varphi \ dW := \sum_{n=1}^{\infty} \int_0^{\infty} (\varphi(t), e_n) dX_n(t) \).

Proposition

- \(\varphi \mapsto \hat{W}(\varphi) \) is linear.
- \(\hat{W} \) is a centered Gaussian random field with

\[E\left[\hat{W}(\varphi)\hat{W}(\psi) \right] = (\varphi, \psi) \quad \forall \varphi, \psi \in L^2(\mathbb{R}_+ \times [0, 1]). \]

- We probably should – but will not – write \(\hat{W}' \) in place of \(\hat{W} \).
Space-Time White Noise

\[W(t, x) = \sum_{n=1}^{\infty} X_n(t)(1_{[0,x]}, e_n). \]

- If \(\varphi \in L^2(\mathbb{R}_+ \times [0, 1]) \) then \(\varphi(t, x) = \sum_{n=1}^{\infty} (\varphi(t), e_n)e_n(x). \)
- Define \(\dot{W}(\varphi) := \int_{\mathbb{R}_+ \times [0,1]} \varphi \, dW := \sum_{n=1}^{\infty} \int_0^{\infty} (\varphi(t), e_n) \, dX_n(t). \)

Proposition

- \(\varphi \mapsto \dot{W}(\varphi) \) is linear.
- \(\dot{W} \) is a centered Gaussian random field with

\[
E \left[\dot{W}(\varphi)\dot{W}(\psi) \right] = (\varphi, \psi) \quad \forall \varphi, \psi \in L^2(\mathbb{R}_+ \times [0, 1]).
\]

- We probably should – but will not – write \(\dot{W}' \) in place of \(\dot{W} \).
- Also sometimes write \(\dot{W}(\varphi) = \int_{\mathbb{R}_+ \times [0,1]} \varphi(t, x)\dot{W}(t, x) \, dt \, dx. \)
Space-Time White Noise

\[W(t, x) = \sum_{n=1}^{\infty} X_n(t) (\mathbb{1}_{[0,x]} , e_n). \]

- If \(\varphi \in L^2(\mathbb{R}_+ \times [0, 1]) \) then \(\varphi(t, x) = \sum_{n=1}^{\infty} \langle \varphi(t), e_n \rangle e_n(x). \)
- Define \(\dot{W}(\varphi) := \int_{\mathbb{R}_+ \times [0,1]} \varphi \ dW := \sum_{n=1}^{\infty} \int_0^{\infty} \langle \varphi(t), e_n \rangle dX_n(t). \)

Proposition

- \(\varphi \mapsto \dot{W}(\varphi) \) is linear.
- \(\dot{W} \) is a centered Gaussian random field with

\[
E \left[\dot{W}(\varphi) \dot{W}(\psi) \right] = \langle \varphi, \psi \rangle \quad \forall \varphi, \psi \in L^2(\mathbb{R}_+ \times [0, 1]).
\]

- We probably should – but will not – write \(\dot{W}' \) in place of \(\dot{W} \).
- Also sometimes write \(\dot{W}(\varphi) = \int_{\mathbb{R}_+ \times [0,1]} \varphi(t, x) \dot{W}(t, x) \ dt \ dx. \)
- Informally, \(\dot{W}(t, x) = \sum_{n=1}^{\infty} \dot{X}_n(t) e_n(x) \) and

\[
E[\dot{W}(t, x) \dot{W}(s, y)] = \delta_0(t - s) \delta_0(x - y).
\]
The Walsh Integral

\[\dot{W}(\varphi) = \sum_{n=1}^{\infty} \int_{0}^{\infty} (\varphi(t), e_n) dX_n(t) \]

- \(\dot{W}(\varphi) \) is the **Wiener integral** of \(\varphi \in L^2(\mathbb{R}_+ \times [0,1]) \).
The Walsh Integral

\[\dot{W}(\varphi) = \sum_{n=1}^{\infty} \int_{0}^{\infty} (\varphi(t), e_n) \, dX_n(t) \]

- \(\dot{W}(\varphi) \) is the **Wiener integral** of \(\varphi \in L^2(\mathbb{R}_+ \times [0,1]) \).
- There is an analogue of Itô integral \([\text{Walsh integral}]\).
The Walsh Integral

\[\dot{W}(\varphi) = \sum_{n=1}^{\infty} \int_0^{\infty} (\varphi(t), e_n) \, dX_n(t) \]

- \(\dot{W}(\varphi) \) is the **Wiener integral** of \(\varphi \in L^2(\mathbb{R}_+ \times [0, 1]) \).
- There is an analogue of Itô integral [Walsh integral].
- Let \(\Phi = \{ \Phi(t, x); t \geq 0, x \in [0, 1] \} \) be a **predictable random field**; i.e., a space-time random field such that:
The Walsh Integral

\[\dot{W}(\varphi) = \sum_{n=1}^{\infty} \int_{0}^{\infty} (\varphi(t), e_n) \, dX_n(t) \]

- \(\dot{W}(\varphi) \) is the **Wiener integral** of \(\varphi \in L^2(\mathbb{R}_+ \times [0,1]) \).
- There is an analogue of Itô integral \([\text{Walsh integral}]\).
- Let \(\Phi = \{\Phi(t,x); t \geq 0, x \in [0,1]\} \) be a **predictable random field**; i.e., a space-time random field such that:
 - \(\Phi(t) \in L^2[0,1] \) for almost every \(t \geq 0 \);
The Walsh Integral

\[\dot{W}(\varphi) = \sum_{n=1}^{\infty} \int_{0}^{\infty} (\varphi(t), e_n) \, dX_n(t) \]

- \(\dot{W}(\varphi) \) is the \textit{Wiener integral} of \(\varphi \in L^2(\mathbb{R}_+ \times [0,1]) \).
- There is an analogue of Itô integral \[\text{[Walsh integral]} \]
- Let \(\Phi = \{ \Phi(t,x); t \geq 0, x \in [0,1] \} \) be a \underline{predictable random field}; i.e., a space-time random field such that:
 - \(\Phi(t) \in L^2[0,1] \) for almost every \(t \geq 0 \);
 - \(E \sum_{n=1}^{\infty} \int_{0}^{\infty} (\Phi(t), e_n)^2 \, dt < \infty \);
The Walsh Integral

\[\dot{W}(\varphi) = \sum_{n=1}^{\infty} \int_0^{\infty} (\varphi(t), e_n) \, dX_n(t) \]

- \(\dot{W}(\varphi) \) is the **Wiener integral** of \(\varphi \in L^2(\mathbb{R}_+ \times [0, 1]) \).
- There is an analogue of Itô integral \([\text{Walsh integral}]\).
- Let \(\Phi = \{\Phi(t, x); t \geq 0, x \in [0, 1]\} \) be a **predictable random field**; i.e., a space-time random field such that:
 - \(\Phi(t) \in L^2[0, 1] \) for almost every \(t \geq 0 \);
 - \(E \sum_{n=1}^{\infty} \int_0^{\infty} (\Phi(t), e_n)^2 \, dt < \infty \);
 - \((\Phi(t), e_n) \) is predictable with respect to the \(\sigma \)-algebras generated by \(X_1, X_2, \ldots \).
The Walsh Integral

\[\dot{W}(\varphi) = \sum_{n=1}^{\infty} \int_{0}^{\infty} (\varphi(t), e_n) \, dX_n(t) \]

- \(\dot{W}(\varphi) \) is the **Wiener integral** of \(\varphi \in L^2(\mathbb{R}_+ \times [0, 1]) \).
- There is an analogue of Itô integral \([\text{Walsh integral}]\).
- Let \(\Phi = \{ \Phi(t, x); t \geq 0, x \in [0, 1] \} \) be a **predictable random field**; i.e., a space-time random field such that:
 - \(\Phi(t) \in L^2[0, 1] \) for almost every \(t \geq 0 \);
 - \(E \sum_{n=1}^{\infty} \int_{0}^{\infty} (\Phi(t), e_n)^2 \, dt < \infty \);
 - \((\Phi(t), e_n) \) is predictable with respect to the \(\sigma \)-algebras generated by \(X_1, X_2, \ldots \).
- Define \(\dot{W}(\Phi) := \sum_{n=1}^{\infty} \int_{0}^{\infty} (\Phi(t), e_n) \, dX_n(t) \).
The Walsh Integral

\[\dot{W}(\varphi) = \sum_{n=1}^{\infty} \int_{0}^{\infty} (\varphi(t), e_n) \, dX_n(t) \]

- \(\dot{W}(\varphi) \) is the Wiener integral of \(\varphi \in L^2(\mathbb{R}_+ \times [0, 1]) \).
- There is an analogue of Itô integral \([\text{Walsh integral}]\).
- Let \(\Phi = \{ \Phi(t, x); \ t \geq 0, x \in [0, 1] \} \) be a predictable random field; i.e., a space-time random field such that:
 - \(\Phi(t) \in L^2[0, 1] \) for almost every \(t \geq 0 \);
 - \(E \sum_{n=1}^{\infty} \int_{0}^{\infty} (\varphi(t), e_n)^2 \, dt < \infty \);
 - \((\Phi(t), e_n)\) is predictable with respect to the \(\sigma \)-algebras generated by \(X_1, X_2, \ldots \).

Define \(\dot{W}(\Phi) := \sum_{n=1}^{\infty} \int_{0}^{\infty} (\Phi(t), e_n) \, dX_n(t) \).

\[\dot{W}(\Phi) = \int_{\mathbb{R}_+ \times [0,1]} \Phi \, dW = \int_{\mathbb{R}_+ \times [0,1]} \Phi(t, x) \dot{W}(t, x) \, dt \, dx. \]
The Walsh Integral

\[\dot{W}(\varphi) = \sum_{n=1}^{\infty} \int_{0}^{\infty} (\varphi(t), e_n) \, dX_n(t) \]

- \(\dot{W}(\varphi) \) is the **Wiener integral** of \(\varphi \in L^2(\mathbb{R}_+ \times [0, 1]) \).
- There is an analogue of Itô integral \([\text{Walsh integral}]\).
- Let \(\Phi = \{\Phi(t, x); t \geq 0, x \in [0, 1]\} \) be a **predictable random field**; i.e., a space-time random field such that:
 - \(\Phi(t) \in L^2[0, 1] \) for almost every \(t \geq 0 \);
 - \(\mathbb{E} \sum_{n=1}^{\infty} \int_{0}^{\infty} (\Phi(t), e_n)^2 \, dt < \infty \);
 - \((\Phi(t), e_n) \) is predictable with respect to the \(\sigma \)-algebras generated by \(X_1, X_2, \ldots \).

- Define \(\dot{W}(\Phi) := \sum_{n=1}^{\infty} \int_{0}^{\infty} (\Phi(t), e_n) \, dX_n(t) \).
- \(\dot{W}(\Phi) = \int_{\mathbb{R}_+ \times [0, 1]} \Phi \, dW = \int_{\mathbb{R}_+ \times [0, 1]} \Phi(t, x) \dot{W}(t, x) \, dt \, dx \).
- \(\int_{F} \Phi \, dW := \int_{\mathbb{R}_+ \times [0, 1]} \Phi 1_F \, dW \) for all Borel sets \(F \subset \mathbb{R}_+ \times [0, 1] \).
\[\dot{W}(\Phi) = \sum_{n=1}^{\infty} \int_{0}^{\infty} (\Phi(t), e_n) dX_n(t) \]

Theorem (Pardoux, Krylov–Rozovskiǐ, Walsh, …)

For every predictable random field \(\Phi = \{\Phi(t, x); t \geq 0, x \in [0, 1]\} \),

\[M(t) := \int_{[0,t] \times [0,1]} \Phi \, dW \quad (t \geq 0) \]

is a centered continuous \(L^2 \)-martingale with quadratic variation,

\[\langle M \rangle(t) = \int_{0}^{t} ds \int_{0}^{1} dy \ |\Phi(s, y)\|^2 = \int_{0}^{t} \|\Phi(s)\|_{L^2[0,1]}^2 \, ds. \]