Lévy Processes and Stochastic Partial Differential Equations

Davar Khoshnevisan with M. Foondun and E. Nualart

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

Lévy Processes: Theory and Applications August 13–17, 2007 Copenhagen, Denmark

$$\partial_t u(t,x) = (\Delta_x u)(t,x) + \dot{W}(t,x) \quad \forall t \in \mathbb{Q}, x \in \mathbb{R}^d.$$

▶ The stochastic heat equation:

$$\partial_t u(t,x) = (\Delta_x u)(t,x) + \dot{W}(t,x) \quad \forall t \in \mathbb{Q}, x \in \mathbb{R}^d.$$

Question: Why ∃ function solutions only when d = 1? (Walsh, Dalang–Frangos, Dalang, Pesat–Zabczyk)

▶ The stochastic heat equation:

$$\partial_t u(t,x) = (\Delta_x u)(t,x) + \dot{W}(t,x) \quad \forall t \in \mathbb{Q}, x \in \mathbb{R}^d.$$

Question: Why ∃ function solutions only when d = 1? (Walsh, Dalang–Frangos, Dalang, Pesat–Zabczyk)

$$\partial_t u(t,x) = (\Delta_x u)(t,x) + \dot{W}(t,x) \quad \forall t \in \mathbb{Q}, x \in \mathbb{R}^d.$$

- Question: Why ∃ function solutions only when d = 1? (Walsh, Dalang–Frangos, Dalang, Pesat–Zabczyk)
- ▶ Answer: BM has local times only in d = 1.

$$\partial_t u(t,x) = (\Delta_x u)(t,x) + \dot{W}(t,x) \quad \forall t \in \mathbb{Q}, x \in \mathbb{R}^d.$$

- Question: Why ∃ function solutions only when d = 1? (Walsh, Dalang–Frangos, Dalang, Pesat–Zabczyk)
- ▶ Answer: BM has local times only in d = 1.

$$\partial_t u(t,x) = (\Delta_x u)(t,x) + \dot{W}(t,x) \quad \forall t \in \mathbb{Q}, x \in \mathbb{R}^d.$$

- Question: Why ∃ function solutions only when d = 1? (Walsh, Dalang–Frangos, Dalang, Pesat–Zabczyk)
- ▶ Answer: BM has local times only in d = 1. In fact, \exists function solutions in dimension $2 - \alpha$ for all $\alpha \in (0, 2]$.

Weakly interacting system of stochastic wave equations:

$$\begin{bmatrix} \partial_{tt}u_i(t,x) = (\partial_{xx}u_i)(t,x) + \sum_{j=1}^d Q_{ij} \dot{W}_j(t,x) & \forall x \in \mathbf{R}, t \geq 0, \\ u_i(0,x) = \partial_t u_i(0,x) = 0, \end{bmatrix}$$

 $\dot{W}_1, \dots, \dot{W}_d := \text{i.i.d.}$ white noises; $Q = (Q_{ij})_{i,i=1}^d$ invert.

Weakly interacting system of stochastic wave equations:

$$\begin{bmatrix} \partial_{tt} u_i(t,x) = (\partial_{xx} u_i)(t,x) + \sum_{j=1}^d Q_{ij} \dot{\mathbf{W}}_j(t,x) & \forall x \in \mathbf{R}, \ t \ge 0, \\ u_i(0,x) = \partial_t u_i(0,x) = 0, \end{bmatrix}$$

 $\dot{W}_1, \dots, \dot{W}_d := \text{i.i.d.}$ white noises; $Q = (Q_{ij})_{i,i=1}^d$ invert.

▶ Question: When is u(t,x) = 0 for some t > 0 and $x \in \mathbb{R}$?

Weakly interacting system of stochastic wave equations:

$$\begin{bmatrix} \partial_{tt}u_i(t,x) = (\partial_{xx}u_i)(t,x) + \sum_{j=1}^d Q_{ij} \dot{W}_j(t,x) & \forall x \in \mathbf{R}, t \geq 0, \\ u_i(0,x) = \partial_t u_i(0,x) = 0, \end{bmatrix}$$

 $\dot{W}_1, \dots, \dot{W}_d := \text{i.i.d.}$ white noises; $Q = (Q_{ij})_{i,i=1}^d$ invert.

- ▶ Question: When is u(t,x) = 0 for some t > 0 and $x \in \mathbb{R}$?
- ► Answer: Iff d < 4. (Orey-Pruitt, K, Dalang-Nualart; closely-related: LeGall)

 $ightarrow \dot{W} := \{\dot{W}(t,x)\}_{t \geq 0, x \in \mathbf{R}^d}$ space-time white noise:

- $\dot{W}:=\{\dot{W}(t,x)\}_{t\geq 0,x\in\mathbf{R}^d}$ space-time white noise:
 - $\{\dot{W}(A)\}_{A \in \mathscr{B}(\mathbf{R}_+ \times \mathbf{R}^d)} := a \text{ centered gaussian process.}$

- $\dot{W} := \{\dot{W}(t,x)\}_{t \ge 0, x \in \mathbb{R}^d}$ space-time white noise:
 - $\{\dot{W}(A)\}_{A \in \mathscr{B}(\mathbf{R}_+ \times \mathbf{R}^d)} := a$ centered gaussian process.
 - $\quad \mathsf{Cov}(\dot{W}(A),\dot{W}(B)) = |A \cap B| \quad \forall A,B \subset \mathbf{R}_+ \times \mathbf{R}^d.$

- $\dot{W} := \{\dot{W}(t,x)\}_{t \ge 0, x \in \mathbf{R}^d}$ space-time white noise:
 - $\{\dot{W}(A)\}_{A \in \mathscr{B}(\mathbf{R}_+ \times \mathbf{R}^d)} := \text{a centered gaussian process.}$
 - $\quad \mathsf{Cov}(\dot{W}(A),\dot{W}(B)) = |A \cap B| \quad \forall A,B \subset \mathbf{R}_+ \times \mathbf{R}^d.$
 - Identification via Wiener integrals:

$$\int \phi d\dot{\mathbf{W}} \simeq \int_0^\infty \int_{\mathbf{R}^d} \phi(t, \mathbf{x}) \dot{\mathbf{W}}(t, \mathbf{x}) \, d\mathbf{x} \, dt.$$

- $\dot{W} := \{\dot{W}(t,x)\}_{t \ge 0, x \in \mathbb{R}^d}$ space-time white noise:
 - $\{\dot{W}(A)\}_{A \in \mathscr{B}(\mathbf{R}_{\perp} \times \mathbf{R}^d)} := \text{a centered gaussian process.}$
 - $\mathsf{Cov}(\dot{W}(A),\dot{W}(B)) = |A \cap B| \quad \forall A,B \subset \mathbf{R}_+ \times \mathbf{R}^d.$
 - Identification via Wiener integrals:

$$\int \phi d \dot{\mathbf{W}} \simeq \int_0^\infty \int_{\mathbf{R}^d} \phi(t, x) \dot{\mathbf{W}}(t, x) \, dx \, dt.$$

► The stochastic heat equation: \exists (?)u := u(t, x) [$t \ge 0, x \in \mathbb{R}^d$]:

$$\partial_t u(t,x) = (\Delta_x u)(t,x) + \dot{W}(t,x).$$

- $\dot{\mathbf{W}} := \{\dot{\mathbf{W}}(t, \mathbf{x})\}_{t \geq 0, \mathbf{x} \in \mathbf{R}^d}$ space-time white noise:
 - $\{\dot{W}(A)\}_{A \in \mathscr{B}(\mathbf{R}_{\perp} \times \mathbf{R}^d)} := \text{a centered gaussian process.}$
 - $\quad \mathsf{Cov}(\dot{W}(A),\dot{W}(B)) = |A \cap B| \quad \forall A,B \subset \mathbf{R}_+ \times \mathbf{R}^d.$
 - Identification via Wiener integrals:

$$\int \phi d\dot{\mathbf{W}} \simeq \int_0^\infty \int_{\mathbf{R}^d} \phi(t, \mathbf{x}) \dot{\mathbf{W}}(t, \mathbf{x}) \, d\mathbf{x} \, dt.$$

► The stochastic heat equation: \exists (?)u := u(t, x) [$t \ge 0, x \in \mathbb{R}^d$]:

$$\partial_t u(t,x) = (\Delta_x u)(t,x) + \dot{W}(t,x).$$

▶ Fact 1: Function-valued solution \exists iff d = 1.

- $\dot{W} := \{\dot{W}(t,x)\}_{t \ge 0, x \in \mathbf{R}^d}$ space-time white noise:
 - $\{\dot{W}(A)\}_{A \in \mathscr{B}(\mathbf{R}_+ \times \mathbf{R}^d)} := a \text{ centered gaussian process.}$
 - $\quad \mathsf{Cov}(\dot{W}(A),\dot{W}(B)) = |A \cap B| \quad \forall A,B \subset \mathbf{R}_+ \times \mathbf{R}^d.$
 - Identification via Wiener integrals:

$$\int \phi d\dot{\mathbf{W}} \simeq \int_0^\infty \int_{\mathbf{R}^d} \phi(t, \mathbf{x}) \dot{\mathbf{W}}(t, \mathbf{x}) \, d\mathbf{x} \, dt.$$

► The stochastic heat equation: \exists (?)u := u(t, x) [$t \ge 0, x \in \mathbb{R}^d$]:

$$\partial_t u(t,x) = (\Delta_x u)(t,x) + \dot{W}(t,x).$$

- ▶ Fact 1: Function-valued solution \exists iff d = 1.
- Rough explanation: Δ_x smooths; \dot{W} makes rough.

- ► Consider $\partial_t u(t,x) = (\Delta_x u)(t,x) + f(t,x)$ [f nice]

- ► Consider $\partial_t u(t,x) = (\Delta_x u)(t,x) + f(t,x)$ [f nice]
- ▶ Let

$$Q_t(y) := \frac{1}{(4\pi t)^{d/2}} \exp\left(-\frac{\|y\|^2}{4t}\right).$$

- ► Consider $\partial_t u(t,x) = (\Delta_x u)(t,x) + f(t,x)$ [f nice]
- ▶ Let

$$Q_t(y) := \frac{1}{(4\pi t)^{d/2}} \exp\left(-\frac{\|y\|^2}{4t}\right).$$

► Solution:

$$u(t,x) = \int_0^t \int_{\mathbb{R}^d} Q_{t-s}(x-y) f(s,y) \, dy \, ds.$$

- ► Consider $\partial_t u(t,x) = (\Delta_x u)(t,x) + f(t,x)$ [f nice]
- ▶ Let

$$Q_t(y) := \frac{1}{(4\pi t)^{d/2}} \exp\left(-\frac{\|y\|^2}{4t}\right).$$

▶ Solution:

$$u(t,x) = \int_0^t \int_{\mathbf{R}^d} Q_{t-s}(x-y) f(s,y) \, dy \, ds.$$

▶ Apply to " $f := \dot{W}$." [Mild solution; Walsh, 1986]

- ► Mild solution: If ∃, then

$$u(t,x) = \int_0^t \int_{\mathbf{R}^d} Q_{t-s}(x-y) \dot{\mathbf{W}}(dy ds).$$

- ► Mild solution: If ∃, then

$$u(t,x) = \int_0^t \int_{\mathbf{R}^d} Q_{t-s}(x-y) \dot{\mathbf{W}}(dy ds).$$

▶ Weak solution: A family $u(t, \varphi)$, for nicely tempered φ :

$$u(t,\varphi) := \int_0^t \int_{\mathbf{R}^d} (Q_{t-s} * \varphi)(y) \dot{\mathbf{W}}(dy ds).$$

"
$$u(t,\varphi) = \int_{\mathbf{R}^d} u(t,x)\varphi(x) dx$$
."

- ▶ Mild solution: If ∃, then

$$u(t,x)=\int_0^t\int_{\mathbf{R}^d}\mathsf{Q}_{t-s}(x-y)\dot{\mathcal{W}}(dy\,ds).$$

▶ Weak solution: A family $u(t, \varphi)$, for nicely tempered φ :

$$u(t,\varphi) := \int_0^t \int_{\mathbf{R}^d} (\mathsf{Q}_{t-s} * \varphi)(y) \dot{\mathbf{W}}(dy ds).$$

"
$$u(t,\varphi) = \int_{\mathbf{R}^d} u(t,x)\varphi(x) dx$$
."

• $\varphi \mapsto u(t,\varphi)$ is a linear gaussian distribution [Itô; Menshov].

- ▶ Mild solution: If ∃, then

$$u(t,x)=\int_0^t\int_{\mathbf{R}^d}\mathsf{Q}_{t-s}(x-y)\dot{\mathcal{W}}(dy\,ds).$$

▶ Weak solution: A family $u(t, \varphi)$, for nicely tempered φ :

$$u(t,\varphi) := \int_0^t \int_{\mathbf{R}^d} (\mathbf{Q}_{t-s} * \varphi)(y) \dot{\mathbf{W}}(dy ds).$$

"
$$u(t,\varphi) = \int_{\mathbf{R}^d} u(t,x)\varphi(x) dx$$
."

- $\varphi \mapsto u(t, \varphi)$ is a linear gaussian distribution [Itô; Menshov].
- ▶ Need:

$$\mathsf{E}\left(\left|u(t,\varphi)\right|^2\right) = \int_0^t \int_{\mathsf{R}^d} \left|(\mathsf{Q}_{t-s} * \varphi)(y)\right|^2 dy \, ds < \infty.$$

$$\int_0^t \int_{\mathbf{R}^d} \left| (\mathbf{Q}_{t-s} * \varphi)(y) \right|^2 dy ds$$

$$\int_0^t \int_{\mathbf{R}^d} \left| (Q_{t-s} * \varphi)(y) \right|^2 dy ds$$

$$\int_0^t \int_{\mathbf{R}^d} \left| (\mathsf{Q}_{t-s} * \varphi)(y) \right|^2 dy \, ds$$

$$= \frac{1}{(2\pi)^d} \int_0^t \int_{\mathbf{R}^d} e^{-2\|\xi\|^2 (t-s)} \left| \hat{\varphi}(\xi) \right|^2 \, d\xi \, ds$$

$$\begin{split} & \int_0^t \int_{\mathbf{R}^d} \left| (Q_{t-s} * \varphi)(y) \right|^2 dy \, ds \\ & = \frac{1}{(2\pi)^d} \int_0^t \int_{\mathbf{R}^d} e^{-2\|\xi\|^2 (t-s)} \left| \hat{\varphi}(\xi) \right|^2 \, d\xi \, ds \\ & = \frac{1}{(2\pi)^d} \int_{\mathbf{R}^d} \left| \hat{\varphi}(\xi) \right|^2 \frac{1 - e^{-2t\|\xi\|^2}}{2\|\xi\|^2} \, d\xi. \end{split}$$

Plancherel's theorem:

$$\begin{split} & \int_0^t \int_{\mathbf{R}^d} \left| (Q_{t-s} * \varphi)(y) \right|^2 dy \, ds \\ & = \frac{1}{(2\pi)^d} \int_0^t \int_{\mathbf{R}^d} e^{-2\|\xi\|^2 (t-s)} \left| \hat{\varphi}(\xi) \right|^2 \, d\xi \, ds \\ & = \frac{1}{(2\pi)^d} \int_{\mathbf{R}^d} \left| \hat{\varphi}(\xi) \right|^2 \frac{1 - e^{-2t\|\xi\|^2}}{2\|\xi\|^2} \, d\xi. \end{split}$$

▶ ∴ weak solution \exists iff $\varphi \in H_{-2}(\mathbf{R}^d)$. In fact,

$$\mathsf{E}\left(\left|u(t,\varphi)\right|^2\right) \asymp t \int_{\mathsf{R}^d} \frac{\left|\hat{\varphi}(\xi)\right|^2}{1+t^2\|\xi\|^2} \, d\xi.$$

Plancherel's theorem:

$$\begin{split} & \int_0^t \int_{\mathbf{R}^d} \left| (Q_{t-s} * \varphi)(y) \right|^2 dy \, ds \\ & = \frac{1}{(2\pi)^d} \int_0^t \int_{\mathbf{R}^d} e^{-2\|\xi\|^2 (t-s)} \left| \hat{\varphi}(\xi) \right|^2 \, d\xi \, ds \\ & = \frac{1}{(2\pi)^d} \int_{\mathbf{R}^d} \left| \hat{\varphi}(\xi) \right|^2 \frac{1 - e^{-2t\|\xi\|^2}}{2\|\xi\|^2} \, d\xi. \end{split}$$

▶ ∴ weak solution \exists iff $\varphi \in H_{-2}(\mathbf{R}^d)$. In fact,

$$\mathsf{E}\left(\left|u(t,\varphi)\right|^2\right) \asymp t \int_{\mathbf{R}^d} \frac{\left|\hat{\varphi}(\xi)\right|^2}{1+t^2\|\xi\|^2} \, d\xi.$$

▶ ∴ mild solution \exists iff $\delta_x \in H_{-2}(\mathbb{R}^d) \forall x \in \mathbb{R}^d$

Plancherel's theorem:

$$\begin{split} & \int_0^t \int_{\mathbf{R}^d} \left| (Q_{t-s} * \varphi)(y) \right|^2 dy \, ds \\ & = \frac{1}{(2\pi)^d} \int_0^t \int_{\mathbf{R}^d} e^{-2\|\xi\|^2 (t-s)} \left| \hat{\varphi}(\xi) \right|^2 \, d\xi \, ds \\ & = \frac{1}{(2\pi)^d} \int_{\mathbf{R}^d} \left| \hat{\varphi}(\xi) \right|^2 \frac{1 - e^{-2t\|\xi\|^2}}{2\|\xi\|^2} \, d\xi. \end{split}$$

▶ ∴ weak solution \exists iff $\varphi \in H_{-2}(\mathbf{R}^d)$. In fact,

$$\mathsf{E}\left(\left|u(t,\varphi)\right|^2\right) \asymp t \int_{\mathbf{R}^d} \frac{\left|\hat{\varphi}(\xi)\right|^2}{1+t^2\|\xi\|^2} \, d\xi.$$

▶ ∴ mild solution \exists iff $\delta_x \in H_{-2}(\mathbb{R}^d) \forall x \in \mathbb{R}^d$

Plancherel's theorem:

$$\begin{split} & \int_0^t \int_{\mathbf{R}^d} \left| (\mathbf{Q}_{t-s} * \varphi)(y) \right|^2 dy \, ds \\ & = \frac{1}{(2\pi)^d} \int_0^t \int_{\mathbf{R}^d} e^{-2\|\xi\|^2 (t-s)} \left| \hat{\varphi}(\xi) \right|^2 \, d\xi \, ds \\ & = \frac{1}{(2\pi)^d} \int_{\mathbf{R}^d} \left| \hat{\varphi}(\xi) \right|^2 \frac{1 - e^{-2t\|\xi\|^2}}{2\|\xi\|^2} \, d\xi. \end{split}$$

▶ ∴ weak solution \exists iff $\varphi \in H_{-2}(\mathbf{R}^d)$. In fact,

$$\mathsf{E}\left(\left|u(t,\varphi)\right|^2\right) \asymp t \int_{\mathbf{R}^d} \frac{\left|\hat{\varphi}(\xi)\right|^2}{1+t^2\|\xi\|^2} \, d\xi.$$

▶ ∴ mild solution \exists iff $\delta_x \in H_{-2}(\mathbb{R}^d) \ \forall x \in \mathbb{R}^d \Leftrightarrow d = 1$. ■

An explanation

▶ (Dalang–Frangos) Replace $\dot{W}(t,x)$ by $\dot{F}(t,x)$, where \dot{F} is a centered gaussian noise with $\text{Cov}(\int \phi \, d\dot{F}, \int \psi \, d\dot{F}) =$

$$\iint \phi(t,x) \underbrace{(s \wedge t)\kappa(\|x-y\|)}_{\Sigma(s,t,\|x-y\|)} \psi(s,y) dt dx ds dy.$$

An explanation

▶ (Dalang–Frangos) Replace $\dot{W}(t,x)$ by $\dot{F}(t,x)$, where \dot{F} is a centered gaussian noise with $\text{Cov}(\int \phi \, d\dot{F}, \int \psi \, d\dot{F}) =$

$$\iint \phi(t,x) \underbrace{(s \wedge t)\kappa(\|x-y\|)}_{\Sigma(s,t,\|x-y\|)} \psi(s,y) dt dx ds dy.$$

▶ (Dalang–Frangos, Pesat–Zabczyk, Dalang) There can \exists solutions for d > 1, depending on κ [NASC].

An explanation

▶ (Dalang–Frangos) Replace $\dot{W}(t,x)$ by $\dot{F}(t,x)$, where \dot{F} is a centered gaussian noise with $\text{Cov}(\int \phi \, d\dot{F}, \int \psi \, d\dot{F}) =$

$$\iint \phi(t,x) \underbrace{(s \wedge t)\kappa(\|x-y\|)}_{\Sigma(s,t,\|x-y\|)} \psi(s,y) dt dx ds dy.$$

- ▶ (Dalang–Frangos, Pesat–Zabczyk, Dalang) There can \exists solutions for d > 1, depending on κ [NASC].
- Explains the roughening effect of white noise. [analytic]

An explanation

▶ (Dalang–Frangos) Replace $\dot{W}(t,x)$ by $\dot{F}(t,x)$, where \dot{F} is a centered gaussian noise with $\text{Cov}(\int \phi \, d\dot{F}$, $\int \psi \, d\dot{F}) =$

$$\iint \phi(t,x) \underbrace{(s \wedge t)\kappa(\|x-y\|)}_{\Sigma(s,t,\|x-y\|)} \psi(s,y) dt dx ds dy.$$

- ▶ (Dalang–Frangos, Pesat–Zabczyk, Dalang) There can \exists solutions for d > 1, depending on κ [NASC].
- Explains the roughening effect of white noise. [analytic]
- We propose to explain the smoothing effect of Δ_x.
 [probabilistic]

▶ $L := L^2$ -generator of a Lévy process X in \mathbb{R}^d .

- ▶ $L := L^2$ -generator of a Lévy process X in \mathbb{R}^d .
- Normalization: $\mathsf{E} \exp(i\xi \cdot X(t)) = \exp(-t\Psi(\xi)), \ \hat{L}(\xi) = -\Psi(\xi).$ That is,

$$\int_{\mathbf{R}^d} f(x)(\mathbf{L}g)(x) \, dx = -\int_{\mathbf{R}^d} \overline{\hat{f}(\xi)} \, \hat{g}(\xi) \Psi(\xi) \, d\xi.$$

- ▶ $L := L^2$ -generator of a Lévy process X in \mathbb{R}^d .
- Normalization: $\mathsf{E} \exp(i\xi \cdot X(t)) = \exp(-t\Psi(\xi)), \ \hat{L}(\xi) = -\Psi(\xi).$ That is,

$$\int_{\mathbf{R}^d} f(x)(\mathbf{L}g)(x) \, dx = -\int_{\mathbf{R}^d} \overline{\hat{f}(\xi)} \, \hat{g}(\xi) \Psi(\xi) \, d\xi.$$

▶ $\mathsf{Dom}(\mathbf{L}) := \{ f \in L^2(\mathbf{R}^d) : \int_{\mathbf{R}^d} |\hat{f}(\xi)|^2 \mathsf{Re}\Psi(\xi) \, d\xi < \infty \}.$

- ▶ $L := L^2$ -generator of a Lévy process X in \mathbb{R}^d .
- Normalization: $\mathsf{E} \exp(i\xi \cdot X(t)) = \exp(-t\Psi(\xi)), \ \hat{L}(\xi) = -\Psi(\xi).$ That is,

$$\int_{\mathbf{R}^d} f(x)(\mathbf{L}g)(x) \, dx = -\int_{\mathbf{R}^d} \overline{\hat{f}(\xi)} \, \hat{g}(\xi) \Psi(\xi) \, d\xi.$$

- ▶ $\mathsf{Dom}(\underline{L}) := \{ f \in L^2(\mathbf{R}^d) : \int_{\mathbf{R}^d} |\hat{f}(\xi)|^2 \mathsf{Re}\Psi(\xi) \, d\xi < \infty \}.$
- ➤ X' := an independent copy of X;

- ▶ $L := L^2$ -generator of a Lévy process X in \mathbb{R}^d .
- Normalization: $\mathsf{E} \exp(i\xi \cdot X(t)) = \exp(-t\Psi(\xi)), \ \hat{L}(\xi) = -\Psi(\xi).$ That is,

$$\int_{\mathbf{R}^d} f(x)(\mathbf{L}g)(x) \, dx = -\int_{\mathbf{R}^d} \overline{\hat{f}(\xi)} \, \hat{g}(\xi) \Psi(\xi) \, d\xi.$$

- ▶ $\mathsf{Dom}(\underline{L}) := \{ f \in L^2(\mathbf{R}^d) : \int_{\mathbf{R}^d} |\hat{f}(\xi)|^2 \mathsf{Re}\Psi(\xi) \, d\xi < \infty \}.$
- ➤ X' := an independent copy of X;

- ▶ $L := L^2$ -generator of a Lévy process X in \mathbb{R}^d .
- Normalization: $\mathsf{E} \exp(i\xi \cdot X(t)) = \exp(-t\Psi(\xi)), \ \hat{L}(\xi) = -\Psi(\xi).$ That is,

$$\int_{\mathbf{R}^d} f(x)(\mathbf{L}g)(x) \, dx = -\int_{\mathbf{R}^d} \overline{\hat{f}(\xi)} \, \hat{g}(\xi) \Psi(\xi) \, d\xi.$$

- ▶ $\mathsf{Dom}(\underline{L}) := \{ f \in L^2(\mathbf{R}^d) : \int_{\mathbf{R}^d} |\hat{f}(\xi)|^2 \mathsf{Re}\Psi(\xi) \, d\xi < \infty \}.$
- lacksquare X':= an independent copy of $X;\, ar X(t):=X(t)-X'(t).$ [Lévy]

- ▶ $L := L^2$ -generator of a Lévy process X in \mathbb{R}^d .
- Normalization: $\mathsf{E} \exp(i\xi \cdot X(t)) = \exp(-t\Psi(\xi)), \ \hat{L}(\xi) = -\Psi(\xi).$ That is,

$$\int_{\mathbf{R}^d} f(x)(\mathbf{L}g)(x) \, dx = -\int_{\mathbf{R}^d} \overline{\hat{f}(\xi)} \, \hat{g}(\xi) \Psi(\xi) \, d\xi.$$

- ▶ $\mathsf{Dom}(L) := \{ f \in L^2(\mathbf{R}^d) : \int_{\mathbf{R}^d} |\hat{f}(\xi)|^2 \mathsf{Re}\Psi(\xi) \, d\xi < \infty \}.$
- $lacksymbol{ iny} X' := ext{an independent copy of } X; \ ar{X}(t) := X(t) X'(t). \ [ext{L\'evy}]$

• $\lambda_t^x := \text{local time of } \bar{X}$, at place x and time t, when it exists.

- ▶ λ_t^X := local time of \bar{X} , at place x and time t, when it exists.
- ▶ Defining property: \forall Borel meas. $f: \mathbf{R}^d \to \mathbf{R}_+, t > 0$,

$$\int_0^t f(\bar{X}(s)) ds = \int_{\mathbf{R}^d} f(x) \lambda_t^x dx \quad \text{a.s.}$$

- $\lambda_t^X := \text{local time of } \bar{X}, \text{ at place } x \text{ and time } t, \text{ when it exists.}$
- ▶ Defining property: \forall Borel meas. $f : \mathbf{R}^d \to \mathbf{R}_+, t > 0$,

$$\int_0^t f(\bar{X}(s)) ds = \int_{\mathbf{R}^d} f(x) \lambda_t^x dx \quad \text{a.s.}$$

 $\lambda_t^X = O_t(dx)/dx$, where $O_t(E) := \int_0^t \mathbf{1}_E(\bar{X}(s)) ds$.

- $\lambda_t^X := \text{local time of } \bar{X}, \text{ at place } x \text{ and time } t, \text{ when it exists.}$
- ▶ Defining property: \forall Borel meas. $f: \mathbb{R}^d \to \mathbb{R}_+, t > 0$,

$$\int_0^t f(\bar{X}(s)) ds = \int_{\mathbf{R}^d} f(x) \lambda_t^x dx \quad \text{a.s.}$$

lacksquare $\lambda_t^{\mathsf{x}} = O_t(d\mathsf{x})/d\mathsf{x}$, where $O_t(E) := \int_0^t \mathbf{1}_E(\bar{X}(\mathsf{s})) \, d\mathsf{s}$.

Theorem (Hawkes)

 $\{\lambda_t^{\mathsf{X}}\}_{t>0,x\in\mathbf{R}^d}$ exists iff

$$\int_{\mathbf{R}^d} \frac{d\xi}{1 + \mathsf{Re}\Psi(\xi)} < \infty.$$

▶ Hawkes' condition: $\int_{\mathbb{R}^d} (1 + \operatorname{Re}\Psi(\xi))^{-1} d\xi < \infty$.

- ▶ Hawkes' condition: $\int_{\mathbf{R}^d} (1 + \mathrm{Re}\Psi(\xi))^{-1} d\xi < \infty$.
- ▶ $\Psi(\xi) = O(\|\xi\|^2)$ [Bochner]. Therefore, local times can \exists only when d = 1, if at all.

- ▶ Hawkes' condition: $\int_{\mathbf{R}^d} (1 + \mathrm{Re}\Psi(\xi))^{-1} d\xi < \infty$.
- ▶ $\Psi(\xi) = O(\|\xi\|^2)$ [Bochner]. Therefore, local times can \exists only when d = 1, if at all.
- ▶ If d = 1 and $\Psi(\xi) = |\xi|^{\alpha}$ then local times exist iff $\alpha > 1$.

- ▶ Hawkes' condition: $\int_{\mathbf{R}^d} (1 + \mathbf{Re}\Psi(\xi))^{-1} d\xi < \infty$.
- ▶ $\Psi(\xi) = O(\|\xi\|^2)$ [Bochner]. Therefore, local times can \exists only when d = 1, if at all.
- ▶ If d = 1 and $\Psi(\xi) = |\xi|^{\alpha}$ then local times exist iff $\alpha > 1$.
- For general (nonsymmetric) Lévy processes, the Hawkes condition is that

$$\int_{-\infty}^{\infty} \operatorname{Re}\left(\frac{1}{1+\Psi(\xi)}\right)\,d\xi < \infty.$$

- ▶ Hawkes' condition: $\int_{\mathbf{R}^d} (1 + \mathrm{Re}\Psi(\xi))^{-1} d\xi < \infty$.
- ▶ $\Psi(\xi) = O(\|\xi\|^2)$ [Bochner]. Therefore, local times can \exists only when d = 1, if at all.
- ▶ If d = 1 and $\Psi(\xi) = |\xi|^{\alpha}$ then local times exist iff $\alpha > 1$.
- For general (nonsymmetric) Lévy processes, the Hawkes condition is that

$$\int_{-\infty}^{\infty} \operatorname{Re}\left(\frac{1}{1+\Psi(\xi)}\right) \, d\xi < \infty.$$

▶ Suppose d=1 and $\Psi(\xi)=|\xi|(1+ic \text{sgn}|\xi|\log|\xi|)$ for $0\leq |c|\leq 2/\pi.$ Then local times exist iff $c\neq 0$.

Consider the heat equation

$$\partial_t u(t,x) = (\mathbf{L}_x u)(t,x) + \dot{\mathbf{W}}(t,x),$$

Consider the heat equation

$$\partial_t u(t,x) = (\mathbf{L}_x u)(t,x) + \dot{\mathbf{W}}(t,x),$$

where L_x is the generator of a Lévy process on \mathbb{R}^d , acting on the variable x.

We call this the heat equation for L.

Consider the heat equation

$$\partial_t u(t,x) = (\mathbf{L}_x u)(t,x) + \dot{\mathbf{W}}(t,x),$$

- We call this the heat equation for L.
- ► Fundamental questions:

Consider the heat equation

$$\partial_t u(t,x) = (\mathbf{L}_x u)(t,x) + \dot{\mathbf{W}}(t,x),$$

- ▶ We call this the heat equation for *L*.
- Fundamental questions:
 - When is there a function-valued solution? [General answer by Dalang]

Consider the heat equation

$$\partial_t u(t,x) = (\mathbf{L}_x u)(t,x) + \dot{\mathbf{W}}(t,x),$$

- ▶ We call this the heat equation for *L*.
- Fundamental questions:
 - When is there a function-valued solution? [General answer by Dalang]
 - When is there a continuous solution?

Consider the heat equation

$$\partial_t u(t,x) = (\mathbf{L}_x u)(t,x) + \dot{\mathbf{W}}(t,x),$$

- ▶ We call this the heat equation for *L*.
- Fundamental questions:
 - When is there a function-valued solution? [General answer by Dalang]
 - When is there a continuous solution?
 - When is there a Hölder-continuous solution?

Consider the heat equation

$$\partial_t u(t,x) = (\mathbf{L}_x u)(t,x) + \dot{\mathbf{W}}(t,x),$$

- ▶ We call this the heat equation for *L*.
- Fundamental questions:
 - When is there a function-valued solution? [General answer by Dalang]
 - When is there a continuous solution?
 - When is there a Hölder-continuous solution?
 - Etc.

Theorem (K-Foondun-Nualart)

Let u denote the weak solution to the heat equation for L. Then, for all tempered functions φ and all $t, \lambda > 0$,

$$\frac{1 - e^{-2\lambda t}}{2} \mathscr{E}_{\lambda}(\varphi, \varphi) \leq \mathsf{E}\left(\left|u(t, \varphi)\right|^{2}\right) \leq \frac{e^{2\lambda t}}{2} \mathscr{E}_{\lambda}(\varphi, \varphi),$$

where

$$\mathscr{E}_{\lambda}(\varphi\,,\psi):=rac{1}{(2\pi)^d}\int_{\mathbf{R}^d}rac{\hat{arphi}(\xi)\hat{\psi}(\xi)}{\lambda+\mathsf{Re}\Psi(\xi)}\,d\xi.$$

Theorem (K-Foondun-Nualart)

Let u denote the weak solution to the heat equation for L. Then, for all tempered functions φ and all $t, \lambda > 0$,

$$\frac{1 - e^{-2\lambda t}}{2} \mathscr{E}_{\lambda}(\varphi, \varphi) \leq \mathsf{E}\left(\left|u(t, \varphi)\right|^{2}\right) \leq \frac{e^{2\lambda t}}{2} \mathscr{E}_{\lambda}(\varphi, \varphi),$$

where

$$\mathscr{E}_{\lambda}(\varphi\,,\psi):=rac{1}{(2\pi)^d}\int_{\mathbf{R}^d}rac{\hat{arphi}(\xi)\hat{\psi}(\xi)}{\lambda+\mathsf{Re}\Psi(\xi)}\,d\xi.$$

Corollary

 \exists function-valued solutions iff \bar{X} has local times. The solution is continuous iff $x \mapsto \lambda_t^x$ is.

▶ In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_t^x$ and vice versa:

- ▶ In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_t^x$ and vice versa:
 - Existence and continuity.

- ▶ In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_t^x$ and vice versa:
 - Existence and continuity.
 - Hölder continuity.

- ▶ In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_t^x$ and vice versa:
 - Existence and continuity.
 - Hölder continuity.
 - p-variation of the paths

- ▶ In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_t^x$ and vice versa:
 - Existence and continuity.
 - Hölder continuity.
 - p-variation of the paths
- ► ∃ an embedding of the isomorphism theorem? [Dynkin; Brydges–Fröhlich–Spencer]

- ▶ In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_t^x$ and vice versa:
 - Existence and continuity.
 - Hölder continuity.
 - p-variation of the paths
- ► ∃ an embedding of the isomorphism theorem? [Dynkin; Brydges–Fröhlich–Spencer]
- ▶ A final **Theorem** (K–Foondun–Nualart): $t \mapsto u(t, \varphi)$ has a continuous version iff

$$\int_{1}^{\infty} \frac{\mathscr{E}_{\lambda}(\varphi,\varphi)}{\lambda \sqrt{|\log \lambda|}} \, d\lambda < \infty.$$

Solutions in dimension $2-\epsilon$

▶ Recall:

$$\partial_t u(t,x) = (\mathbf{L}_x u)(t,x) + \dot{\mathbf{W}}(t,x).$$
 (HE)

Solutions in dimension $2-\epsilon$

Recall:

$$\partial_t u(t,x) = (\mathbf{L}_x u)(t,x) + \dot{\mathbf{W}}(t,x).$$
 (HE)

We chose L to be the generator of a Lévy process only because there we have NASC.

Solutions in dimension $2-\epsilon$

▶ Recall:

$$\partial_t u(t,x) = (\mathbf{L}_x u)(t,x) + \dot{\mathbf{W}}(t,x).$$
 (HE)

- We chose L to be the generator of a Lévy process only because there we have NASC.
- ► Could have L := generator of a nice Markov process.

Solutions in dimension $2-\epsilon$

▶ Recall:

$$\partial_t u(t,x) = (\mathbf{L}_x u)(t,x) + \dot{\mathbf{W}}(t,x).$$
 (HE)

- ▶ We chose L to be the generator of a Lévy process only because there we have NASC.
- ► Could have L := generator of a nice Markov process.

Theorem (K-Foondun-Nualart)

Let L := Laplacian on a "nice" fractal of $\dim_H = 2 - \alpha$ for $\alpha \in (0,2]$. Then (HE) has function solutions that are in fact Hölder continuous.

Let $\dot{L} :=$ be space—time Lévy noise with values in \mathbf{R}^d .

- Let $\dot{\mathbf{L}} :=$ be space—time Lévy noise with values in \mathbf{R}^d .
- ► E $\exp(i\xi \cdot \dot{L}(A)) = \exp(-|A|\Psi(\xi))$ for $\xi \in \mathbf{R}^d$ and $A \in \mathcal{B}(\mathbf{R}_+ \times \mathbf{R})$.

- Let $\dot{\mathbf{L}} :=$ be space—time Lévy noise with values in \mathbf{R}^d .
- ► E $\exp(i\xi \cdot \dot{L}(A)) = \exp(-|A|\Psi(\xi))$ for $\xi \in \mathbf{R}^d$ and $A \in \mathcal{B}(\mathbf{R}_+ \times \mathbf{R})$.
- Assume:

- Let $\dot{\mathbf{L}} :=$ be space—time Lévy noise with values in \mathbf{R}^d .
- ► E $\exp(i\xi \cdot \dot{L}(A)) = \exp(-|A|\Psi(\xi))$ for $\xi \in \mathbf{R}^d$ and $A \in \mathcal{B}(\mathbf{R}_+ \times \mathbf{R})$.
- Assume:
 - Ψ is nonnegative real.

- Let $\dot{\mathbf{L}} :=$ be space—time Lévy noise with values in \mathbf{R}^d .
- ▶ $\mathsf{E} \exp(i\xi \cdot \dot{\mathsf{L}}(A)) = \exp(-|A|\Psi(\xi))$ for $\xi \in \mathsf{R}^d$ and $A \in \mathscr{B}(\mathsf{R}_+ \times \mathsf{R})$.
- Assume:
 - Ψ is nonnegative real.
 - ▶ $\forall a > 0 \exists A_a > 0$ such that

$$\Psi(a\xi) \ge A_a \Psi(\xi)$$
.

[stable like]

Copenhagen 2007

- Let $\dot{\mathbf{L}} :=$ be space—time Lévy noise with values in \mathbf{R}^d .
- ► E $\exp(i\xi \cdot \dot{L}(A)) = \exp(-|A|\Psi(\xi))$ for $\xi \in \mathbf{R}^d$ and $A \in \mathcal{B}(\mathbf{R}_+ \times \mathbf{R})$.
- Assume:
 - Ψ is nonnegative real.
 - ▶ $\forall a > 0 \exists A_a > 0$ such that

$$\Psi(a\xi) \geq A_a \Psi(\xi)$$
.

[stable like]

► Gauge function ∃ and is finite, where

$$\Phi(\lambda) := \int_{\mathbf{R}^d} \mathrm{e}^{-\lambda \Psi(\xi)} \, d\xi \qquad {}^\forall \lambda > 0.$$

$$\begin{bmatrix}
\partial_{tt}u_i(t,x) = \partial_{xx}u_i(x,t) + \dot{\mathbf{L}}_i(t,x), \\
u_i(0,x) = \partial_t u_i(0,x) = 0.
\end{bmatrix}$$

$$\begin{bmatrix}
\partial_{tt}u_i(t,x) = \partial_{xx}u_i(x,t) + \dot{\mathbf{L}}_i(t,x), \\
u_i(0,x) = \partial_t u_i(0,x) = 0.
\end{bmatrix}$$

Theorem (K-Nualart)

$$\begin{cases}
\partial_{tt}u_i(t,x) = \partial_{xx}u_i(x,t) + \dot{\mathbf{L}}_i(t,x), \\
u_i(0,x) = \partial_t u_i(0,x) = 0.
\end{cases}$$

Theorem (K-Nualart)

TFAE:

1. With positive probab. u(t,x) = 0 for some t > 0 and $x \in \mathbb{R}$.

$$\begin{bmatrix}
\partial_{tt}u_i(t,x) = \partial_{xx}u_i(x,t) + \dot{\mathbf{L}}_i(t,x), \\
u_i(0,x) = \partial_t u_i(0,x) = 0.
\end{bmatrix}$$

Theorem (K-Nualart)

TFAE:

- 1. With positive probab. u(t,x) = 0 for some t > 0 and $x \in \mathbb{R}$.
- 2. Almost surely, u(t,x) = 0 for some t > 0 and $x \in \mathbb{R}$.

$$\begin{bmatrix}
\partial_{tt}u_i(t,x) = \partial_{xx}u_i(x,t) + \dot{\mathbf{L}}_i(t,x), \\
u_i(0,x) = \partial_t u_i(0,x) = 0.
\end{bmatrix}$$

Theorem (K-Nualart)

TFAE:

- 1. With positive probab. u(t,x) = 0 for some t > 0 and $x \in \mathbb{R}$.
- 2. Almost surely, u(t,x) = 0 for some t > 0 and $x \in \mathbb{R}$.
- 3. $\int_0^1 \lambda \Phi(\lambda) d\lambda < \infty$.

$$\begin{bmatrix} \partial_{tt} u_i(t,x) = \partial_{xx} u_i(x,t) + \dot{L}_i(t,x), \\ u_i(0,x) = \partial_t u_i(0,x) = 0. \end{bmatrix}$$

Theorem (K-Nualart)

TFAE:

- 1. With positive probab. u(t,x) = 0 for some t > 0 and $x \in \mathbb{R}$.
- 2. Almost surely, u(t,x) = 0 for some t > 0 and $x \in \mathbb{R}$.
- 3. $\int_0^1 \lambda \Phi(\lambda) d\lambda < \infty$.
- 4. If $\int_0^1 \lambda \Phi(\lambda) d\lambda < \infty$, then a.s.,

$$\dim_{_{\mathsf{H}}} u^{-1}\{0\} = 2 - \limsup_{\lambda \downarrow 0} \frac{\log \Phi(\lambda)}{\log(1/\lambda)}.$$

$$\begin{bmatrix}
\partial_{tt}u_i(t,x) = \partial_{xx}u_i(x,t) + \dot{L}_i(t,x), \\
u_i(0,x) = \partial_tu_i(0,x) = 0.
\end{bmatrix}$$

$$\begin{bmatrix}
\partial_{tt}u_i(t,x) = \partial_{xx}u_i(x,t) + \dot{\mathbf{L}}_i(t,x), \\
u_i(0,x) = \partial_t u_i(0,x) = 0.
\end{bmatrix}$$

Example

Suppose $\dot{\mathbf{L}}_1, \dots, \dot{\mathbf{L}}_d$ are independent, $\dot{\mathbf{L}}_j = \mathrm{stable}(\alpha_j)$. Then:

$$\begin{cases}
\partial_{tt}u_i(t,x) = \partial_{xx}u_i(x,t) + \dot{L}_i(t,x), \\
u_i(0,x) = \partial_tu_i(0,x) = 0.
\end{cases}$$

Example

Suppose $\dot{\mathbf{L}}_1, \dots, \dot{\mathbf{L}}_d$ are independent, $\dot{\mathbf{L}}_j = \mathrm{stable}(\alpha_j)$. Then:

1. u has zeros iff $\sum_{j=1}^{d} (1/\alpha_j) < 2$.

$$\begin{bmatrix} \partial_{tt} u_i(t,x) = \partial_{xx} u_i(x,t) + \dot{L}_i(t,x), \\ u_i(0,x) = \partial_t u_i(0,x) = 0. \end{bmatrix}$$

Example

Suppose $\dot{\mathbf{L}}_1, \dots, \dot{\mathbf{L}}_d$ are independent, $\dot{\mathbf{L}}_j = \operatorname{stable}(\alpha_j)$. Then:

- 1. u has zeros iff $\sum_{j=1}^{d} (1/\alpha_j) < 2$.
- 2. If $\sum_{j=1}^{d} (1/\alpha_j) < 2$, then $\dim_{H} u^{-1}\{0\} = 2 \sum_{j=1}^{d} (1/\alpha_j)$.

Idea of proof [existence part]

▶ WLOG consider u(t,x) for $t,x \ge 0$.

Idea of proof [existence part]

- ▶ WLOG consider u(t,x) for $t,x \ge 0$.
- ▶ $P{0 \in u(G)} \times P{0 \in X(G)}$, where

$$X(t,x) := X_1(t) + X_2(x),$$

where X_1, X_2 are i.i.d. Lévy processes, exponent Ψ . [additive Lévy process]

Idea of proof [existence part]

- ▶ WLOG consider u(t,x) for $t,x \ge 0$.
- ▶ $P{0 \in u(G)} \times P{0 \in X(G)}$, where

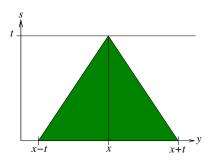
$$X(t,x) := X_1(t) + X_2(x),$$

where X_1, X_2 are i.i.d. Lévy processes, exponent Ψ . [additive Lévy process]

Appeal to K-Shieh-Xiao.

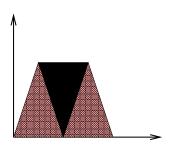
Idea of proof [second part]

 $u(t,x)=\frac{1}{2}\dot{L}(\mathscr{C}(t,x))$, where $\mathscr{C}(t,x)$ is the "light cone" emanating from (t,x).



Idea of proof [zero-one law part]

The zero set in the black triangle depends on the noise through its "backward light cone," shaded black/pink.



Therefore, $P\{u^{-1}(\{0\}) \neq \emptyset\}$ is zero or one.

