Lévy Processes and Stochastic Partial Differential Equations

Davar Khoshnevisan
with M. Foondun and E. Nualart

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

Lévy Processes: Theory and Applications
August 13–17, 2007
Copenhagen, Denmark
Problem 1

The stochastic heat equation:

\[\partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x) \quad \forall t \in 0, x \in \mathbb{R}^d. \]
Problem 1

The stochastic heat equation:

$$\partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x) \quad \forall t \in 0, x \in \mathbb{R}^d.$$

Question: Why \exists function solutions only when $d = 1$? (Walsh, Dalang–Frangos, Dalang, Pesat–Zabczyk)
Problem 1

- The stochastic heat equation:

\[\partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x) \quad \forall t \in 0, x \in \mathbb{R}^d. \]

- Question: Why \(\exists \) function solutions only when \(d = 1 \)?
 (Walsh, Dalang–Frangos, Dalang, Pesat–Zabczyk)
Problem 1

The stochastic heat equation:

\[\partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x) \quad \forall t \in 0, x \in \mathbb{R}^d. \]

Question: Why \(\exists \) function solutions only when \(d = 1 \)?
(Walsh, Dalang–Frangos, Dalang, Pesat–Zabczyk)

Answer: BM has local times only in \(d = 1 \).
Problem 1

- The stochastic heat equation:

\[\partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x) \quad \forall t \in 0, x \in \mathbb{R}^d. \]

- Question: Why \(\exists \) function solutions only when \(d = 1 \)? (Walsh, Dalang–Frangos, Dalang, Pesat–Zabczyk)

- Answer: BM has local times only in \(d = 1 \).
Problem 1

- The stochastic heat equation:

\[\partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x) \quad \forall t \in 0, x \in \mathbb{R}^d. \]

- **Question:** Why \(\exists \) function solutions only when \(d = 1 \)?
 (Walsh, Dalang–Frangos, Dalang, Pesat–Zabczyk)

- **Answer:** BM has local times only in \(d = 1 \).
 In fact, \(\exists \) function solutions in dimension \(2 - \alpha \) for all \(\alpha \in (0, 2] \).
Problem 2

- Weakly interacting system of stochastic wave equations:

\[
\begin{align*}
\partial_{tt}u_i(t, x) &= (\partial_{xx} u_i)(t, x) + \sum_{j=1}^{d} Q_{ij} \dot{W}_j(t, x) \quad \forall x \in \mathbb{R}, \; t \geq 0, \\
u_i(0, x) &= \partial_t u_i(0, x) = 0,
\end{align*}
\]

\[\dot{W}_1, \ldots, \dot{W}_d := \text{i.i.d. white noises; } Q = (Q_{ij})_{i,j=1}^d \text{ invert.}\]
Problem 2

- Weakly interacting system of stochastic wave equations:

\[
\begin{aligned}
\partial_{tt} u_i(t, x) &= (\partial_{xx} u_i)(t, x) + \sum_{j=1}^{d} Q_{ij} \dot{W}_j(t, x) \quad \forall x \in \mathbb{R}, \ t \geq 0, \\
u_i(0, x) &= \partial_t u_i(0, x) = 0,
\end{aligned}
\]

\(\dot{W}_1, \ldots, \dot{W}_d := \text{i.i.d. white noises; } Q = (Q_{ij})_{i,j=1}^{d} \text{ invert.}\)

- Question: When is \(u(t, x) = 0\) for some \(t > 0\) and \(x \in \mathbb{R}\)?
Weakly interacting system of stochastic wave equations:

\[
\begin{align*}
\partial_{tt} u_i(t, x) &= (\partial_{xx} u_i)(t, x) + \sum_{j=1}^{d} Q_{ij} \dot{W}_j(t, x) \quad \forall x \in \mathbb{R}, t \geq 0, \\
u_i(0, x) &= \partial_t u_i(0, x) = 0,
\end{align*}
\]

\(\dot{W}_1, \ldots, \dot{W}_d := \text{i.i.d. white noises}; \ Q = (Q_{ij})_{i,j=1}^{d} \text{ invert.}\)

Question: When is \(u(t, x) = 0\) for some \(t > 0\) and \(x \in \mathbb{R}\)?

Answer: Iff \(d < 4\).

(Orey–Pruitt, K, Dalang–Nualart; closely-related: LeGall)
The standard equation

\[
\dot{W} := \{\dot{W}(t, x)\}_{t \geq 0, x \in \mathbb{R}^d} \text{ space-time white noise:}
\]
The standard equation

\[\dot{\mathcal{W}} := \{ \dot{\mathcal{W}}(t, x) \}_{t \geq 0, x \in \mathbb{R}^d} \text{ space-time white noise:} \]

\[\{ \dot{\mathcal{W}}(A) \}_{A \in \mathcal{B}(\mathbb{R}^+ \times \mathbb{R}^d)} := \text{a centered gaussian process.} \]
The standard equation

\[\dot{W} := \{ \dot{W}(t, x) \}_{t \geq 0, x \in \mathbb{R}^d} \] space-time white noise:

- \(\{ \dot{W}(A) \}_{A \in \mathcal{B}(\mathbb{R}_+ \times \mathbb{R}^d)} := \) a centered gaussian process.
- \(\text{Cov}(\dot{W}(A), \dot{W}(B)) = |A \cap B| \quad \forall A, B \subset \mathbb{R}_+ \times \mathbb{R}^d. \)
The standard equation

\[\dot{W} := \{ \dot{W}(t, x) \}_{t \geq 0, x \in \mathbb{R}^d} \text{ space-time white noise:} \]

- \{ \dot{W}(A) \}_{A \in \mathcal{B}(\mathbb{R}_+ \times \mathbb{R}^d)} := \text{a centered gaussian process.} \\
- \text{Cov}(\dot{W}(A), \dot{W}(B)) = |A \cap B| \quad \forall A, B \subset \mathbb{R}_+ \times \mathbb{R}^d. \\
- \text{Identification via Wiener integrals:} \\
\[\int \phi d\dot{W} \simeq \int_0^\infty \int_{\mathbb{R}^d} \phi(t, x) \dot{W}(t, x) \, dx \, dt. \]
The standard equation

- \(\dot{\mathcal{W}} := \{ \dot{\mathcal{W}}(t, x) \}_{t \geq 0, x \in \mathbb{R}^d} \) space-time white noise:
 - \(\{ \dot{\mathcal{W}}(A) \}_{A \in \mathcal{B}(\mathbb{R}_+ \times \mathbb{R}^d)} := \) a centered gaussian process.
 - \(\text{Cov}(\dot{\mathcal{W}}(A), \dot{\mathcal{W}}(B)) = |A \cap B| \quad \forall A, B \subset \mathbb{R}_+ \times \mathbb{R}^d. \)
 - Identification via Wiener integrals:
 \[
 \int \phi \, d\dot{\mathcal{W}} \simeq \int_0^{\infty} \int_{\mathbb{R}^d} \phi(t, x) \dot{\mathcal{W}}(t, x) \, dx \, dt.
 \]

- The stochastic heat equation: \(\exists (?)u := u(t, x) \)
 \([t \geq 0, x \in \mathbb{R}^d]:\)
 \[
 \partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{\mathcal{W}}(t, x).
 \]
The standard equation

- \(\dot{W} := \{ \dot{W}(t, x) \}_{t \geq 0, x \in \mathbb{R}^d} \) space-time white noise:
 - \(\{ \dot{W}(A) \}_{A \in \mathcal{B}(\mathbb{R}^+ \times \mathbb{R}^d)} := \) a centered gaussian process.
 - \(\text{Cov}(\dot{W}(A), \dot{W}(B)) = |A \cap B| \quad \forall A, B \subset \mathbb{R}^+ \times \mathbb{R}^d. \)
 - Identification via Wiener integrals:
 \[
 \int \phi \, d\dot{W} \simeq \int_0^\infty \int_{\mathbb{R}^d} \phi(t, x) \dot{W}(t, x) \, dx \, dt.
 \]

- The stochastic heat equation: \(\exists (?) u := u(t, x) \)
 \([t \geq 0, x \in \mathbb{R}^d]: \)
 \[
 \partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x).
 \]

- Fact 1: Function-valued solution \(\exists \) iff \(d = 1. \)
The standard equation

- **\(\dot{W} := \{ \dot{W}(t, x) \}_{t \geq 0, x \in \mathbb{R}^d} \)** space-time white noise:
 - \(\{ \dot{W}(A) \}_{A \in \mathcal{B}(\mathbb{R}_+ \times \mathbb{R}^d)} := \) a centered gaussian process.
 - \(\text{Cov}(\dot{W}(A), \dot{W}(B)) = |A \cap B| \quad \forall A, B \subset \mathbb{R}_+ \times \mathbb{R}^d. \)
 - Identification via Wiener integrals:
 \[
 \int \phi \, d\dot{W} \simeq \int_{0}^{\infty} \int_{\mathbb{R}^d} \phi(t, x) \dot{W}(t, x) \, dx \, dt.
 \]

- **The stochastic heat equation:** \(\exists (\cdot) u := u(t, x) \)
 \([t \geq 0, x \in \mathbb{R}^d] \):
 \[
 \partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x).
 \]

- **Fact 1:** Function-valued solution \(\exists \) iff \(d = 1 \).
- **Rough explanation:** \(\Delta_x \) smooths; \(\dot{W} \) makes rough.
The heat equation

\[\partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x). \]
The heat equation

\[\partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x). \]

Consider \[\partial_t u(t, x) = (\Delta_x u)(t, x) + f(t, x) \]
[f nice]
The heat equation

\[\partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x). \]

Consider \(\partial_t u(t, x) = (\Delta_x u)(t, x) + f(t, x) \) [\(f \) nice]

Let

\[Q_t(y) := \frac{1}{(4\pi t)^{d/2}} \exp \left(-\frac{\|y\|^2}{4t} \right) . \]
The heat equation

\[\partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x). \]

Consider \(\partial_t u(t, x) = (\Delta_x u)(t, x) + f(t, x) \)
[f nice]

Let
\[Q_t(y) := \frac{1}{(4\pi t)^{d/2}} \exp \left(-\frac{\|y\|^2}{4t} \right). \]

Solution:
\[u(t, x) = \int_0^t \int_{\mathbb{R}^d} Q_{t-s}(x-y)f(s, y) \, dy \, ds. \]
The heat equation

\[\partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x). \]

Consider \(\partial_t u(t, x) = (\Delta_x u)(t, x) + f(t, x) \)

\([f \text{ nice}]\)

Let

\[Q_t(y) := \frac{1}{(4\pi t)^{d/2}} \exp \left(-\frac{\|y\|^2}{4t} \right). \]

Solution:

\[u(t, x) = \int_0^t \int_{\mathbb{R}^d} Q_{t-s}(x-y)f(s, y) \, dy \, ds. \]

Apply to “\(f := \dot{W} \)” [Mild solution; Walsh, 1986]
The stochastic heat equation

\[\partial_t u(t,x) = (\Delta_x u)(t,x) + \dot{W}(t,x). \]
The stochastic heat equation

- \(\partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x) \).
- **Mild solution:** If \(\exists \), then

\[
 u(t, x) = \int_0^t \int_{\mathbb{R}^d} Q_{t-s}(x - y) \dot{W}(dy \, ds).
\]
The stochastic heat equation

- \(\partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x). \)
- **Mild solution**: If \(\exists \), then
 \[
 u(t, x) = \int_0^t \int_{\mathbb{R}^d} Q_{t-s}(x - y) \dot{W}(dy \, ds).
 \]
- **Weak solution**: A family \(u(t, \varphi) \), for nicely tempered \(\varphi \):
 \[
 u(t, \varphi) := \int_0^t \int_{\mathbb{R}^d} (Q_{t-s} \ast \varphi)(y) \dot{W}(dy \, ds).
 \]
 “\(u(t, \varphi) = \int_{\mathbb{R}^d} u(t, x) \varphi(x) \, dx. \)”
The stochastic heat equation

- \(\partial_t u(t,x) = (\Delta_x u)(t,x) + \dot{W}(t,x) \).
- **Mild solution:** If \(\exists \), then
 \[
 u(t,x) = \int_0^t \int_{\mathbb{R}^d} Q_{t-s}(x-y) \dot{W}(dy\,ds).
 \]
- **Weak solution:** A family \(u(t,\varphi) \), for nicely tempered \(\varphi \):
 \[
 u(t,\varphi) := \int_0^t \int_{\mathbb{R}^d} (Q_{t-s} * \varphi)(y) \dot{W}(dy\,ds).
 \]
 "\(u(t,\varphi) = \int_{\mathbb{R}^d} u(t,x)\varphi(x)\,dx \)."
- \(\varphi \mapsto u(t,\varphi) \) is a linear gaussian distribution [Itô; Menshov].
The stochastic heat equation

\[\partial_t u(t, x) = (\Delta_x u)(t, x) + \dot{W}(t, x). \]

Mild solution: If \(\exists \), then

\[u(t, x) = \int_0^t \int_{\mathbb{R}^d} Q_{t-s}(x-y) \dot{W}(dy \, ds). \]

Weak solution: A family \(u(t, \varphi) \), for nicely tempered \(\varphi \):

\[u(t, \varphi) := \int_0^t \int_{\mathbb{R}^d} (Q_{t-s} \ast \varphi)(y) \dot{W}(dy \, ds). \]

"\(u(t, \varphi) = \int_{\mathbb{R}^d} u(t, x) \varphi(x) \, dx \)."

\(\varphi \mapsto u(t, \varphi) \) is a linear gaussian distribution [Itô; Menshov].

Need:

\[E \left(\left| u(t, \varphi) \right|^2 \right) = \int_0^t \int_{\mathbb{R}^d} \left| (Q_{t-s} \ast \varphi)(y) \right|^2 dy \, ds < \infty. \]
The stochastic heat equation

- Plancherel's theorem:

\[
\int_0^t \int_{\mathbb{R}^d} \left| (Q_{t-s} \ast \varphi)(y) \right|^2 dy ds
\]

\[
\leq \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \left| \hat{\varphi}(\xi) \right|^2 \left(1 - e^{-\frac{2}{t} \|\xi\|^2} \right) d\xi
\]

\[
\leq \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \left| \hat{\varphi}(\xi) \right|^2 \left(1 - e^{-\frac{2}{t} \|\xi\|^2} \right) d\xi
\]

\[
\leq \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \left| \hat{\varphi}(\xi) \right|^2 \left(1 - e^{-\frac{2}{t} \|\xi\|^2} \right) d\xi
\]

- Weak solution exists if and only if \(\varphi \in H^{-2}(\mathbb{R}^d) \).

- Mild solution exists if and only if \(\delta_x \in H^{-2}(\mathbb{R}^d) \) for all \(x \in \mathbb{R}^d \) and \(d = 1 \).
The stochastic heat equation

- Plancherel’s theorem:

\[\int_0^t \int_{\mathbb{R}^d} \left| (Q_{t-s} \ast \varphi)(y) \right|^2 \, dy \, ds \]

\[= \left(\frac{1}{2\pi} \right)^{d/2} \int_{\mathbb{R}^d} \left| \hat{\varphi}(\xi) \right|^2 \, d\xi \]

\[\leq 1 - \frac{2}{\left\| \xi \right\|^2} \int_0^t \int_{\mathbb{R}^d} \left| (Q_{t-s} \ast \varphi)(y) \right|^2 \, dy \, ds \]

\[\leq 1 - e^{-\frac{2}{\left\| \xi \right\|^2} (t - s)} \]

- Weak solution exists if and only if \(\varphi \in H^{-2}(\mathbb{R}^d) \).

- Mild solution exists if and only if \(\delta_x \in H^{-2}(\mathbb{R}^d) \) for all \(x \in \mathbb{R}^d \).
Plancherel’s theorem:

\[\int_0^t \int_{\mathbb{R}^d} |(Q_{t-s} \ast \varphi)(y)|^2 \, dy \, ds = \frac{1}{(2\pi)^d} \int_0^t \int_{\mathbb{R}^d} e^{-2 \|\xi\|^2(t-s)} |\hat{\varphi}(\xi)|^2 \, d\xi \, ds \]
The stochastic heat equation

Plancherel’s theorem:

\[
\int_0^t \int_{\mathbb{R}^d} \left| (Q_{t-s} \ast \varphi)(y) \right|^2 dy \, ds \\
= \frac{1}{(2\pi)^d} \int_0^t \int_{\mathbb{R}^d} e^{-2\|\xi\|^2(t-s)} \left| \hat{\varphi}(\xi) \right|^2 d\xi \, ds \\
= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \left| \hat{\varphi}(\xi) \right|^2 \frac{1 - e^{-2t\|\xi\|^2}}{2\|\xi\|^2} d\xi.
\]
The stochastic heat equation

Plancherel’s theorem:

\[
\int_0^t \int_{\mathbb{R}^d} \left| (Q_{t-s} \ast \varphi)(y) \right|^2 dy \, ds
\]

\[
= \frac{1}{(2\pi)^d} \int_0^t \int_{\mathbb{R}^d} e^{-2\|\xi\|^2(t-s)} \left| \hat{\varphi}(\xi) \right|^2 d\xi \, ds
\]

\[
= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \left| \hat{\varphi}(\xi) \right|^2 \frac{1 - e^{-2t\|\xi\|^2}}{2\|\xi\|^2} d\xi.
\]

\[\therefore\text{ weak solution } \exists \text{ iff } \varphi \in H^{-2}(\mathbb{R}^d). \text{ In fact, }\]

\[
E \left(\left[u(t, \varphi) \right]^2 \right) \preceq t \int_{\mathbb{R}^d} \frac{\left| \hat{\varphi}(\xi) \right|^2}{1 + t^2\|\xi\|^2} d\xi.
\]
The stochastic heat equation

▶ Plancherel’s theorem:

\[
\int_0^t \int_{\mathbb{R}^d} \left| (Q_{t-s} \ast \varphi)(y) \right|^2 dy \, ds \\
= \frac{1}{(2\pi)^d} \int_0^t \int_{\mathbb{R}^d} e^{-2\|\xi\|^2(t-s)} |\hat{\varphi}(\xi)|^2 \, d\xi \, ds \\
= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} |\hat{\varphi}(\xi)|^2 \frac{1 - e^{-2t\|\xi\|^2}}{2\|\xi\|^2} \, d\xi.
\]

▶ \therefore weak solution \exists iff \varphi \in H_{-2}(\mathbb{R}^d). In fact,

\[
\mathbb{E} \left(\left| u(t, \varphi) \right|^2 \right) \leq t \int_{\mathbb{R}^d} \frac{|\hat{\varphi}(\xi)|^2}{1 + t^2\|\xi\|^2} \, d\xi.
\]

▶ \therefore mild solution \exists iff \delta_X \in H_{-2}(\mathbb{R}^d) \forall x \in \mathbb{R}^d
The stochastic heat equation

▶ Plancherel's theorem:

\[
\int_0^t \int_{\mathbb{R}^d} \left| (Q_{t-s} \ast \varphi)(y) \right|^2 dy \, ds = \frac{1}{(2\pi)^d} \int_0^t \int_{\mathbb{R}^d} e^{-2\|\xi\|^2(t-s)} |\hat{\varphi}(\xi)|^2 \, d\xi \, ds
\]

\[
= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} |\hat{\varphi}(\xi)|^2 \frac{1 - e^{-2t\|\xi\|^2}}{2\|\xi\|^2} \, d\xi.
\]

▶ \therefore weak solution \exists iff \varphi \in H_{-2}(\mathbb{R}^d). In fact,

\[
E \left(\left| u(t, \varphi) \right|^2 \right) \asymp t \int_{\mathbb{R}^d} \frac{|\hat{\varphi}(\xi)|^2}{1 + t^2\|\xi\|^2} \, d\xi.
\]

▶ \therefore mild solution \exists iff \delta_x \in H_{-2}(\mathbb{R}^d) \forall x \in \mathbb{R}^d
The stochastic heat equation

- Plancherel’s theorem:

\[
\int_0^t \int_{\mathbb{R}^d} \left| (Q_{t-s} \ast \varphi)(y) \right|^2 \, dy \, ds \\
= \frac{1}{(2\pi)^d} \int_0^t \int_{\mathbb{R}^d} e^{-2\left\| \xi \right\|^2 (t-s)} \left| \hat{\varphi}(\xi) \right|^2 \, d\xi \, ds \\
= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \left| \hat{\varphi}(\xi) \right|^2 \frac{1 - e^{-2t\left\| \xi \right\|^2}}{2\left\| \xi \right\|^2} \, d\xi.
\]

- \(\therefore \) weak solution \(\exists \) iff \(\varphi \in H_{-2}(\mathbb{R}^d) \). In fact,

\[
\mathbb{E} \left(\left| u(t, \varphi) \right|^2 \right) \leq t \int_{\mathbb{R}^d} \frac{|\hat{\varphi}(\xi)|^2}{1 + t^2\left\| \xi \right\|^2} \, d\xi.
\]

- \(\therefore \) mild solution \(\exists \) iff \(\delta_x \in H_{-2}(\mathbb{R}^d) \) \(\forall x \in \mathbb{R}^d \iff d = 1. \)
(Dalang–Frangos) Replace $\dot{W}(t, x)$ by $\dot{F}(t, x)$, where \dot{F} is a centered gaussian noise with $\text{Cov}(\int \phi d\dot{F}, \int \psi d\dot{F}) = \iint \phi(t, x)(s \wedge t)\kappa(\|x - y\|)\psi(s, y) dt \, dx \, ds \, dy$.

\[\sum(s, t, \|x - y\|) \]
An explanation

- (Dalang–Frangos) Replace \(\dot{W}(t, x) \) by \(\dot{F}(t, x) \), where \(\dot{F} \) is a centered gaussian noise with \(\text{Cov}(\int \phi \, d\dot{F}, \int \psi \, d\dot{F}) = \int \int \phi(t, x)(s \land t) \kappa(\|x - y\|) \psi(s, y) \, dt \, dx \, ds \, dy. \)

- \(\Sigma(s, t, \|x - y\|) \)

- (Dalang–Frangos, Pesat–Zabczyk, Dalang) There can exist solutions for \(d > 1 \), depending on \(\kappa \) [NASC].
An explanation

- (Dalang–Frangos) Replace $\dot{W}(t, x)$ by $\dot{F}(t, x)$, where \dot{F} is a centered gaussian noise with $\text{Cov}(\int \phi \, d\dot{F}, \int \psi \, d\dot{F}) =$

$$
\iint \phi(t, x)(s \wedge t)\kappa(\|x - y\|)\psi(s, y) \, dt \, dx \, ds \, dy.
$$

- (Dalang–Frangos, Pesat–Zabczyk, Dalang) There can \exists solutions for $d > 1$, depending on κ [NASC].

- Explains the roughening effect of white noise.

[analytic]
An explanation

- (Dalang–Frangos) Replace $\dot{W}(t, x)$ by $\dot{F}(t, x)$, where \dot{F} is a centered gaussian noise with $\text{Cov}(\int \phi \, d\dot{F}, \int \psi \, d\dot{F}) =$

$$
\int \int \phi(t, x)(s \wedge t) \kappa(\|x - y\|) \psi(s, y) \, dt \, dx \, ds \, dy.
$$

- $\Sigma(s, t, \|x - y\|)$

- (Dalang–Frangos, Pesat–Zabczyk, Dalang) There can \exists solutions for $d > 1$, depending on κ [NASC].

- Explains the roughening effect of white noise.
 [analytic]

- We propose to explain the smoothing effect of Δ_x.
 [probabilistic]
Lévy processes

- \(L := L^2\)-generator of a Lévy process \(X \) in \(\mathbb{R}^d \).
Lévy processes

- \(L := \text{generator of a Lévy process } X \text{ in } \mathbb{R}^d. \)
- **Normalization:** \(\mathbb{E} \exp(i\xi \cdot X(t)) = \exp(-t\Psi(\xi)), \hat{L}(\xi) = -\Psi(\xi). \)

 That is,
 \[
 \int_{\mathbb{R}^d} f(x)(Lg)(x) \, dx = -\int_{\mathbb{R}^d} \hat{f}(\xi) \hat{g}(\xi) \Psi(\xi) \, d\xi.
 \]
Lévy processes

- $L := L^2$-generator of a Lévy process X in \mathbb{R}^d.
- **Normalization:** $\mathbb{E} \exp(i\xi \cdot X(t)) = \exp(-t\Psi(\xi))$, $\hat{L}(\xi) = -\Psi(\xi)$.
 That is,
 $$\int_{\mathbb{R}^d} f(x)(Lg)(x) \, dx = -\int_{\mathbb{R}^d} \hat{f}(\xi) \hat{g}(\xi) \psi(\xi) \, d\xi.$$

- $\text{Dom}(L) := \{ f \in L^2(\mathbb{R}^d) : \int_{\mathbb{R}^d} |\hat{f}(\xi)|^2 \text{Re}\psi(\xi) \, d\xi < \infty \}$.

- \bar{X} is a Lévy process with char. exponent $2\text{Re}\Psi$.

- X' is an independent copy of X; $\bar{X}(t) := X(t) - X'(t)$.

Davar Khoshnevisan (Salt Lake City, Utah)
Lévy processes

- \(L := L^2\)-generator of a Lévy process \(X \) in \(\mathbb{R}^d \).

- **Normalization:** \(\mathbb{E} \exp(i \xi \cdot X(t)) = \exp(-t \psi(\xi)), \, \hat{L}(\xi) = -\psi(\xi) \). That is,

 \[
 \int_{\mathbb{R}^d} f(x)(Lg)(x) \, dx = -\int_{\mathbb{R}^d} \hat{f}(\xi) \hat{g}(\xi) \psi(\xi) \, d\xi.
 \]

- \(\text{Dom}(L) := \{ f \in L^2(\mathbb{R}^d) : \int_{\mathbb{R}^d} |\hat{f}(\xi)|^2 \Re \psi(\xi) \, d\xi < \infty \} \).

- \(X' := \) an independent copy of \(X \);
Lévy processes

- $L := L^2$-generator of a Lévy process X in \mathbb{R}^d.
- **Normalization:** $E \exp(i\xi \cdot X(t)) = \exp(-t\Psi(\xi))$, $\hat{L}(\xi) = -\Psi(\xi)$.
 That is,
 \[
 \int_{\mathbb{R}^d} f(x)(Lg)(x) \, dx = -\int_{\mathbb{R}^d} \hat{f}(\xi) \hat{g}(\xi) \Psi(\xi) \, d\xi.
 \]
- $\text{Dom}(L) := \{ f \in L^2(\mathbb{R}^d) : \int_{\mathbb{R}^d} |\hat{f}(\xi)|^2 \text{Re}\Psi(\xi) \, d\xi < \infty \}$.
- $X' :=$ an independent copy of X;
Lévy processes

- \(L := L^2\)-generator of a Lévy process \(X \) in \(\mathbb{R}^d \).
- Normalization: \(\mathbb{E} \exp(i\xi \cdot X(t)) = \exp(-t\psi(\xi)) \), \(\hat{L}(\xi) = -\psi(\xi) \).
 That is,
 \[
 \int_{\mathbb{R}^d} f(x)(Lg)(x) \, dx = -\int_{\mathbb{R}^d} \hat{f}(\xi) \hat{g}(\xi) \psi(\xi) \, d\xi.
 \]
- \(\text{Dom}(L) := \{ f \in L^2(\mathbb{R}^d) : \int_{\mathbb{R}^d} |\hat{f}(\xi)|^2 \text{Re}\psi(\xi) \, d\xi < \infty \} \).
- \(X' := \) an independent copy of \(X \); \(\bar{X}(t) := X(t) - X'(t) \).

[Lévy]
Lévy processes

- \(L := L^2\)-generator of a Lévy process \(X \) in \(\mathbb{R}^d \).
- **Normalization:** \(\mathbb{E}\exp(i\xi \cdot X(t)) = \exp(-t\psi(\xi)) \), \(\hat{L}(\xi) = -\psi(\xi) \).
 That is,
 \[
 \int_{\mathbb{R}^d} f(x)(Lg)(x) \, dx = -\int_{\mathbb{R}^d} \hat{f}(\xi) \hat{g}(\xi) \psi(\xi) \, d\xi.
 \]
- \(\text{Dom}(L) := \{ f \in L^2(\mathbb{R}^d) : \int_{\mathbb{R}^d} |\hat{f}(\xi)|^2 \text{Re}\psi(\xi) \, d\xi < \infty \} \).
- \(X' := \) an independent copy of \(X \); \(\bar{X}(t) := X(t) - X'(t) \).
 [Lévy]
- \(\bar{X} \) is a Lévy process with char. exponent \(2\text{Re}\psi \).
Local times

\(\lambda^x_t := \text{local time of } \bar{X}, \text{ at place } x \text{ and time } t, \text{ when it exists.} \)
Local times

- \(\lambda^x_t := \) local time of \(\bar{X} \), at place \(x \) and time \(t \), when it exists.
- **Defining property:** \(\forall \) Borel meas. \(f : \mathbb{R}^d \to \mathbb{R}_+ \), \(t > 0 \),

\[
\int_0^t f(\bar{X}(s)) \, ds = \int_{\mathbb{R}^d} f(x) \lambda^x_t \, dx \quad \text{a.s.}
\]
Local times

- $\lambda^x_t :=$ local time of \bar{X}, at place x and time t, when it exists.

- **Defining property:** \forall Borel meas. $f : \mathbb{R}^d \to \mathbb{R}_+$, $t > 0$,

$$\int_0^t f(\bar{X}(s)) \, ds = \int_{\mathbb{R}^d} f(x) \lambda^x_t \, dx \quad \text{a.s.}$$

- $\lambda^x_t = O_t(dx)/dx$, where $O_t(E) := \int_0^t 1_E(\bar{X}(s)) \, ds$.

Theorem (Hawkes)

$\{\lambda^x_t\}_{t \geq 0}$, $x \in \mathbb{R}^d$ exists iff

$$\int_{\mathbb{R}^d} \int_0^1 \xi d\xi + \Re \Psi(\xi) < \infty.$$
Local times

- $\lambda^x_t :=$ local time of \bar{X}, at place x and time t, when it exists.
- **Defining property:** \forall Borel meas. $f : \mathbb{R}^d \to \mathbb{R}_+$, $t > 0$,
 \[
 \int_{0}^{t} f(\bar{X}(s)) \, ds = \int_{\mathbb{R}^d} f(x) \lambda^x_t \, dx \quad \text{a.s.}
 \]
- $\lambda^x_t = O_t(dx)/dx$, where $O_t(E) := \int_{0}^{t} \mathbf{1}_E(\bar{X}(s)) \, ds$.

Theorem (Hawkes)

$\{\lambda^x_t\}_{t \geq 0, x \in \mathbb{R}^d}$ exists iff
\[
\int_{\mathbb{R}^d} \frac{d\xi}{1 + \text{Re}\, \Psi(\xi)} < \infty.
\]
Examples and remarks

- Hawkes’ condition: \(\int_{\mathbb{R}^d} (1 + \text{Re}\psi(\xi))^{-1} \, d\xi < \infty \).
Examples and remarks

- Hawkes’ condition: $\int_{\mathbb{R}^d} (1 + \text{Re}\psi(\xi))^{-1} \, d\xi < \infty$.

- $\psi(\xi) = O(\|\xi\|^2)$ [Bochner]. Therefore, local times can exist only when $d = 1$, if at all.
Examples and remarks

- Hawkes’ condition: $\int_{\mathbb{R}^d} (1 + \text{Re}\psi(\xi))^{-1} \, d\xi < \infty$.

- $\psi(\xi) = O(\|\xi\|^2)$ [Bochner]. Therefore, local times can exist only when $d = 1$, if at all.

- If $d = 1$ and $\psi(\xi) = |\xi|^\alpha$ then local times exist iff $\alpha > 1$.
Examples and remarks

- Hawkes’ condition: \(\int_{\mathbb{R}^d} (1 + \text{Re} \psi(\xi))^{-1} \, d\xi < \infty \).
- \(\psi(\xi) = O(\|\xi\|^2) \) [Bochner]. Therefore, local times can \(\exists \) only when \(d = 1 \), if at all.
- If \(d = 1 \) and \(\psi(\xi) = |\xi|^\alpha \) then local times exist iff \(\alpha > 1 \).
- For general (nonsymmetric) Lévy processes, the Hawkes condition is that
 \[
 \int_{-\infty}^{\infty} \text{Re} \left(\frac{1}{1 + \psi(\xi)} \right) \, d\xi < \infty.
 \]
Examples and remarks

- Hawkes' condition: $\int_{\mathbb{R}^d} (1 + \text{Re} \psi(\xi))^{-1} \, d\xi < \infty$.
- $\psi(\xi) = O(\|\xi\|^2)$ [Bochner]. Therefore, local times can exist only when $d = 1$, if at all.
- If $d = 1$ and $\psi(\xi) = |\xi|^\alpha$ then local times exist iff $\alpha > 1$.
- For general (nonsymmetric) Lévy processes, the Hawkes condition is that
 \[
 \int_{-\infty}^{\infty} \text{Re} \left(\frac{1}{1 + \psi(\xi)} \right) \, d\xi < \infty.
 \]
- Suppose $d = 1$ and $\psi(\xi) = |\xi|(1 + i c \text{sgn}|\xi| \log |\xi|)$ for $0 \leq |c| \leq 2/\pi$. Then local times exist iff $c \neq 0$.

Davar Khoshnevisan (Salt Lake City, Utah)
Lévy processes and SPDEs
Copenhagen 2007
11 / 21
Consider the heat equation

\[\partial_t u(t, x) = (L_x u)(t, x) + \dot{W}(t, x), \]

where \(L_x \) is the generator of a Lévy process on \(\mathbb{R}^d \), acting on the variable \(x \).
A heat equation

Consider the heat equation

$$\partial_t u(t, x) = (L_x u)(t, x) + \dot{W}(t, x),$$

where L_x is the generator of a Lévy process on \mathbb{R}^d, acting on the variable x.

We call this the heat equation for L.
Consider the heat equation

\[\partial_t u(t, x) = (L_x u)(t, x) + \dot{W}(t, x), \]

where \(L_x \) is the generator of a Lévy process on \(\mathbb{R}^d \), acting on the variable \(x \).

We call this the heat equation for \(L \).

Fundamental questions:
Consider the heat equation

\[\partial_t u(t, x) = (L_x u)(t, x) + \dot{W}(t, x), \]

where L_x is the generator of a Lévy process on \mathbb{R}^d, acting on the variable x.

We call this the heat equation for L.

Fundamental questions:

- When is there a function-valued solution?

 [General answer by Dalang]
Consider the heat equation

\[\partial_t u(t, x) = (L_x u)(t, x) + \dot{W}(t, x), \]

where L_x is the generator of a Lévy process on \mathbb{R}^d, acting on the variable x.

We call this the \textit{heat equation for L}.

Fundamental questions:
- When is there a function-valued solution? [General answer by Dalang]
- When is there a continuous solution?
Consider the heat equation

$$\partial_t u(t, x) = (L_x u)(t, x) + \dot{W}(t, x),$$

where L_x is the generator of a Lévy process on \mathbb{R}^d, acting on the variable x.

We call this the heat equation for L.

Fundamental questions:

1. When is there a function-valued solution?
 [General answer by Dalang]
2. When is there a continuous solution?
3. When is there a Hölder-continuous solution?
Consider the heat equation

\[\partial_t u(t, x) = (L_x u)(t, x) + \dot{W}(t, x), \]

where \(L_x \) is the generator of a Lévy process on \(\mathbb{R}^d \), acting on the variable \(x \).

We call this the heat equation for \(L \).

Fundamental questions:

- When is there a function-valued solution?
 [General answer by Dalang]
- When is there a continuous solution?
- When is there a Hölder-continuous solution?
- Etc.
A heat equation

Theorem (K–Foondun–Nualart)
Let u denote the weak solution to the heat equation for L. Then, for all tempered functions φ and all $t, \lambda > 0$,

$$
\frac{1 - e^{-2\lambda t}}{2} \mathcal{E}_\lambda(\varphi, \varphi) \leq \mathbb{E}\left(|u(t, \varphi)|^2\right) \leq \frac{e^{2\lambda t}}{2} \mathcal{E}_\lambda(\varphi, \varphi),
$$

where

$$
\mathcal{E}_\lambda(\varphi, \psi) := \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \frac{\hat{\varphi}(\xi)\hat{\psi}(\xi)}{\lambda + \text{Re}\psi(\xi)} \, d\xi.
$$
Theorem (K–Foondun–Nualart)

Let \(u \) denote the weak solution to the heat equation for \(L \). Then, for all tempered functions \(\varphi \) and all \(t, \lambda > 0 \),

\[
1 - \frac{e^{-2\lambda t}}{2} \mathcal{E}_\lambda(\varphi, \varphi) \leq \mathbb{E}\left(|u(t, \varphi)|^2 \right) \leq \frac{e^{2\lambda t}}{2} \mathcal{E}_\lambda(\varphi, \varphi),
\]

where

\[
\mathcal{E}_\lambda(\varphi, \psi) := \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \frac{\hat{\varphi}(\xi)\hat{\psi}(\xi)}{\lambda + \text{Re}\psi(\xi)} \, d\xi.
\]

Corollary

\(\exists \) function-valued solutions iff \(\bar{X} \) has local times. The solution is continuous iff \(x \mapsto \lambda_t^x \) is.
In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_t^x$ and vice versa:
In fact, many [virtually all] of the properties of \(x \mapsto u(t, x) \) are inherited from \(x \mapsto \lambda_t^x \) and vice versa:

- Existence and continuity.
A heat equation

- In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_t^x$ and vice versa:
 - Existence and continuity.
 - Hölder continuity.
A heat equation

- In fact, many [virtually all] of the properties of \(x \mapsto u(t, x) \) are inherited from \(x \mapsto \lambda_t^x \) and vice versa:
 - Existence and continuity.
 - Hölder continuity.
 - \(p \)-variation of the paths
A heat equation

- In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_t^x$ and vice versa:
 - Existence and continuity.
 - Hölder continuity.
 - p-variation of the paths . . .
- \exists an embedding of the isomorphism theorem? [Dynkin; Brydges–Fröhlich–Spencer]
A heat equation

- In fact, many \([\text{virtually all}]\) of the properties of \(x \mapsto u(t, x)\) are inherited from \(x \mapsto \lambda_t^x\) and vice versa:
 - Existence and continuity.
 - Hölder continuity.
 - \(p\)-variation of the paths
- \(\exists\) an embedding of the isomorphism theorem? [Dynkin; Brydges–Fröhlich–Spencer]
- A final **Theorem** (K–Foondun–Nualart): \(t \mapsto u(t, \varphi)\) has a continuous version iff

\[
\int_1^\infty \frac{\mathcal{E}_\lambda(\varphi, \varphi)}{\lambda \sqrt{|\log \lambda|}} \, d\lambda < \infty.
\]

Davar Khoshnevisan (Salt Lake City, Utah)

Lévy processes and SPDEs

Copenhagen 2007
Recall:
\[\partial_t u(t, x) = (L_x u)(t, x) + \dot{W}(t, x). \] (HE)

We chose \(L \) to be the generator of a Lévy process only because there we have NASC.

Could have \(L := \) generator of a nice Markov process.

Theorem (K–Foondun–Nualart)

Let \(L := \) Laplacian on a "nice" fractal of \(\text{dim} = 2 - \alpha \) for \(\alpha \in (0, 2] \).

Then (HE) has function solutions that are in fact Hölder continuous.
Recall:

\[\partial_t u(t, x) = (L_x u)(t, x) + \dot{W}(t, x). \] (HE)

We chose \(L \) to be the generator of a Lévy process only because there we have NASC.
Recall:

\[\partial_t u(t, x) = (L_x u)(t, x) + \dot{W}(t, x). \]

(HE)

We chose L to be the generator of a Lévy process only because there we have NASC.

Could have $L :=$ generator of a nice Markov process.
Recall:

\[\partial_t u(t, x) = (L_x u)(t, x) + \dot{W}(t, x). \]

(HE)

We chose \(L \) to be the generator of a Lévy process only because there we have NASC.

Could have \(L := \) generator of a nice Markov process.

Theorem (K–Foondun–Nualart)

Let \(L := \) Laplacian on a “nice” fractal of \(\dim_H = 2 - \alpha \) for \(\alpha \in (0, 2] \). Then (HE) has function solutions that are in fact Hölder continuous.
Let \dot{L} be space–time Lévy noise with values in \mathbb{R}^d.

$E \exp (i \xi \cdot \dot{L}(A)) = \exp (-|A| \Psi(\xi))$ for $\xi \in \mathbb{R}^d$ and $A \in B(\mathbb{R}_+ \times \mathbb{R})$.

Assume:

Ψ is nonnegative real.

$\forall a > 0 \exists A_a > 0$ such that $\Psi(a \xi) \geq A_a \Psi(\xi)$.

Gauge function \exists and is finite, where $\Phi(\lambda) := \int_{\mathbb{R}^d} e^{-\lambda \Psi(\xi)} d\xi \forall \lambda > 0$.

Davar Khoshnevisan (Salt Lake City, Utah)
Let $\dot{L} := -$ be space–time Lévy noise with values in \mathbb{R}^d.

$E \exp(i \xi \cdot \dot{L}(A)) = \exp(-|A|\psi(\xi))$ for $\xi \in \mathbb{R}^d$ and $A \in \mathcal{B}(\mathbb{R}_+ \times \mathbb{R})$.

Assume:

1. ψ is nonnegative real.
2. $\forall a > 0 \exists \exists A_a > 0$ such that $\psi(a\xi) \geq A_a \psi(\xi)$.

Gauge function $\exists \Phi(\lambda)$ and is finite, where $\Phi(\lambda) := \int_{\mathbb{R}^d} e^{-\lambda \psi(\xi)} d\xi \forall \lambda > 0$.

Davar Khoshnevisan (Salt Lake City, Utah)

Lévy processes and SPDEs

Copenhagen 2007

16 / 21
System of wave equations

- Let \dot{L} be space–time Lévy noise with values in \mathbb{R}^d.
- $\mathbb{E} \exp(i\xi \cdot \dot{L}(A)) = \exp(-|A|\psi(\xi))$ for $\xi \in \mathbb{R}^d$ and $A \in \mathcal{B}(\mathbb{R}_+ \times \mathbb{R})$.
- Assume:
 - ψ is nonnegative real.
 - $\forall a > 0 \exists A_a > 0$ such that $\psi(a\xi) \geq A_a \psi(\xi)$.
 - Gauge function $\Phi(\lambda) := \int_{\mathbb{R}^d} e^{-\lambda \Psi(\xi)} d\xi \forall \lambda > 0$.
Let $\dot{L} :=$ be space–time Lévy noise with values in \mathbb{R}^d.
$E \exp(i\xi \cdot \dot{L}(A)) = \exp(-|A|\psi(\xi))$ for $\xi \in \mathbb{R}^d$ and $A \in \mathcal{B}(\mathbb{R}_+ \times \mathbb{R})$.
Assume:
ψ is nonnegative real.
Let \dot{L} be space–time Lévy noise with values in \mathbb{R}^d.

$$E \exp(i \xi \cdot \dot{L}(A)) = \exp(-|A| \psi(\xi)) \text{ for } \xi \in \mathbb{R}^d \text{ and } A \in \mathcal{B}(\mathbb{R}_+ \times \mathbb{R}).$$

Assume:

- ψ is nonnegative real.
- $\forall a > 0 \exists A_a > 0$ such that

$$\psi(a \xi) \geq A_a \psi(\xi).$$

[stable like]
Let $\dot{L} := L$ be space–time Lévy noise with values in \mathbb{R}^d.

$E \exp(i\xi \cdot \dot{L}(A)) = \exp(-|A|\Psi(\xi))$ for $\xi \in \mathbb{R}^d$ and $A \in \mathcal{B}(\mathbb{R}_+ \times \mathbb{R})$.

Assume:

- Ψ is nonnegative real.
- $\forall a > 0 \exists A_a > 0$ such that $\Psi(a\xi) \geq A_a\Psi(\xi)$.

Gauge function \exists and is finite, where

$$\Phi(\lambda) := \int_{\mathbb{R}^d} e^{-\lambda\Psi(\xi)} \, d\xi \quad \forall \lambda > 0.$$
Zeros of the solution

\[
\begin{align*}
\partial_{tt} u_i(t, x) &= \partial_{xx} u_i(x, t) + \dot{L}_i(t, x), \\
u_i(0, x) &= \partial_t u_i(0, x) = 0.
\end{align*}
\]
Zeros of the solution

\[
\begin{align*}
\partial_{tt} u_i(t, x) &= \partial_{xx} u_i(x, t) + \dot{L}_i(t, x), \\
u_i(0, x) &= \partial_t u_i(0, x) = 0.
\end{align*}
\]

Theorem (K–Nualart)

TFAE:

1. With positive probab. $u_i(t, x) = 0$ for some $t > 0$ and $x \in \mathbb{R}$.
2. Almost surely, $u_i(t, x) = 0$ for some $t > 0$ and $x \in \mathbb{R}$.
3. $\int_0^1 \lambda \Phi(\lambda) d\lambda < \infty$.
4. If $\int_0^1 \lambda \Phi(\lambda) d\lambda < \infty$, then almost surely, $\dim H u - 1 \{0\} = 2 - \limsup_{\lambda \downarrow 0} \frac{\log \Phi(\lambda)}{\log (1/\lambda)}$.

Davar Khoshnevisan (Salt Lake City, Utah)
Lévy processes and SPDEs
Copenhagen 2007
Zeros of the solution

\[
\begin{aligned}
\partial_{tt} u_i(t, x) &= \partial_{xx} u_i(x, t) + \dot{L}_i(t, x), \\
u_i(0, x) &= \partial_t u_i(0, x) = 0.
\end{aligned}
\]

Theorem (K–Nualart)

TFAE:

1. With positive probab. \(u(t, x) = 0 \) for some \(t > 0 \) and \(x \in \mathbb{R} \).
Zeros of the solution

\[\begin{align*}
\partial_{tt} u_i(t, x) &= \partial_{xx} u_i(x, t) + \dot{L}_i(t, x), \\
u_i(0, x) &= \partial_t u_i(0, x) = 0.
\end{align*} \]

Theorem (K–Nualart)

TFAE:

1. With positive probab. \(u(t, x) = 0 \) for some \(t > 0 \) and \(x \in \mathbb{R} \).
2. Almost surely, \(u(t, x) = 0 \) for some \(t > 0 \) and \(x \in \mathbb{R} \).
Zeros of the solution

\[
\begin{align*}
\partial_{tt} u_i(t, x) &= \partial_{xx} u_i(x, t) + \dot{L}_i(t, x), \\
u_i(0, x) &= \partial_t u_i(0, x) = 0.
\end{align*}
\]

Theorem (K–Nualart)

TFAE:

1. With positive probab. \(u(t, x) = 0 \) for some \(t > 0 \) and \(x \in \mathbb{R} \).
2. Almost surely, \(u(t, x) = 0 \) for some \(t > 0 \) and \(x \in \mathbb{R} \).
3. \(\int_0^1 \lambda \Phi(\lambda) d\lambda < \infty \).
Zeros of the solution

\[
\begin{align*}
\partial_{tt} u_i(t, x) &= \partial_{xx} u_i(x, t) + \dot{L}_i(t, x), \\
u_i(0, x) &= \partial_t u_i(0, x) = 0.
\end{align*}
\]

Theorem (K–Nualart)

TFAE:
1. With positive probab. \(u(t, x) = 0 \) for some \(t > 0 \) and \(x \in \mathbb{R} \).
2. Almost surely, \(u(t, x) = 0 \) for some \(t > 0 \) and \(x \in \mathbb{R} \).
3. \(\int_0^1 \lambda \Phi(\lambda) \, d\lambda < \infty \).
4. If \(\int_0^1 \lambda \Phi(\lambda) \, d\lambda < \infty \), then a.s.,

\[
\dim_{\mathbb{H}} u^{-1}\{0\} = 2 - \limsup_{\lambda \downarrow 0} \frac{\log \Phi(\lambda)}{\log(1/\lambda)}.
\]
Zeros of the solution

\[
\begin{align*}
\partial_{tt} u_i(t, x) &= \partial_{xx} u_i(x, t) + \dot{L}_i(t, x), \\
u_i(0, x) &= \partial_t u_i(0, x) = 0.
\end{align*}
\]
Zeros of the solution

\[
\begin{align*}
\partial_{tt} u_i(t, x) &= \partial_{xx} u_i(x, t) + \dot{L}_i(t, x), \\
u_i(0, x) &= \partial_t u_i(0, x) = 0.
\end{align*}
\]

Example

Suppose $\dot{L}_1, \ldots, \dot{L}_d$ are independent, $\dot{L}_j = \text{stable}(\alpha_j)$. Then:
Zeros of the solution

\[
\begin{align*}
\partial_{tt} u_i(t, x) &= \partial_{xx} u_i(x, t) + \dot{L}_i(t, x), \\
u_i(0, x) &= \partial_t u_i(0, x) = 0.
\end{align*}
\]

Example

Suppose \(\dot{L}_1, \ldots, \dot{L}_d \) are independent, \(\dot{L}_j = \text{stable}(\alpha_j) \). Then:

1. \(u \) has zeros iff \(\sum_{j=1}^{d} (1/\alpha_j) < 2 \).
Zeros of the solution

\[\begin{align*}
 \partial_{tt} u_i(t, x) &= \partial_{xx} u_i(x,t) + \dot{L}_i(t,x), \\
 u_i(0, x) &= \partial_t u_i(0, x) = 0.
\end{align*} \]

Example

Suppose $\dot{L}_1, \ldots, \dot{L}_d$ are independent, $\dot{L}_j = \text{stable}(\alpha_j)$. Then:

1. u has zeros iff $\sum_{j=1}^{d} (1/\alpha_j) < 2$.
2. If $\sum_{j=1}^{d} (1/\alpha_j) < 2$, then $\dim_H u^{-1}\{0\} = 2 - \sum_{j=1}^{d} (1/\alpha_j)$.
Idea of proof [existence part]

- WLOG consider $u(t, x)$ for $t, x \geq 0$.

Appeal to K–Shieh–Xiao.

Davar Khoshnevisan (Salt Lake City, Utah)
Lévy processes and SPDEs
Copenhagen 2007
WLOG consider $u(t, x)$ for $t, x \geq 0$.

$P\{0 \in u(G)\} \asymp P\{0 \in X(G)\}$, where

$$X(t, x) := X_1(t) + X_2(x),$$

where X_1, X_2 are i.i.d. Lévy processes, exponent Ψ.

[additive Lévy process]
Idea of proof [existence part]

- WLOG consider $u(t, x)$ for $t, x \geq 0$.
- $	ext{P}\{0 \in u(G)\} \asymp \text{P}\{0 \in X(G)\}$, where

$$X(t, x) := X_1(t) + X_2(x),$$

where X_1, X_2 are i.i.d. Lévy processes, exponent Ψ.

[additive Lévy process]

- Appeal to K–Shieh–Xiao.
Idea of proof [second part]

$$u(t, x) = \frac{1}{2} \dot{L}(C(t, x)),$$
where $C(t, x)$ is the “light cone” emanating from (t, x).
Idea of proof [zero-one law part]

The zero set in the black triangle depends on the noise through its “backward light cone,” shaded black/pink.

Therefore, $P\{u^{-1}(\{0\}) \neq \emptyset\}$ is zero or one.