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Problem 1

» The stochastic heat equation:

du(t,x) = (Axu)(t,x)+W(t,x) Vteo,xeRd.
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Problem 1

» The stochastic heat equation:
deu(t,x) = (Axu)(t,x) +W(t,x) Vte0,xcRY.

» Question: Why 3 function solutions only when d = 1?
(Walsh, Dalang—Frangos, Dalang, Pesat—Zabczyk)
» Answer: BM has local times only ind = 1.
In fact, 3 function solutions in dimension 2 — « for all a € (0, 2].
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Problem 2

» Weakly interacting system of stochastic wave equations:
d .
O Ui (t,x) = (Oxx Uj)(t,X) + Z QjWij(t,x) ¥xeR,t>0,
=1

ui(0,x) = dwui(0,x) =0,

Wy,...,Wy := i.i.d. white noises; Q = (Qy)¥,_y invert.
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Problem 2

» Weakly interacting system of stochastic wave equations:

d .

attui(t aX) = (8XXui)(t aX) + Z QIJWJ(t 7X) VX €R,t >0,
=1

ui(0,x) = dwui(0,x) =0,

Wy,...,Wy := i.i.d. white noises; Q = (Qy)¥,_y invert.
» Question: Whenis u(t,x) =0 forsomet > 0 and x € R?

» Answer: Iffd < 4.
(Orey—Pruitt, K, Dalang—Nualart; closely-related: LeGall)
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The standard equation

» W= {W(t, X)}>0xerd SPace-time white noise:
> {W(A) acss R+><Rd) = a centered gaussian process.

» Cov(W(A),W(B))=|ANB| VA,BCR, xRI.
» Identification via Wlener integrals:

/¢>de/0 /Rd (t, X)W (t, x) dx dt.
» The stochastic heat equation: 3(?)u := u(t,Xx)
[t >0,x €RY:
du(t,x) = (Axu)(t,x) +W(t,x).

» Fact 1: Function-valued solution Fiffd = 1.
» Rough explanation: Ax smooths; W makes rough.
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The heat equation

4
» Consider diu(t,x) = (Axu)(t,x) +f(t,x)

" e e
o 1 Yy
Qt(y) T (47Tt)d/2 eXp( 4t ) .
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The heat equation

v

Consider diu(t,x) = (Axu)(t,x) +f(t,x)

" e e
o 1 Yy
Qt(y) T (47Tt)d/2 exp( 4t ) .

Solution:

v

tx)—// Qus(x —y)f(s,y)dyds.
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The heat equation

v

Consider diu(t,x) = (Axu)(t,x) +f(t,x)

T Iy 2
1 _lyl®
Qt(y) T (47Tt)d/2 exp( 4t ) .
» Solution:
tx)—// Qi_s(x —y)f(s,y)dyds.
> Apply to “f := W ”
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> Ju(t,x) = (Axu)(t,x)+W(t,x).
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The stochastic heat equation

> Ju(t,x) = (Axu)(t,x)+W(t,x).
» Mild solution: If 3, then

u(tx) = [ [ Qe —y)(dyds).
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The stochastic heat equation

> Ju(t,x) = (Axu)(t,x)+W(t,x).
» Mild solution: If 3, then

t .
u(t, x) :/ / Qi_s(x — y)W(dy ds).
0 JRd
» Weak solution: A family u(t, ), for nicely tempered :
t .
u(t.0)i= [ [ Qs (cy ds).

“U(t, @) = Jro u(t, x)p(x)dx.”
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> Ju(t,x) = (Axu)(t,x)+W(t,x).
» Mild solution: If 3, then

t .
u(t, x) :/ / Qi_s(x — y)W(dy ds).
0 JRd
» Weak solution: A family u(t, ), for nicely tempered :
t .
u(t.0)i= [ [ Qs (cy ds).

“U(t, ) = Jrau(t, x)e(x)dx.”
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The stochastic heat equation

> du(t,x) = (Axu)(t,x) + W (t,x).
Mild solution: If 3, then

u(tx) = [ [ Qe —y)(dyds).

Weak solution: A family u(t, ¢), for nicely tempered ¢:

v

v

u(t.0)= [ [ (@csr @y i(ayas)
"U(Ep) = s UL X)pX)

¢ — u(t, ) is alinear gaussian distribution [It6; Menshov].
Need:

e (jueo ) = [,
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2
(Qi_s * ©)(y)| dyds < oco.
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The stochastic heat equation

» Plancherel’'s theorem:

b o

(Qus*@)(y)| dyds
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The stochastic heat equation

» Plancherel’'s theorem:

b o

t 2
= (;r)d | [ e 2 @) dgas

Qs *¢)(y)| dyds
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The stochastic heat equation

» Plancherel’'s theorem:

2
s+ 9)y)| dyds

e-2I6I20-5) (6 P
ey Lo e

el o—2t]lé?
2y Jra PO e
G H]
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The stochastic heat equation

» Plancherel’'s theorem:

2
s+ 9)y)| dyds

e-2I6I20-5) (6 P
ey Lo e

el o—2t]lé?
2y Jra PO e
G H]

» .. weak solution 3 iff o € H_»(RY). In fact,

~ 2
E (‘u(t,gp)r) xt/Rd 1’ft(§|)|’£”2dg.
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-
The stochastic heat equation

» Plancherel’'s theorem:

2
s+ 9)y)| dyds

e-2I6I20-5) (6 P
ey Lo e
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2y Jra PO e
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» .. weak solution 3 iff o € H_»(RY). In fact,

2 P&
e (o)) =t [, 2O ae.
(o) =t [, £ g e
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An explanation

> (Dalang-Frangos) Replace W (t,x) by F(t,x), where F is a
centered gaussian noise with Cov([ ¢dF , [ dF) =

J[ ot x)s A ORI — yl)(s y)dt dx dsy.

Z(S =t =HX_yH)
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for d > 1, depending on x [NASC].
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An explanation

> (Dalang-Frangos) Replace W (t,x) by F(t,x), where F is a
centered gaussian noise with Cov([ ¢dF , [ dF) =

J[ ot x)s A ORI — yl)(s y)dt dx dsy.

Z(S =t ,HX*VH)

» (Dalang—Frangos, Pesat—Zabczyk, Dalang) There can 3 solutions
for d > 1, depending on x [NASC].

» Explains the roughening effect of white noise.

» We propose to explain the smoothing effect of Ay.
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Lévy processes

» L := L?-generator of a Lévy process X in RY.
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Lévy processes

» L := L?-generator of a Lévy process X in RY.

» Normalization: Eexp(i& - X (t)) = exp(—tW(¢)), L(€) = —W(¢).
That is,

0L ax == [ F@aEwE)de,
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v
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Lévy processes

» L := L?-generator of a Lévy process X in RY.

» Normalization: Eexp(i& - X (t)) = exp(—tW(¢)), L(€) = —W(¢).
That is,

0L ax == [ F@aEwE)de,

Rd

v

Dom(L) := {f € L2(RY) : [uq [f(€)PReW(£)dE < oo}
X' := an independent copy of X; X (t) := X (t) — X'(t).

v
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Lévy processes

v

L := L2-generator of a Lévy process X in RY.

Normalization: Eexp(i¢ - X (t)) = exp(—tW(€)), L(€) = —w(¢).
That is,

v

0L ax == [ F@aEwE)de,

Rd

v

Dom(L) := {f € L2(RY) : [uq [f(€)PReW(£)dE < oo}
» X' := an independent copy of X; X(t) := X (t) — X'(t).

X is a Lévy process with char. exponent 2ReW.

v
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Local times

» \X:= local time of X, at place x and time t, when it exists.
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» Defining property: V Borel meas. f : RY — R, t >0,
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N
Local times

» \X:= local time of X, at place x and time t, when it exists.
» Defining property: V Borel meas. f : RY — R, t >0,

/f s)ds_/f ASdx  as.

> A = Oy(dx)/dx, where O{(E) := [5 1g(X(s))ds

Theorem (Hawkes)
X Hsoxera exists iff

/ 4
rRd 1+ ReW (&) )
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Examples and remarks

» Hawkes’ condition: [za(1+ReW(£))"1d¢ < oo.
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Examples and remarks

v

Hawkes’ condition: [z (1 + ReW(£))1dé < .

V(¢) = O(]|€]|?) [Bochner]. Therefore, local times can 3 only when
d=1,ifatall

Ifd =1and W(¢) = |£| then local times exist iff o > 1.

For general (nonsymmetric) Lévy processes, the Hawkes
condition is that

v

v

\4

/_ZRe(lfw> dé < oo,
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|
Examples and remarks

» Hawkes’ condition: [za(1+ReW(£))"1d¢ < oo.

> V(&) = O(||€|?) [Bochner]. Therefore, local times can 3 only when
d=1,ifatall

» Ifd =1 and V() = |£]|* then local times exist iff o > 1.

» For general (honsymmetric) Lévy processes, the Hawkes
condition is that

/_ZRe(lfw> dé < oo,

» Suppose d =1 and V() = [£[(1 + icsgn|é|log|¢]) for
0 <|c| < 2/x. Then local times exist iff ¢ £ 0.
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A heat equation

» Consider the heat equation
Apu(t,x) = (Lxu)(t,x) +W(t,x),

where Ly is the generator of a Lévy process on RY, acting on the
variable x.
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A heat equation

» Consider the heat equation
deu(t,x) = (Lxu)(t,x) +W(t,x),

where Ly is the generator of a Lévy process on RY, acting on the
variable x.
» We call this the heat equation for L.
» Fundamental questions:
» When is there a function-valued solution?
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A heat equation

» Consider the heat equation
deu(t,x) = (Lxu)(t,x) +W(t,x),

where Ly is the generator of a Lévy process on RY, acting on the
variable x.
» We call this the heat equation for L.
» Fundamental questions:
» When is there a function-valued solution?

» When is there a continuous solution?
» When is there a Holder-continuous solution?
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A heat equation

» Consider the heat equation
deu(t,x) = (Lxu)(t,x) +W(t,x),

where Ly is the generator of a Lévy process on RY, acting on the
variable x.
» We call this the heat equation for L.
» Fundamental questions:
» When is there a function-valued solution?

» When is there a continuous solution?
» When is there a Holder-continuous solution?
» Etc.
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A heat equation

Theorem (K—Foondun—Nualart)

Let u denote the weak solution to the heat equation for L. Then, for all
tempered functions ¢ and all t, A > 0,

1— e—2)\t eZ)\t
fé&(so,w) <E <|U(t,<,0)|2> < 763(%90),

where

de.

_ 1 29k
Elp, ) = (2m)d /Rd A+ ReV(§)
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A heat equation

Theorem (K—Foondun—Nualart)

Let u denote the weak solution to the heat equation for L. Then, for all
tempered functions ¢ and all t, A > 0,

1_e—2>\t 2
- - < < 2
5 E(p,p) < E(IU(t,so)l ) = (e, ),

where

de.

_ 1 29k
Elp, ) = (2m)d /Rd A+ ReV(§)
Corollary

3 function-valued solutions iff X has local times. The solution is
continuous iff X — A} is.
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» In fact, many of the properties of x — u(t,x) are
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A heat equation

» In fact, many of the properties of x — u(t,x) are
inherited from x — A¥ and vice versa:

» Existence and continuity.
» Holder continuity.
» p-variation of the paths ... .
» J an embedding of the isomorphism theorem? [Dynkin;
Brydges—Frohlich—Spencer]
» A final Theorem (K—Foondun—Nualart): t — u(t, ) has a
continuous version iff

/OO ENP:9) 4 < oo
1

A/ |log Al
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Solutions in dimension 2 — ¢

» Recall:
Au(t,x) = (Lxu)(t,x) + W (t,x). (HE)
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N
Solutions in dimension 2 — ¢

» Recall:
Au(t,x) = (Lxu)(t,x) + W (t,x). (HE)

» We chose L to be the generator of a Lévy process only because
there we have NASC.

» Could have L := generator of a nice Markov process.

Theorem (K—Foondun—Nualart)
Let L := Laplacian on a “nice” fractal of dim, =2 — a for a € (0, 2].
Then (HE) has function solutions that are in fact Holder continuous.
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System of wave equations

> LetL:=be space—time Lévy noise with values in RY.
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> LetL:=be space—time Lévy noise with values in RY.
» Eexp(i¢ - L(A)) = exp(—|A|W(€)) for ¢ € RY and A € (R, x R).
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> LetL:=be space—time Lévy noise with values in RY.
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» Va > 0dA, > 0 such that
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|
System of wave equations

LetL := be space—time Lévy noise with values in RY.
Eexp(i& - L(A)) = exp(—|A[W(&)) for € € RY and A € (R, x R).
Assume:

» WV is nonnegative real.
» Va > 0dA, > 0 such that

v

v

v

V(ag) = AV (§).

v

Gauge function 3 and is finite, where

S(N) = /d e VEOde  YAso.
R

Davar Khoshnevisan (Salt Lake City, Utah) Lévy processes and SPDEs Copenhagen 2007 16/21



|
Zeros of the solution

8ttui(t 7X) = 8XXui(X 7t) + LI(t 7X)7
uj(0,x) = dwu;(0,x) =0.
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attui(t 7X) = 8XXui(X 7t) + LI(t 7X)7
uj(0,x) = dwu;(0,x) =0.

Theorem (K—Nualart)
TFAE:
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Zeros of the solution

et (t,%) = Bl (X, 1) + Ly (1, %),
uj(0,x) = dwu;(0,x) =0.

Theorem (K—Nualart)
TFAE:
1. With positive probab. u(t,x) =0 for some t > 0 and x € R.

Davar Khoshnevisan (Salt Lake City, Utah) Lévy processes and SPDEs Copenhagen 2007 17/21



|
Zeros of the solution

et (t,%) = Bl (X, 1) + Ly (1, %),
uj(0,x) = dwu;(0,x) =0.

Theorem (K—Nualart)

TFAE:
1. With positive probab. u(t,x) =0 for some t > 0 and x € R.
2. Almost surely, u(t,x) =0 forsomet > 0and x € R.

Davar Khoshnevisan (Salt Lake City, Utah) Lévy processes and SPDEs Copenhagen 2007 17/21



|
Zeros of the solution

et (t,%) = Bl (X, 1) + Ly (1, %),
uj(0,x) = dwu;(0,x) =0.

Theorem (K—Nualart)

TFAE:
1. With positive probab. u(t,x) =0 for some t > 0 and x € R.
2. Almost surely, u(t,x) =0 forsomet > 0and x € R.
3. o Ad(\)dA < oc.

Davar Khoshnevisan (Salt Lake City, Utah) Lévy processes and SPDEs Copenhagen 2007 17/21



|
Zeros of the solution

O Ui (t,X) = Oxx Ui (X, 1) + Li(t ,X),
ui(0,x) = dwu;i(0,x) =0.

Theorem (K—Nualart)
TFAE:
1. With positive probab. u(t,x) =0 for some t > 0 and x € R.
2. Almost surely, u(t,x) =0 forsomet > 0and x € R.
3. o Ad(\)dA < oc.
4. 1f [3 Ad(A\)d X < oo, then as.,
dim,u~t{0} =2 — limsup log®(A)
AL0 lo

9(1/A)
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Zeros of the solution
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Zeros of the solution

attui(t ,X) = 8xxui(X ,t) + Li(t ,X),
uj(0,x) = dwu;(0,x) =0.

Example
Suppose Ly, ..., L4 are independent, L; = stable(e;). Then:
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Zeros of the solution

attui(t ,X) = 8xxui(X ,t) + Li(t ,X),
uj(0,x) = dwu;(0,x) =0.

Example

Suppose Lg,...,Lq are independent, L; = stable(c;). Then:
1. uhas zerosiff 37, (1/a) < 2.
2. 1f 3, (1/g) < 2, thendim, u={0} =2 -5, (1/cy).
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-
Idea of proof [existence part]

» WLOG consider u(t,x) fort,x > 0.
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Idea of proof [existence part]

» WLOG consider u(t,x) fort,x > 0.
» P{0 €u(G)} < P{0 e X(G)}, where

X(t ,X) = Xl(t) + Xz(X),

where X, X, are i.i.d. Lévy processes, exponent V.
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Idea of proof [existence part]

» WLOG consider u(t,x) fort,x > 0.
» P{0 €u(G)} < P{0 e X(G)}, where

X(t ,X) = Xl(t) + Xz(X),

where X, X, are i.i.d. Lévy processes, exponent V.

» Appeal to K—Shieh—Xiao.
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Idea of proof [second part]

u(t,x) = %L(%(t ,X)), where %(t,x) is the “light cone” emanating from

(t,x).
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Idea of proof [zero-one law part]

The zero set in the black triangle depends on the noise through its
“backward light cone,” shaded black/pink.

Therefore, P{u~1({0}) # @} is zero or one.

Davar Khoshnevisan (Salt Lake City, Utah) Lévy processes and SPDEs Copenhagen 2007 21/21



