Lecture 1 Measure and Dimension

Davar Khoshnevisan

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

Summer School on Lévy Processes: Theory and Applications August 9–12, 2007 Sandbjerg Manor, Denmark

The Minkowski dimension

▶ Suppose *F* is a bounded subset of \mathbb{R}^d , say $F \subseteq [0,1)^d$.

The Minkowski dimension

- ▶ Suppose *F* is a bounded subset of \mathbb{R}^d , say $F \subseteq [0,1)^d$.
- A *b*-adic subcube of $[0,1)^d$ of side b^{-n} has the form

$$[(j_1-1)b^{-n}, j_1b^{-n}) \times \cdots \times [(j_d-1)b^{-n}, j_db^{-n}),$$
 where $1 < j_1, \ldots, j_d < b^n$.

The Minkowski dimension

- ▶ Suppose *F* is a bounded subset of \mathbb{R}^d , say $F \subseteq [0,1)^d$.
- ▶ A *b*-adic subcube of $[0,1)^d$ of side b^{-n} has the form

$$[(j_1-1)b^{-n}, j_1b^{-n}) \times \cdots \times [(j_d-1)b^{-n}, j_db^{-n}),$$

where $1 \le j_1, ..., j_d \le b^n$.

Let $N_n(F)$ denote the number of b-adic subcubes of $[0,1)^d$ side b^{-n} that intersect F, where $b \ge 2$ is a fixed integer.

A much better example

Back to the Minkowski dimension

▶ Let $N_n(F)$ denote the number of *b*-adic subcubes of $[0,1)^d$ side b^{-n} that intersect F, where $b \ge 2$ is a fixed integer.

Back to the Minkowski dimension

- ▶ Let $N_n(F)$ denote the number of b-adic subcubes of $[0,1)^d$ side b^{-n} that intersect F, where b > 2 is a fixed integer.
- "The Minkowski dimension of F" is $\lim_{n\to\infty} \log_n N_n(F)/n$.

Back to the Minkowski dimension

- ▶ Let $N_n(F)$ denote the number of b-adic subcubes of $[0,1)^d$ side b^{-n} that intersect F, where $b \ge 2$ is a fixed integer.
- ▶ "The Minkowski dimension of F" is $\lim_{n\to\infty} \log_b N_n(F)/n$.
- ▶ That is, $N_n(F) = b^{o(n) + n \dim_M F}$ as $n \uparrow \infty$.

Sandbjerg Manor, 2007

1. $\lim_{n\to\infty} \log_b N_n(F)/n$ might not exist $[\exists \text{ counterexamples}].$

- 1. $\lim_{n\to\infty} \log_h N_n(F)/n$ might not exist $[\exists counterexamples].$
 - ► This is easy to address: Instead we define the "upper Minkowski dimension":

$$\overline{\dim}_{M}F:=\limsup_{\substack{n\to\infty}}\frac{\log_{b}N_{n}(F)}{n}.$$

- 1. $\lim_{n\to\infty} \log_b N_n(F)/n$ might not exist $[\exists \text{ counterexamples}].$
 - This is easy to address: Instead we define the "upper Minkowski dimension":

$$\overline{\dim}_{M}F := \limsup_{n \to \infty} \frac{\log_{b} N_{n}(F)}{n}.$$

2. Positive: Easy to compute.

- 1. $\lim_{n\to\infty} \log_b N_n(F)/n$ might not exist $[\exists \text{ counterexamples}].$
 - This is easy to address: Instead we define the "upper Minkowski dimension":

$$\overline{\dim}_{M}F := \limsup_{n \to \infty} \frac{\log_{b} N_{n}(F)}{n}.$$

- 2. Positive: Easy to compute.
- 3. Positive: $\overline{\dim}_{M} F$ does not depend on the base $b \ge 2$ [covering argument].

- 1. $\lim_{n\to\infty} \log_b N_n(F)/n$ might not exist $[\exists \text{ counterexamples}].$
 - This is easy to address: Instead we define the "upper Minkowski dimension":

$$\overline{\dim}_{\mathrm{M}}F:=\limsup_{n\to\infty}\frac{\log_b N_n(F)}{n}.$$

- 2. Positive: Easy to compute.
- 3. Positive: $\overline{\dim}_{M} F$ does not depend on the base $b \ge 2$ [covering argument].
- 4. Negative: \exists countable sets F with $\overline{\dim}_{M} F > 0$.

▶ Given: Real numbers $\epsilon, s > 0$, and a set $F \subseteq \mathbf{R}^d$.

- ▶ Given: Real numbers $\epsilon, s > 0$, and a set $F \subseteq \mathbf{R}^d$.
- ▶ $\mathscr{H}^{\epsilon}_{s}(F) := \inf \sum_{j=1}^{\infty} |\operatorname{diam}(F_{j})|^{s}$, where the inf is over all closed/open sets of diam $\leq \epsilon$ such that $F \subseteq \cup_{j=1}^{\infty} F_{j}$.

- ▶ Given: Real numbers $\epsilon, s > 0$, and a set $F \subseteq \mathbf{R}^d$.
- $\mathscr{H}^{\epsilon}_{s}(F) := \inf \sum_{j=1}^{\infty} |\operatorname{diam}(F_{j})|^{s}$, where the inf is over all closed/open sets of diam $\leq \epsilon$ such that $F \subseteq \bigcup_{i=1}^{\infty} F_{i}$.
- $\epsilon \mapsto \mathscr{H}^{\epsilon}_{s}(F)$ is nondecreasing.

Sandbjerg Manor, 2007

- ▶ Given: Real numbers $\epsilon, s > 0$, and a set $F \subseteq \mathbf{R}^d$.
- $\mathscr{H}^{\epsilon}_{s}(F) := \inf \sum_{j=1}^{\infty} |\operatorname{diam}(F_{j})|^{s}$, where the inf is over all closed/open sets of diam $\leq \epsilon$ such that $F \subseteq \bigcup_{i=1}^{\infty} F_{i}$.
- $\epsilon \mapsto \mathscr{H}^{\epsilon}_{s}(F)$ is nondecreasing.
- $\blacktriangleright \ \mathscr{H}_s(F) := \lim_{\epsilon \searrow 0} \mathscr{H}_s^{\epsilon}(F).$

Sandbjerg Manor, 2007

Theorem (Hausdorff)

Theorem (Hausdorff)

Theorem (Hausdorff)

- ▶ The restriction of \mathcal{H}_s to $\mathcal{B}(\mathbf{R}^d)$ is a [Borel] measure.

Theorem (Hausdorff)

- ▶ The restriction of \mathcal{H}_s to $\mathcal{B}(\mathbf{R}^d)$ is a [Borel] measure.
- $\mathscr{H}_d|_{\mathscr{B}(\mathbf{R}^d)} = c \times Lebesgue measure on \mathbf{R}^d$.

Definition (Hausdorff dimension)
dim, F is defined in two equivalent ways:

Definition (Hausdorff dimension)

dim_H *F* is defined in two equivalent ways:

1. $\sup\{s > 0 : \mathcal{H}_s(F) > 0\} [\sup \varnothing := 0];$

Definition (Hausdorff dimension)

dim_H F is defined in two equivalent ways:

- 1. $\sup\{s > 0 : \mathcal{H}_s(F) > 0\} [\sup \varnothing := 0];$
- 2. $\inf\{s > 0 : \mathscr{H}_s(F) < \infty\}.$

Definition (Hausdorff dimension)

dim_H F is defined in two equivalent ways:

- 1. $\sup\{s > 0 : \mathcal{H}_s(F) > 0\} [\sup \emptyset := 0];$
- 2. $\inf\{s>0: \mathcal{H}_s(F)<\infty\}$.

Definition (Hausdorff dimension)

dim, F is defined in two equivalent ways:

- 1. $\sup\{s>0: \mathcal{H}_s(F)>0\} [\sup \varnothing := 0];$
- 2. $\inf\{s>0: \mathcal{H}_s(F)<\infty\}$.

Lemma

1. If $\mathscr{H}_s(F) < \infty$, then $\mathscr{H}_{s+\delta}(F) = 0$ for all $\delta > 0$.

Definition (Hausdorff dimension)

dim_H F is defined in two equivalent ways:

- 1. $\sup\{s>0: \mathcal{H}_s(F)>0\} [\sup \varnothing := 0];$
- 2. $\inf\{s>0: \mathcal{H}_s(F)<\infty\}$.

- 1. If $\mathscr{H}_s(F) < \infty$, then $\mathscr{H}_{s+\delta}(F) = 0$ for all $\delta > 0$.
- 2. If $\mathscr{H}_s(F) = \infty$, then $\mathscr{H}_{s-\delta}(F) = \infty$ for all $\delta \in (0,s)$.

Definition (Hausdorff dimension)

dim_H F is defined in two equivalent ways:

- 1. $\sup\{s>0: \mathcal{H}_s(F)>0\} [\sup \varnothing := 0];$
- 2. $\inf\{s>0: \mathscr{H}_s(F)<\infty\}$.

- 1. If $\mathcal{H}_s(F) < \infty$, then $\mathcal{H}_{s+\delta}(F) = 0$ for all $\delta > 0$.
- 2. If $\mathscr{H}_s(F) = \infty$, then $\mathscr{H}_{s-\delta}(F) = \infty$ for all $\delta \in (0,s)$.
- 3. $\mathscr{H}_{d+\delta}(F) = 0 \Rightarrow \dim_{H} F \in [0, d].$

Definition (Hausdorff dimension)

dim_H F is defined in two equivalent ways:

- 1. $\sup\{s>0: \mathcal{H}_s(F)>0\} [\sup \varnothing := 0];$
- 2. $\inf\{s>0: \mathcal{H}_s(F)<\infty\}$.

- 1. If $\mathcal{H}_s(F) < \infty$, then $\mathcal{H}_{s+\delta}(F) = 0$ for all $\delta > 0$.
- 2. If $\mathscr{H}_s(F) = \infty$, then $\mathscr{H}_{s-\delta}(F) = \infty$ for all $\delta \in (0,s)$.
- 3. $\mathscr{H}_{d+\delta}(F) = 0 \Rightarrow \dim_{H} F \in [0, d].$
- 4. $(\sigma$ -regularity) $\dim_{\mathsf{H}} \cup_{j=1}^{\infty} F_j = \sup_{j \ge 1} \dim_{\mathsf{H}} F_j$.

▶ Given: Real numbers $\epsilon, s > 0$, an integer $b \ge 2$, and a set $F \subseteq \mathbf{R}^d$.

- ▶ Given: Real numbers $\epsilon, s > 0$, an integer $b \ge 2$, and a set $F \subseteq \mathbf{R}^d$.
- ▶ $\mathcal{N}_s^{b,\epsilon}(F) := \inf \sum_{j=1}^{\infty} |\operatorname{diam}(F_j)|^s$, where the inf is over all *b*-adic cubes of diam $\leq \epsilon$ such that $F \subseteq \bigcup_{j=1}^{\infty} F_j$.

- ▶ Given: Real numbers $\epsilon, s > 0$, an integer $b \ge 2$, and a set $F \subseteq \mathbf{R}^d$.
- ▶ $\mathcal{N}_s^{b,\epsilon}(F) := \inf \sum_{j=1}^{\infty} |\operatorname{diam}(F_j)|^s$, where the inf is over all *b*-adic cubes of diam $\leq \epsilon$ such that $F \subseteq \bigcup_{j=1}^{\infty} F_j$.
- ► Advantage: WLOG the F_i's are disjoint.

Sandbjerg Manor, 2007

- ▶ Given: Real numbers $\epsilon, s > 0$, an integer $b \ge 2$, and a set $F \subseteq \mathbf{R}^d$.
- ▶ $\mathcal{N}_s^{b,\epsilon}(F) := \inf \sum_{j=1}^{\infty} |\operatorname{diam}(F_j)|^s$, where the inf is over all *b*-adic cubes of diam $\leq \epsilon$ such that $F \subseteq \bigcup_{j=1}^{\infty} F_j$.
- ► Advantage: WLOG the F_i's are disjoint.
- $\epsilon \mapsto \mathscr{N}_s^{b,\epsilon}(F)$ is nondecreasing.

- ▶ Given: Real numbers $\epsilon, s > 0$, an integer $b \ge 2$, and a set $F \subseteq \mathbf{R}^d$.
- ▶ $\mathcal{N}_s^{b,\epsilon}(F) := \inf \sum_{j=1}^{\infty} |\operatorname{diam}(F_j)|^s$, where the inf is over all *b*-adic cubes of diam $\leq \epsilon$ such that $F \subseteq \bigcup_{j=1}^{\infty} F_j$.
- ► Advantage: WLOG the F_i's are disjoint.
- $\bullet \ \epsilon \mapsto \mathscr{N}_{s}^{b,\epsilon}(F)$ is nondecreasing.

Equivalence of Hausdorff–Besicovitch measures

► Fact 1: $\mathcal{H}_s(F) \leq \mathcal{N}_s^b(F)$ [The interior of a *b*-adic cube is an open set.]

Equivalence of Hausdorff–Besicovitch measures

- ► Fact 1: $\mathcal{H}_s(F) \leq \mathcal{N}_s^b(F)$ [The interior of a *b*-adic cube is an open set.]
- ▶ Fact 2: $\mathcal{N}_s^b(F) \leq 2^d c^s \mathcal{H}_s(F)$ [E.g., for the ℓ^∞ metric on \mathbf{R}^d , c=1: An open set of diam $\leq b^{-n}$ can be covered by at most 2^d b-adic cubes of diam b^{-n}]

Equivalence of Hausdorff–Besicovitch measures

- ► Fact 1: $\mathcal{H}_s(F) \leq \mathcal{N}_s^b(F)$ [The interior of a *b*-adic cube is an open set.]
- ► Fact 2: $\mathcal{N}_s^b(F) \leq 2^d c^s \mathcal{H}_s(F)$ [E.g., for the ℓ^{∞} metric on \mathbf{R}^d , c = 1: An open set of diam $\leq b^{-n}$ can be covered by at most 2^d b-adic cubes of diam b^{-n}]
- ▶ ∴ $\dim_H F$ is also equal to $\sup\{s>0: \mathscr{N}_s^b(F)>0\}=\inf\{s>0: \mathscr{N}_s^b(F)<\infty\},$ for any and all integers $b\geq 2$.

Corollary

If $\mathscr{H}_s(F) < \infty$ then $\dim_{_H} F \leq s$.

Corollary

If $\mathscr{H}_s(F) < \infty$ then $\dim_{_{\! H}} F \leq s$.

Corollary

If $\mathscr{H}_s(F) < \infty$ then $\dim_{_{\! \! H}} F \leq s$.

Example

► Let *C* denote the standard ternary Cantor set in [0,1]. At the *n*th stage of its construction, *C* is covered by 2ⁿ intervals of length/diameter 3⁻ⁿ each.

Corollary

If $\mathscr{H}_s(F) < \infty$ then $\dim_{_{\!\!H}} F \leq s$.

- ► Let *C* denote the standard ternary Cantor set in [0,1]. At the *n*th stage of its construction, *C* is covered by 2ⁿ intervals of length/diameter 3⁻ⁿ each.
- ► Therefore, $\mathcal{H}_{\log_2 2}^{3^{-n}}(C) \leq 2^n \cdot 3^{-ns} = 1$.

Corollary

If $\mathscr{H}_s(F) < \infty$ then $\dim_{_{\!\!H}} F \leq s$.

- ► Let *C* denote the standard ternary Cantor set in [0,1]. At the *n*th stage of its construction, *C* is covered by 2ⁿ intervals of length/diameter 3⁻ⁿ each.
- ► Therefore, $\mathcal{H}_{\log_2 2}^{3^{-n}}(C) \leq 2^n \cdot 3^{-ns} = 1$.
- ▶ Let $\epsilon \searrow 0$ [$n \nearrow \infty$] to deduce that $\mathcal{H}_{\log_3 2}(C) \le 1$.

Corollary

If $\mathscr{H}_s(F) < \infty$ then $\dim_{_{\!\!H}} F \leq s$.

- ► Let *C* denote the standard ternary Cantor set in [0,1]. At the *n*th stage of its construction, *C* is covered by 2ⁿ intervals of length/diameter 3⁻ⁿ each.
- ► Therefore, $\mathcal{H}_{\log_3 2}^{3^{-n}}(C) \le 2^n \cdot 3^{-ns} = 1$.
- ▶ Let $\epsilon \searrow 0$ [$n \nearrow \infty$] to deduce that $\mathcal{H}_{\log_3 2}(C) \le 1$.
- ▶ Thus, we obtain $\dim_{H} C \le \log_3 2 \approx 0.6309$.

Corollary

If $\mathscr{H}_s(F) < \infty$ then $\dim_{_{\!\!H}} F \leq s$.

Example

- ► Let *C* denote the standard ternary Cantor set in [0,1]. At the *n*th stage of its construction, *C* is covered by 2ⁿ intervals of length/diameter 3⁻ⁿ each.
- ► Therefore, $\mathcal{H}_{\log_3 2}^{3^{-n}}(C) \le 2^n \cdot 3^{-ns} = 1$.
- ▶ Let $\epsilon \searrow 0$ [$n \nearrow \infty$] to deduce that $\mathcal{H}_{\log_3 2}(C) \le 1$.
- ▶ Thus, we obtain $\dim_{H} C \leq \log_3 2 \approx 0.6309$.
- We will prove later that this is an equality [Hausdorff].

Sandbierg Manor, 2007

Let *W* be standard *d*-dimensional Brownian motion; W(0) = 0.

- Let W be standard d-dimensional Brownian motion; W(0) = 0.
- ▶ Goal: $\dim_H W([0,1]) \le \min(d,2)$ a.s. We will soon prove that this is an identity.

- Let W be standard d-dimensional Brownian motion; W(0) = 0.
- ▶ Goal: $\dim_H W([0,1]) \le \min(d,2)$ a.s. We will soon prove that this is an identity.
- ► The same proof will show that $\dim_H W([0, n]) \le \min(d, 2)$ a.s. σ -regularity $\Rightarrow \dim_H W(\mathbf{R}_+) \le \min(d, 2)$ a.s.

- Let W be standard d-dimensional Brownian motion; W(0) = 0.
- ▶ Goal: $\dim_H W([0,1]) \le \min(d,2)$ a.s. We will soon prove that this is an identity.
- ► The same proof will show that $\dim_H W([0, n]) \le \min(d, 2)$ a.s. σ -regularity $\Rightarrow \dim_H W(\mathbf{R}_+) \le \min(d, 2)$ a.s.
- ▶ Fact: $\forall \eta \in (0, 1/2)$, there a.s. exists a random variable V_{η} such that $|W(t) W(s)| \le V_{\eta} |t s|^{\frac{1}{2} \eta}$ for all $s, t \in [0, 1]$.

- Let W be standard d-dimensional Brownian motion; W(0) = 0.
- ▶ Goal: $\dim_H W([0,1]) \le \min(d,2)$ a.s. We will soon prove that this is an identity.
- ► The same proof will show that $\dim_H W([0, n]) \le \min(d, 2)$ a.s. σ -regularity $\Rightarrow \dim_H W(\mathbf{R}_+) \le \min(d, 2)$ a.s.
- ▶ Fact: $\forall \eta \in (0, 1/2)$, there a.s. exists a random variable V_{η} such that $|W(t) W(s)| \le V_{\eta} |t s|^{\frac{1}{2} \eta}$ for all $s, t \in [0, 1]$.
- ▶ Let $F_j := [j/n, (j+1)/n]$ for j = 0, ..., n-1. Then, with probab. one, diam $W(F_j) \le V_{\eta} n^{-\frac{1}{2} + \eta} := \epsilon \ \forall j$.

- Let W be standard d-dimensional Brownian motion; W(0) = 0.
- ▶ Goal: $\dim_H W([0,1]) \le \min(d,2)$ a.s. We will soon prove that this is an identity.
- ► The same proof will show that $\dim_H W([0,n]) \le \min(d,2)$ a.s. σ -regularity $\Rightarrow \dim_H W(\mathbf{R}_+) \le \min(d,2)$ a.s.
- ▶ Fact: $\forall \eta \in (0, 1/2)$, there a.s. exists a random variable V_{η} such that $|W(t) W(s)| \le V_{\eta} |t s|^{\frac{1}{2} \eta}$ for all $s, t \in [0, 1]$.
- ▶ Let $F_j := [j/n, (j+1)/n]$ for j = 0, ..., n-1. Then, with probab. one, diam $W(F_j) \le V_{\eta} n^{-\frac{1}{2} + \eta} := \epsilon \ \forall j$.
- $\mathscr{H}^{\epsilon}_{s}(W([0,1])) \leq V_{\eta} n^{1-\frac{s}{2}+s\eta} \Rightarrow \mathscr{H}_{s}(W([0,1])) < \infty \text{ a.s. for } s = (\frac{1}{2} \eta)^{-1}.$

- Let W be standard d-dimensional Brownian motion; W(0) = 0.
- ▶ Goal: $\dim_H W([0,1]) \le \min(d,2)$ a.s. We will soon prove that this is an identity.
- ► The same proof will show that $\dim_H W([0, n]) \le \min(d, 2)$ a.s. σ -regularity $\Rightarrow \dim_H W(\mathbf{R}_+) \le \min(d, 2)$ a.s.
- ▶ Fact: $\forall \eta \in (0, 1/2)$, there a.s. exists a random variable V_{η} such that $|W(t) W(s)| \le V_{\eta} |t s|^{\frac{1}{2} \eta}$ for all $s, t \in [0, 1]$.
- ▶ Let $F_j := [j/n, (j+1)/n]$ for j = 0, ..., n-1. Then, with probab. one, diam $W(F_j) \le V_{\eta} n^{-\frac{1}{2} + \eta} := \epsilon \ \forall j$.
- $\mathscr{H}_{s}^{\epsilon}(W([0,1])) \leq V_{\eta} n^{1-\frac{s}{2}+s\eta} \Rightarrow \mathscr{H}_{s}(W([0,1])) < \infty \text{ a.s. for } s = (\frac{1}{2} \eta)^{-1}.$
- ▶ ∴ $\dim_H W([0,1]) \le 2$ a.s. We are done because $W([0,1]) \subset \mathbf{R}_Q^G$

 $\mathscr{P}(F) := \text{all probability measures that are supported in } F.$

 $\mathscr{P}(F) := \text{all probability measures that are supported in } F.$

Theorem (Frostman, 1935)

Let F be a bounded meas. subset of \mathbf{R}^d . Suppose there exists s>0 and $\mu\in\mathscr{P}(F)$ such that

$$I_{s}(\mu) := \iint \frac{\mu(dx)\,\mu(dy)}{|x-y|^{s}} < \infty.$$

Then, $\dim_{_{\rm H}} F \geq s$.

 $\mathscr{P}(F) := \text{all probability measures that are supported in } F.$

Theorem (Frostman, 1935)

Let F be a bounded meas. subset of \mathbf{R}^d . Suppose there exists s > 0 and $\mu \in \mathscr{P}(F)$ such that

$$I_{s}(\mu) := \iint \frac{\mu(dx)\,\mu(dy)}{|x-y|^{s}} < \infty.$$

Then, $\dim_{_{\rm H}} F \geq s$.

▶ $I_s(\mu) := \text{the } s\text{-dimensional [Bessel-] Riesz energy of } \mu$.

Proof: Let $\{F_j\}$ denote a covering of F by dyadic cubes. We can assume WLOG that $F_i \cap F_j = \emptyset$ if $i \neq j$.

Proof: Let $\{F_i\}$ denote a covering of F by dyadic cubes. We can assume WLOG that $F_i \cap F_i = \emptyset$ if $i \neq j$.

$$I_s(\mu) = \sum_{i,j=1}^{\infty} \int_{F_i} \int_{F_j} \frac{\mu(dx) \mu(dy)}{|x-y|^s}$$

Proof: Let $\{F_j\}$ denote a covering of F by dyadic cubes. We can assume WLOG that $F_i \cap F_j = \emptyset$ if $i \neq j$.

$$I_{s}(\mu) = \sum_{i,j=1}^{\infty} \int_{F_{i}} \int_{F_{j}} \frac{\mu(dx) \, \mu(dy)}{|x-y|^{s}} \ge \sum_{i=1}^{\infty} \frac{\left|\mu(F_{i})\right|^{2}}{\left|\text{diam}(F_{i})\right|^{s}}$$

Proof: Let $\{F_j\}$ denote a covering of F by dyadic cubes. We can assume WLOG that $F_i \cap F_j = \emptyset$ if $i \neq j$.

$$I_{s}(\mu) = \sum_{i,j=1}^{\infty} \int_{F_{i}} \int_{F_{j}} \frac{\mu(dx) \mu(dy)}{|x-y|^{s}} \ge \sum_{i=1}^{\infty} \frac{\left|\mu(F_{i})\right|^{2}}{\left|\operatorname{diam}(F_{i})\right|^{s}}$$

$$\ge \left(\sum_{i=1}^{\infty} \left|\operatorname{diam}(F_{j})\right|^{s}\right)^{-1}, \text{ since } E(1/Z) \ge 1/E(Z).$$

Simply take $Z = |\text{diam}(F_J)|^s/\mu(F_J)$, where $P\{J = j\} = \mu(F_j)$.

Proof: Let $\{F_j\}$ denote a covering of F by dyadic cubes. We can assume WLOG that $F_i \cap F_j = \emptyset$ if $i \neq j$.

$$I_{s}(\mu) = \sum_{i,j=1}^{\infty} \int_{F_{i}} \int_{F_{j}} \frac{\mu(dx) \mu(dy)}{|x-y|^{s}} \ge \sum_{i=1}^{\infty} \frac{\left|\mu(F_{i})\right|^{2}}{\left|\operatorname{diam}(F_{i})\right|^{s}}$$

$$\ge \left(\sum_{i=1}^{\infty} \left|\operatorname{diam}(F_{j})\right|^{s}\right)^{-1}, \text{ since } E(1/Z) \ge 1/E(Z).$$

Simply take $Z = |\text{diam}(F_J)|^s/\mu(F_J)$, where $P\{J = j\} = \mu(F_j)$. $\mathcal{N}_c^2(F) \ge 1/I_s(\mu) > 0$.

▶ Write all $x \in [0, 1]$ as $x := \sum_{j=1}^{\infty} x_j 3^{-j}$, where $x_j \in \{0, 1, 2\}$.

- ▶ Write all $x \in [0, 1]$ as $x := \sum_{j=1}^{\infty} x_j 3^{-j}$, where $x_j \in \{0, 1, 2\}$.
- $C := \{x \in [0,1] : x_j \in \{0,2\}\}.$

- ▶ Write all $x \in [0, 1]$ as $x := \sum_{j=1}^{\infty} x_j 3^{-j}$, where $x_j \in \{0, 1, 2\}$.
- $C := \{x \in [0,1] : x_i \in \{0,2\}\}.$
- ► The most natural probab. meas. on C is the uniform distribution: X_1, X_2, \ldots i.i.d. $P\{X_1 = 0\} = P\{X_1 = 2\} = 1/2$. $X := \sum_{i=1}^{\infty} X_i 3^{-i}$.

- ▶ Write all $x \in [0, 1]$ as $x := \sum_{i=1}^{\infty} x_i 3^{-i}$, where $x_i \in \{0, 1, 2\}$.
- $C := \{x \in [0,1] : x_i \in \{0,2\}\}.$
- ► The most natural probab. meas. on C is the uniform distribution: X_1, X_2, \ldots i.i.d. $P\{X_1 = 0\} = P\{X_1 = 2\} = 1/2$. $X := \sum_{j=1}^{\infty} X_j 3^{-j}$.
- ▶ $\mu(A) := P\{X \in A\}$. Cantor–Lebesgue measure We will prove that $I_s(\mu) < \infty$ for all $s \in (0, \log_3 2)$.

$$I_s(\mu) = \iint |x - y|^{-s} \, \mu(dx) \, \mu(dy)$$

$$I_s(\mu) = \iint |x - y|^{-s} \, \mu(dx) \, \mu(dy)$$

► $I_s(\mu) = \iint |x - y|^{-s} \mu(dx) \mu(dy) = E(|X - Y|^{-s})$, where Y is an independent copy of X.

- ▶ $I_s(\mu) = \iint |x y|^{-s} \mu(dx) \mu(dy) = E(|X Y|^{-s})$, where Y is an independent copy of X.
- ▶ But

$$|X - Y| \ge \frac{2}{3^N} - \sum_{j=N+1}^{\infty} \frac{|X_j - Y_j|}{3^j} \ge \frac{1}{3^N},$$

where $N := \min\{j : X_j \neq Y_j\}$. Therefore, $I_s(\mu) \leq E[3^{Ns}]$.

- ▶ $I_s(\mu) = \iint |x y|^{-s} \mu(dx) \mu(dy) = E(|X Y|^{-s})$, where Y is an independent copy of X.
- But

$$|X - Y| \ge \frac{2}{3^N} - \sum_{j=N+1}^{\infty} \frac{|X_j - Y_j|}{3^j} \ge \frac{1}{3^N},$$

where $N := \min\{j : X_j \neq Y_j\}$. Therefore, $I_s(\mu) \leq E[3^{Ns}]$.

▶ $P{N = k} = 2^{-k}$ for $k \ge 1$ [geometric distribution].

- ▶ $I_s(\mu) = \iint |x y|^{-s} \mu(dx) \mu(dy) = E(|X Y|^{-s})$, where Y is an independent copy of X.
- ▶ But

$$|X - Y| \ge \frac{2}{3^N} - \sum_{j=N+1}^{\infty} \frac{|X_j - Y_j|}{3^j} \ge \frac{1}{3^N},$$

where $N := \min\{j : X_j \neq Y_j\}$. Therefore, $I_s(\mu) \leq E[3^{Ns}]$.

- ▶ $P{N = k} = 2^{-k}$ for $k \ge 1$ [geometric distribution].
- ► $E[3^{Ns}] = \sum_{k=1}^{\infty} 3^{ks} 2^{-k} < \infty$ iff $s < \log_3 2$.

The Cantor-Lebesgue function

$$c(x) := \mu([0, x]) \Rightarrow c'(x) = 0$$
 a.e., $c(0) = 0$, $c(1) = 1$, $c = continuous$.

Theorem (Lévy) $\dim_H W([0,1]) = \min(d,2) \ a.s.$

Theorem (Lévy)

$$\dim_{H} W([0,1]) = \min(d,2) \text{ a.s.}$$

Suffices to prove that dim_H W([0,1]) ≥ min(d,2); we proved the other bound earlier.

Theorem (Lévy)

 $\dim_{H} W([0,1]) = \min(d,2) \text{ a.s.}$

- ▶ Suffices to prove that $\dim_H W([0,1]) \ge \min(d,2)$; we proved the other bound earlier.
- ▶ Need a probability measure on W([0,1]) such that $I_s(\mu) < \infty$ a.s. for $s < \min(d,2)$.

•
$$\mu(A) := \int_0^1 \mathbf{1}_A(W(u)) du$$
; $\mu \in \mathscr{P}(W([0,1]))$.

- $\mu(A) := \int_0^1 \mathbf{1}_A(W(u)) du$; $\mu \in \mathscr{P}(W([0,1]))$.
- $I_s(\mu) = \int_0^1 \int_0^1 |W(v) W(u)|^{-s} du dv.$

Sandbjerg Manor, 2007

- $\mu(A) := \int_0^1 \mathbf{1}_A(W(u)) du$; $\mu \in \mathscr{P}(W([0,1]))$.
- $I_s(\mu) = \int_0^1 \int_0^1 |W(v) W(u)|^{-s} du dv.$
- ► $E(I_s(\mu)) = \int_0^1 \int_0^1 |u v|^{-s/2} du dv \times E(|Z|^{-s})$, where Z is a vector of d i.i.d. N(0, 1)'s.

- $\mu(A) := \int_0^1 \mathbf{1}_A(W(u)) du; \, \mu \in \mathscr{P}(W([0,1])).$
- $I_s(\mu) = \int_0^1 \int_0^1 |W(v) W(u)|^{-s} du dv.$
- ► $E(I_s(\mu)) = \int_0^1 \int_0^1 |u v|^{-s/2} du dv \times E(|Z|^{-s})$, where Z is a vector of d i.i.d. N(0, 1)'s.
- ▶ $\int_0^1 \int_0^1 |u v|^{-s/2} du dv < \infty$ iff s < 2.

- $\mu(A) := \int_0^1 \mathbf{1}_A(W(u)) du; \, \mu \in \mathscr{P}(W([0,1])).$
- $I_s(\mu) = \int_0^1 \int_0^1 |W(v) W(u)|^{-s} du dv.$
- ► $E(I_s(\mu)) = \int_0^1 \int_0^1 |u v|^{-s/2} du dv \times E(|Z|^{-s})$, where Z is a vector of d i.i.d. N(0, 1)'s.
- ► $\int_0^1 \int_0^1 |u v|^{-s/2} du dv < \infty$ iff s < 2.
- ▶ $E(|Z|^{-s}) < \infty$ iff s < d [Polar coordinates].

- $\mu(A) := \int_0^1 \mathbf{1}_A(W(u)) du; \, \mu \in \mathscr{P}(W([0,1])).$
- $I_s(\mu) = \int_0^1 \int_0^1 |W(v) W(u)|^{-s} du dv.$
- ► $E(I_s(\mu)) = \int_0^1 \int_0^1 |u v|^{-s/2} du dv \times E(|Z|^{-s})$, where Z is a vector of d i.i.d. N(0, 1)'s.
- ► $\int_0^1 \int_0^1 |u v|^{-s/2} du dv < \infty$ iff s < 2.
- ▶ $E(|Z|^{-s}) < \infty$ iff s < d [Polar coordinates].
- $\blacktriangleright \ s < d \land 2 \Rightarrow \mathit{I}_{s}(\mu) \overset{\text{a.s.}}{<} \infty \Rightarrow \dim_{_{\mathsf{H}}} W([0\,,1]) \overset{\text{a.s.}}{\geq} d \land 2. \blacksquare$

1. Prove:
$$F := \bigcup_{n=1}^{\infty} \{1/n\} \Rightarrow \overline{\dim}_{M} F = 1/2 > 0 = \dim_{H} F$$
.

- 1. Prove: $F := \bigcup_{n=1}^{\infty} \{1/n\} \Rightarrow \overline{\dim}_{M} F = 1/2 > 0 = \dim_{H} F$.
- 2. Prove that always, $\dim_{H} F \leq \overline{\dim}_{M} F$.

- 1. Prove: $F := \bigcup_{n=1}^{\infty} \{1/n\} \Rightarrow \overline{\dim}_{M} F = 1/2 > 0 = \dim_{H} F$.
- 2. Prove that *always*, $\dim_{H} F \leq \overline{\dim}_{M} F$.
- 3. Prove that $\overline{\dim}_{M} C = \log_3 2$.

- 1. Prove: $F := \bigcup_{n=1}^{\infty} \{1/n\} \Rightarrow \overline{\dim}_{M} F = 1/2 > 0 = \dim_{H} F$.
- 2. Prove that always, $\dim_{H} F \leq \overline{\dim}_{M} F$.
- 3. Prove that $\overline{\dim}_{M} C = \log_3 2$.
- 4. Compute $\dim(C \times C)$, where $\dim = \dim_H$ or $\overline{\dim}_M$, and C := Cantor's set.

- 1. Prove: $F := \bigcup_{n=1}^{\infty} \{1/n\} \Rightarrow \overline{\dim}_{M} F = 1/2 > 0 = \dim_{H} F$.
- 2. Prove that always, $\dim_{H} F \leq \overline{\dim}_{M} F$.
- 3. Prove that $\overline{\dim}_{M} C = \log_3 2$.
- 4. Compute $\dim(C \times C)$, where $\dim = \dim_H \text{ or } \overline{\dim}_M$, and C := Cantor's set.
- 5. Prove that $\overline{\dim}_{M} W([0,1]) = \min(d,2)$ a.s.

- 1. Prove: $F := \bigcup_{n=1}^{\infty} \{1/n\} \Rightarrow \overline{\dim}_{M} F = 1/2 > 0 = \dim_{H} F$.
- 2. Prove that *always*, $\dim_{H} F \leq \overline{\dim}_{M} F$.
- 3. Prove that $\overline{\dim}_{M} C = \log_3 2$.
- 4. Compute $\dim(C \times C)$, where $\dim = \dim_H \text{ or } \overline{\dim}_M$, and C := Cantor's set.
- 5. Prove that $\overline{\dim}_{M} W([0,1]) = \min(d,2)$ a.s.
- 6. Prove that for all compact nonrandom sets $E \subset [0,1]$, $\dim W(E) = \min(d, 2\dim E)$ a.s., where $\dim := \dim_H \text{ or } \overline{\dim}_M$ everywhere.

- 1. Prove: $F := \bigcup_{n=1}^{\infty} \{1/n\} \Rightarrow \overline{\dim}_{M} F = 1/2 > 0 = \dim_{H} F$.
- 2. Prove that *always*, $\dim_{H} F \leq \overline{\dim}_{M} F$.
- 3. Prove that $\overline{\dim}_{M} C = \log_3 2$.
- 4. Compute $\dim(C \times C)$, where $\dim = \dim_H \text{ or } \overline{\dim}_M$, and C := Cantor's set.
- 5. Prove that $\overline{\dim}_{M} W([0,1]) = \min(d,2)$ a.s.
- 6. Prove that for all compact nonrandom sets $E \subset [0,1]$, $\dim W(E) = \min(d, 2\dim E)$ a.s., where $\dim := \dim_{H}$ or \dim_{M} everywhere.
- 7. Prove that *always*, $\dim_{H}(E \times F) = \dim_{H}(F \times E)$.

- 1. Prove: $F := \bigcup_{n=1}^{\infty} \{1/n\} \Rightarrow \overline{\dim}_{M} F = 1/2 > 0 = \dim_{H} F$.
- 2. Prove that *always*, $\dim_{H} F \leq \overline{\dim}_{M} F$.
- 3. Prove that $\overline{\dim}_{M} C = \log_3 2$.
- 4. Compute $\dim(C \times C)$, where $\dim = \dim_H \text{ or } \overline{\dim}_M$, and C := Cantor's set.
- 5. Prove that $\overline{\dim}_{M} W([0,1]) = \min(d,2)$ a.s.
- 6. Prove that for all compact nonrandom sets $E \subset [0,1]$, $\dim W(E) = \min(d, 2\dim E)$ a.s., where $\dim := \dim_H \text{ or } \overline{\dim}_M$ everywhere.
- 7. Prove that *always*, $\dim_{H}(E \times F) = \dim_{H}(F \times E)$.
- 8. Prove that *always*, $\dim_{H}(E \times F) \leq \dim_{H} E + \overline{\dim}_{M} F$.

More advanced problems

 $f:[0,1]\to \mathbf{R}^d$ is Hölder continuous with index $\alpha>0$ if

$$\sup_{0\leq x\neq y\leq 1}\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty.$$

1. Prove that $\alpha \leq 1$, and $\dim_H f(E) \leq \min(d, \alpha^{-1} \dim_H E) \forall E \in \mathscr{B}([0, 1])$.

More advanced problems

 $f:[0\,,1]\to \mathbf{R}^d$ is Hölder continuous with index $\alpha>0$ if

$$\sup_{0\leq x\neq y\leq 1}\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty.$$

- 1. Prove that $\alpha \leq 1$, and $\dim_H f(E) \leq \min(d, \alpha^{-1} \dim_H E) \forall E \in \mathcal{B}([0, 1])$.
- 2. Prove that the Cantor–Lebesgue function is Hölder continuous with index $\log_3 2$ (Hint: Compute $\mu(I)$ for a 3-ary interval I.)

More advanced problems

 $f:[0,1]\to \mathbf{R}^d$ is Hölder continuous with index $\alpha>0$ if

$$\sup_{0\leq x\neq y\leq 1}\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty.$$

- 1. Prove that $\alpha \leq 1$, and $\dim_H f(E) \leq \min(d, \alpha^{-1} \dim_H E) \forall E \in \mathcal{B}([0, 1])$.
- 2. Prove that the Cantor–Lebesgue function is Hölder continuous with index $\log_3 2$ (Hint: Compute $\mu(I)$ for a 3-ary interval I.)
- 3. Prove that $C C := \{x y : x, y \in C\} = [-1, 1]$. (Hint: $x \in C$, $t \in [-1, 1] \Rightarrow$ the line y = x + t intersects $C \times C$ at some 3-adic square.)