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The Minkowski dimension

» Suppose F is a bounded subset of R?, say F C [0, 1)“.

Nu(F)=11
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The Minkowski dimension

» Suppose F is a bounded subset of R?, say F C [0, 1)“.
» A b-adic subcube of [0, 1) of side b~" has the form
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The Minkowski dimension

» Suppose F is a bounded subset of R?, say F C [0, 1)“.
» A b-adic subcube of [0, 1) of side b~" has the form

[(Gh = 1)b™", jb™") x - x [(jg = 1)b7", jgb™")
where 1 <ji,...,jg < b".
» Let Nj(F) denote the number of b-adic subcubes of [0,1)? side
b~" that intersect F, where b > 2 is a fixed integer.
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Back to the Minkowski dimension
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Back to the Minkowski dimension

» “The Minkowski dimension of F” is lim_. log, Na(F)/n.
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Back to the Minkowski dimension

» “The Minkowski dimension of F” is lim_. log, Na(F)/n.
» Thatis, Np(F) = boM+dmMy F 35 n 1 .
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Problems and remedies

1. limp_ o logy, Na(F)/n might not exist
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Problems and remedies

1. limp_ o logy, Na(F)/n might not exist

» This is easy to address: Instead we define the “upper Minkowski

dimension”; | NA(F
dim,,F := lim supog"T"().

n—oo
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Problems and remedies

1. limp_ o logy, Na(F)/n might not exist

» This is easy to address: Instead we define the “upper Minkowski
dimension”: od. N-(F
dim,,F := lim supog"T"().

n—oo

2. Positive: Easy to compute.
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Problems and remedies

1. limp_ o logy, Na(F)/n might not exist

» This is easy to address: Instead we define the “upper Minkowski

dimension”; | NA(F
dim,,F := lim supM.
n—oo n

2. Positive: Easy to compute.
3. Positive: dim,, F does not depend on the base b > 2
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N
Problems and remedies

1. limp_ o logy, Na(F)/n might not exist

» This is easy to address: Instead we define the “upper Minkowski
dimension”: od. N-(F
dim,,F := lim supog"T"().

n—oo

2. Positive: Easy to compute.
3. Positive: dim,, F does not depend on the base b > 2

4. Negative: 3 countable sets F with dim,,F > 0.
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N
Hausdorff’s measures

» Given: Real numbers ¢, s > 0, and a set F C RY.
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Hausdorff’s measures

» Given: Real numbers ¢, s > 0, and a set F C RY.

> g (F) :=infyLX, [diam(F;)|°, where the inf is over all closed/open
sets of diam < ¢ such that F C U/?; F;.
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Hausdorff’s measures

» Given: Real numbers ¢, s > 0, and a set F C RY.

> g (F) :=infyLX, [diam(F;)|°, where the inf is over all closed/open
sets of diam < ¢ such that F C U/?; F;.

» e +— J5(F) is nondecreasing.
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Hausdorff’s measures

Given: Real numbers €, s > 0, and a set F C RY.

Ay (F) :=infL2, |diam(F;)[%, where the inf is over all closed/open
sets of diam < ¢ such that F C U/?; F;.

e — J¢5(F) is nondecreasing.

Hs(F) = lime o #5(F).
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Hausdorff’'s measures

Theorem (Hausdorff)
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Hausdorff’s measures

Theorem (Hausdorff)

» 3 is a Carathéodory outer measure.
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Hausdorff’s measures

Theorem (Hausdorff)

» 3 is a Carathéodory outer measure.
» The restriction of 7 to 2(R?) is a [Borel] measure.
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Hausdorff’s measures

Theorem (Hausdorff)

» 3 is a Carathéodory outer measure.
» The restriction of 7 to 2(R?) is a [Borel] measure.
> Ay = cx Lebesgue measure on RY.

2(RY)
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Hausdorff dimension

Definition (Hausdorff dimension)
dim, F is defined in two equivalent ways:
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dim, F is defined in two equivalent ways:
1. sup{s > 0: 74(F) > 0} ;
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Hausdorff dimension

Definition (Hausdorff dimension)

dim, F is defined in two equivalent ways:
1. sup{s > 0: 74(F) > 0} ;
2. inf{s > 0: J(F) < co}.
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Hausdorff dimension

Definition (Hausdorff dimension)
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1. sup{s > 0: 74(F) > 0} ;
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Hausdorff dimension

Definition (Hausdorff dimension)

dim, F is defined in two equivalent ways:
1. sup{s > 0: 74(F) > 0} ;
2. inf{s > 0: J(F) < co}.

Lemma
1. If #5(F) < oo, then 7, 5(F) = 0 for all § > 0.
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Hausdorff dimension

Definition (Hausdorff dimension)

dim, F is defined in two equivalent ways:
1. sup{s > 0: 74(F) > 0} ;
2. inf{s > 0: J(F) < co}.

Lemma

1. If 75(F) < oo, then ¢, s(F) =0 for all 6 > 0.
2. If 7#5(F) = oo, then 5¢;_5(F) = oo forall § € (0,s).
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Hausdorff dimension

Definition (Hausdorff dimension)

dim, F is defined in two equivalent ways:
1. sup{s > 0: 74(F) > 0} ;
2. inf{s > 0: J(F) < co}.

Lemma
1. If 75(F) < oo, then ¢, s(F) =0 for all 6 > 0.
2. If #5(F) = oo, then s#;_s(F) = oo for all § € (0, 5).
3. Ay, 5(F)=0 = dim, F€[0,d].
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Hausdorff dimension

Definition (Hausdorff dimension)

dim, F is defined in two equivalent ways:
1. sup{s > 0: 74(F) > 0} ;
2. inf{s > 0: J(F) < co}.

Lemma
1. If 75(F) < oo, then ¢, s(F) =0 for all 6 > 0.
2. If #5(F) = oo, then s#;_s(F) = oo for all § € (0, 5).
3. My 5(F)=0 = dim, F€[0,d].
4. (o-regularity) dim, U2 Fj = supj>q dim, F;.
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Besicovitch’s net measures

» Given: Real numbers €,s > 0, an integer b > 2, and a set F C RY.
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Besicovitch’s net measures

» Given: Real numbers €,s > 0, an integer b > 2, and a set F C RY.
> APC(F) = infLy, |diam(F;)[*, where the inf is over all b-adic
cubes of diam < e such that £ C U, F;.
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Besicovitch’s net measures

» Given: Real numbers €,s > 0, an integer b > 2, and a set F C RY.

> APC(F) = infLy, |diam(F;)[*, where the inf is over all b-adic
cubes of diam < e such that £ C U, F;.

» Advantage: WLOG the F;’s are disjoint.
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Besicovitch’s net measures

v

Given: Real numbers ¢,s > 0, an integer b > 2, and a set F C RY.
AP(F) == inf L2, [diam(F;)[¢, where the inf is over all b-adic
cubes of diam < e such that £ C U, F;.

Advantage: WLOG the F;'s are disjoint.

e — NL¢(F) is nondecreasing.

v
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N
Besicovitch’s net measures

» Given: Real numbers €,s > 0, an integer b > 2, and a set F C RY.
NLEF) = infy.72 [diam(F;)|°, where the inf is over all b-adic
cubes of diam < e such that £ C U, F;.

Advantage: WLOG the F;'s are disjoint.

> e — HL(F) is nondecreasing.
NL(F) = lime o A (F).

v

v
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Equivalence of Hausdorff—Besicovitch measures

» Fact 1: 74(F) < #P(F)
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Equivalence of Hausdorff—Besicovitch measures

» Fact 1: 74(F) < #P(F)

> Fact 2: #(F) < 29¢524(F)
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Equivalence of Hausdorff—Besicovitch measures

» Fact 1: s#4(F) < #P(F)
» Fact 2: #L(F) < 29¢5.74(F)
» ..dim, F is also equal to

sup{s > 0: A#P(F) >0} =inf{s > 0: AL(F) < oo},
for any and all integers b > 2.
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Cantor’s set

Corollary
If #4(F) < oo thendim, F < s.
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Corollary
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Cantor’s set

Corollary
If #4(F) < oo thendim, F < s.

Example

» Let C denote the standard ternary Cantor set in [0, 1]. At the nth
stage of its construction, C is covered by 2" intervals of
length/diameter 3~ each.
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Cantor’s set

Corollary
If #4(F) < oo thendim, F < s.

Example

» Let C denote the standard ternary Cantor set in [0, 1]. At the nth
stage of its construction, C is covered by 2" intervals of
length/diameter 3~ each.

» Therefore, %353"2(0) <2n.37ns — 1,
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Cantor’s set

Corollary
If #4(F) < oo thendim, F < s.

Example

» Let C denote the standard ternary Cantor set in [0, 1]. At the nth
stage of its construction, C is covered by 2" intervals of
length/diameter 3~ each.

» Therefore, %353"2(0) <2n.37ns — 1,

» Lete ™\, 0[n 7 o] to deduce that 7y, 2(C) < 1.
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N
Cantor’s set

Corollary
If #4(F) < oo thendim, F < s.

Example

» Let C denote the standard ternary Cantor set in [0, 1]. At the nth
stage of its construction, C is covered by 2" intervals of

length/diameter 3~ each.
> Therefore, 7,3 ',(C) <2"-37" =1.
» Lete ™\, 0[n 7 o] to deduce that 7y, 2(C) < 1.

» Thus, we obtain dim, C < log; 2 ~ 0.6309.
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N
Cantor’s set

Corollary
If #4(F) < oo thendim, F < s.

Example

» Let C denote the standard ternary Cantor set in [0, 1]. At the nth
stage of its construction, C is covered by 2" intervals of
length/diameter 3~ each.

Therefore, 73, "5(C) <2737 =1.
Let e \, 0 [n 7 o] to deduce that g, 2(C) < 1.
Thus, we obtain dim, C < log; 2 ~ 0.6309.

We will prove later that this is an equality [Hausdorff].

v

v

v

v
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Brownian motion

» Let W be standard d-dimensional Brownian motion; W(0) = 0.
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Brownian motion

» Let W be standard d-dimensional Brownian motion; W(0) = 0.

» Goal: dim, W([0,1]) < min(d,2) a.s. We will soon prove that this
is an identity.
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Brownian motion

» Let W be standard d-dimensional Brownian motion; W(0) = 0.

» Goal: dim, W([0,1]) < min(d,2) a.s. We will soon prove that this
is an identity.

» The same proof will show that dim, W([0,n]) < min(d,2) a.s.
o-regularity = dim, W(R,) <min(d,2) a.s.
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Brownian motion

» Let W be standard d-dimensional Brownian motion; W(0) = 0.

» Goal: dim, W([0,1]) < min(d,2) a.s. We will soon prove that this
is an identity.

» The same proof will show that dim, W([0,n]) < min(d,2) a.s.
o-regularity = dim, W(R,) <min(d,2) a.s.

» Fact: Vn € (0,1/2), there a.s. exists a random variable V;, such
that | W(t) — W(s)| < V,|t—s|z " for all s, t € [0, 1].
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Brownian motion

» Let W be standard d-dimensional Brownian motion; W(0) = 0.

» Goal: dim, W([0,1]) < min(d,2) a.s. We will soon prove that this
is an identity.

» The same proof will show that dim, W([0,n]) < min(d,2) a.s.
o-regularity = dim, W(R,) <min(d,2) a.s.

» Fact: Vn € (0,1/2), there a.s. exists a random variable V;, such
that | W(t) — W(s)| < V,|t—s|z " for all s, t € [0, 1].

» Let Fj:=[j/n,(j+1)/n]forj=0,...,n—1. Then, with probab.
one, diam W(Fj) < V,n 2+ .= ¢ V],
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N
Brownian motion

» Let W be standard d-dimensional Brownian motion; W(0) = 0.

» Goal: dim, W([0,1]) < min(d,2) a.s. We will soon prove that this
is an identity.

» The same proof will show that dim, W([0,n]) < min(d,2) a.s
o-regularity = dim, W(R,) <min(d,2) a.s.

» Fact: Vn € (0,1/2), there a.s. exists a random variable V;, such
that | W(t) — W(s)| < V,|t—s|z " for all s, t € [0, 1].

» Let Fj:=[j/n,(j+1)/n] forj =0,...,n—1. Then, with probab.
one, diam W(F;) < V;n~ 2= ¢ V.

> (W([O 1])) <V n1"+577 = #s(W([0,1])) < oo a.s. for
s= (§ n) .
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N
Brownian motion

» Let W be standard d-dimensional Brownian motion; W(0) = 0.

» Goal: dim, W([0,1]) < min(d,2) a.s. We will soon prove that this
is an identity.

» The same proof will show that dim, W([0,n]) < min(d,2) a.s
o-regularity = dim, W(R,) <min(d,2) a.s.

» Fact: Vn € (0,1/2), there a.s. exists a random variable V;, such
that | W(t) — W(s)| < V,|t—s|z " for all s, t € [0, 1].

» Let Fj:=[j/n,(j+1)/n] forj =0,...,n—1. Then, with probab.
one, diam W(F;) < V;n~ 2= ¢ V.

- ,%”f(W([O 1]))§ V,n'=3+s1 = 2 (W([0,1])) < oo a.s. for
s=(3-n"".

. dim,, W([0,1]) < 2 a.s. We are done because W([0,1]) C R%

- :

v
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A method for lower bounds

Z(F) := all probability measures that are supported in F.
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A method for lower bounds

Z(F) := all probability measures that are supported in F.
Theorem (Frostman, 1935)
Let F be a bounded meas. subset of R?. Suppose there exists s > 0

and p € Z(F) such that
// p(dx) u(ay) _
X —yI°

Then, dim, F > s.
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A method for lower bounds

Z(F) := all probability measures that are supported in F.
Theorem (Frostman, 1935)
Let F be a bounded meas. subset of R?. Suppose there exists s > 0

and p € Z(F) such that
// p(dx) u(ay) _
X —yI°

» Is(p) := the s-dimensional [Bessel-] Riesz energy of (.

Then, dim, F > s.
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A method for lower bounds

Proof: Let { F;} denote a covering of F by dyadic cubes. We can
assume WLOG that F;N F; = @ if i # j.
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A method for lower bounds

Proof: Let {F;} denote a covering of F by dyadic cubes. We can
assume WLOG that F;N F; = @ if i # j.

//M\X y\s

ij=1
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A method for lower bounds

Proof: Let {F;} denote a covering of F by dyadic cubes. We can
assume WLOG that F;N F; = @ if i # j.

p(d 5 |uF)”
// \X y\s ZZ|d|am(F)|

ij=1 i=1
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|
A method for lower bounds

Proof: Let {F;} denote a covering of F by dyadic cubes. We can
assume WLOG that F;N F; = @ if i # j.

_ wd 5 |uF)”
s = X[ ZZ|onam<F)|

ij=1 i=1

1
\dlam F| ) , since E(1/2) > 1/E(2).

\Y
N
12

i=1
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A method for lower bounds

Proof: Let {F;} denote a covering of F by dyadic cubes. We can
assume WLOG that F;N F; = @ if i # j.

_ wd 5 |uF)”
s = X[ ZZ|onam<F)|

ij=1 i=1

1
\dlam F| ) , since E(1/2) > 1/E(2).
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N
Cantor’s set

> Write all x € [0, 1] as x := ¥4 37/, where x; € {0,1,2}.
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Cantor’s set

> Write all x € [0, 1] as x := ¥4 37/, where x; € {0,1,2}.
» C:={xc[0,1]: x;€ {0,2}}.
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Cantor’s set

> Write all x € [0, 1] as x := ¥4 37/, where x; € {0,1,2}.

» C:={xc[0,1]: x;€ {0,2}}.

» The most natural probab. meas. on C is the uniform distribution:
X1, X, ... 1Ld. P{X; =0} =P{X; =2} =1/2. X := Y17, X;37/.
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Cantor’s set

v

Write all x € [0,1] as x := ¥°; 37/, where x; € {0,1,2}.
C:={xec[0,1]: x;€{0,2}}.

The most natural probab. meas. on C is the uniform distribution:
X1, X, ... 1Ld. P{X; =0} =P{X; =2} =1/2. X := Y17, X;37/.
u(A) :=P{X € A}.

v

v

v

We will prove that /s(p1) < oo for all s € (0,logs 2).
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Cantor’s set

> Is(i) = [f |x — y[7° u(dx) p(dy)
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Cantor’s set

> Is(i) = [f |x — y[7° u(dx) p(dy)

D. Khoshnevisan (Salt Lake City, Utah) Lecture 1 Sandbjerg Manor, 2007 16/21



N
Cantor’s set

> Is(pn) = [[|Ix—y|Su p(dy) = E(]X — Y|~S), where Y is an
mdependent copy of X
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N
Cantor’s set

> Is(pn) = [[|Ix—y|Su p(dy) = E(]X — Y|~S), where Y is an
mdependent copy of X
» But X v
2 o0
|X - Y| > N = )
3N j:%:ﬂ 3 3N

where N := min{j: X; # Y;}. Therefore, Is(n) < E[3M].
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Cantor’s set

> Is(pn) = [[|Ix—y|Su p(dy) = E(]X — Y|~S), where Y is an
mdependent copy of X
» But X v
2 o0
|X - Y| > N = )
3N j:%:ﬂ 3 3N

where N := min{j: X; # Y;}. Therefore, Is(n) < E[3M].
» P{N=k} =2 fork > 1
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N
Cantor’s set

> =[[Ix—y| *u p(dy) = E(]X — Y|~S), where Y is an
mdependent copy of X
» But X v
2 o0
|X - Y| > N = )
3N j:%:ﬂ 3 3N

where N := min{j: X; # Y;}. Therefore, Is(n) < E[3M].
P{N =k} =2"Kfork >1
E[3M] =¥, 3027k < o0 iff s < logz 2. W

v

v
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|
The Cantor—Lebesgue function

c(x) = u([0,x]) = c/(x) =0a.e.,, ¢(0) =0, ¢(1) =1, c = continuous.

1

091

081

e
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T

o
@
T

the cantor-lebesgue function
o o
> o
T

o
)
T

bl
N

0.1

“The devil’s staircase” [Mandelbrot]
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N
Brownian motion

Theorem (Lévy)
dim, W([0,1]) = min(d,2) a.s.
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Brownian motion

Theorem (Lévy)
dim, W([0,1]) = min(d,2) a.s.

» Suffices to prove that dim, W([0,1]) > min(d,2); we proved the
other bound earlier.
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N
Brownian motion

Theorem (Lévy)
dim, W([0,1]) = min(d,2) a.s.

» Suffices to prove that dim, W([0,1]) > min(d,2); we proved the
other bound earlier.

» Need a probability measure on W([0, 1]) such that /s(1) < oo a.s.
for s < min(d,2).
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N
Brownian motion

> w(A) = fo 1a(W(u))du; 1€ 2(W([0,1])).
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N
Brownian motion

> w(A) = fo 1a(W(u))du; 1€ 2(W([0,1])).
> Is(1) = Jg Jo IW(v) — W(u)|~Sdudv.
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N
Brownian motion

> w(A) = fo 1a(W(u))du; 1€ 2(W([0,1])).
> Is(1) = Jg Jo IW(v) — W(u)|~Sdudv.
(

» E(ls(1)) = Jg Jo lu—v|=/2dudv x E(|Z|~S), where Z is a vector
of di.i.d. N(0,1)s.
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N
Brownian motion

> w(A) = fo 1a(W(u))du; 1€ 2(W([0,1])).
Is(1) = fo Jo IW(v) — W(u)| =S duab.

E(ls(1)) = Jo Jo |u—v|=5/2dudv x E(|Z|~°), where Z is a vector
of di.i.d. N(0,1)s.

S u= v~ dudv < s iff s < 2.

v

v

v
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N
Brownian motion

> p(A) = fo 1a(W(u)) du; p € 2(W([0,1])).

Is(1) = J3 Jo [W(v) — W(u)|~® dudv.

E(ls(1)) = Jo Jo |u—v|=5/2dudv x E(|Z|~°), where Z is a vector
of di.i.d. N(0,1)s.

Jo Jo lu—v|S2dudv < o iff s < 2.

E(|Z]7 %) < xiff s< d

v

v

v

v
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N
Brownian motion

> w(A) = fo 1a(W(u))du; 1€ 2(W([0,1])).
> Is(n) = fo Jo IW(v) — W(u)|~Sduav.
» E(ls(1)) = Jg Jo lu—v|=/2dudv x E(|Z|~S), where Z is a vector

of di.id. N(0.1)s.
S u= v~ dudv < s iff s < 2.
E(|Z]7 %) < xiff s< d

v

v

v

s<dA2= I(p) Z 0o = dim, W([0,1]) > dA2. W
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|
Problems

1. Prove: F:=UX ,{1/n} = dim,F=1/2>0=dim,F.
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Problems

1. Prove: F:=UX ,{1/n} = dim,F=1/2>0=dim,F.
2. Prove that always, dim,, F < dim,,F.
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Problems

1. Prove: F:=UX ,{1/n} = dim,F=1/2>0=dim,F.
2. Prove that always, dim,, F < dim,,F.
3. Prove that dim,,C = log; 2.
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Problems
1. Prove: F:=UX ,{1/n} = dim,F=1/2>0=dim,F.
2. Prove that always, dim,, F < dim,,F.
3. Prove that dim,,C = log; 2.
4. Compute dim(C x C), where dim = dim,, or dim,,, and C :=

Cantor’s set.
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Problems
1. Prove: F:=UX ,{1/n} = dim,F=1/2>0=dim,F.
2. Prove that always, dim,, F < dim,,F.
3. Prove that dim,,C = log; 2.
4. Compute dim(C x C), where dim = dim,, or dim,,, and C :=

Cantor’s set.
5. Prove that dim,, W([0, 1]) = min(d,2) a.s.
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Problems
1. Prove: F:=UX ,{1/n} = dim,F=1/2>0=dim,F.
2. Prove that always, dim,, F < dim,,F.
3. Prove that dim,,C = log; 2.
4. Compute dim(C x C), where dim = dim,, or dim,,, and C :=

Cantor’s set.

Prove that dim,, W([0, 1]) = min(d,2) a.s.

Prove that for all compact nonrandom sets £ C [0,1],
dim W(E) = min(d,2dim E) a.s., where dim := dim, or dim,,
everywhere.

o o
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Problems
1. Prove: F:=UX ,{1/n} = dim,F=1/2>0=dim,F.
2. Prove that always, dim,, F < dim,,F.
3. Prove that dim,,C = log; 2.
4. Compute dim(C x C), where dim = dim,, or dim,,, and C :=

Cantor’s set.

Prove that dim,, W([0, 1]) = min(d,2) a.s.

Prove that for all compact nonrandom sets £ C [0,1],
dim W(E) = min(d,2dim E) a.s., where dim := dim,, or dim,,
everywhere.

7. Prove that always, dim,(E x F) =dim,(F x E).

o o
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Problems
1. Prove: F:=UX ,{1/n} = dim,F=1/2>0=dim,F.
2. Prove that always, dim,, F < dim,,F.
3. Prove that dim,,C = log; 2.
4. Compute dim(C x C), where dim = dim,, or dim,,, and C :=

o o

Cantor’s set.

Prove that dim,, W([0, 1]) = min(d,2) a.s.

Prove that for all compact nonrandom sets £ C [0,1],
dim W(E) = min(d,2dim E) a.s., where dim := dim,, or dim,,
everywhere.

Prove that always, dim,(E x F) =dim (F x E).

Prove that always, dim, (E x F) <dim, E +dim,,F.
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|
More advanced problems

f:[0,1] — R%is Hélder continuous with index a > 0 if

100 = f)l

< 0.
0<x#y<1 |X_y’a

1. Prove that o < 1, and dim,, f(E) < min(d,a~"dim, E)
VE € #(]0,1]).
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More advanced problems

f:[0,1] — R%is Hélder continuous with index a > 0 if

)= W) _
0<x#y<1 |X - y’a
1. Prove that o < 1, and dim,, f(E) < min(d,a~"dim, E)
VE € #([0,1]).
2. Prove that the Cantor—Lebesgue function is Hélder continuous
with index logs 2 (Hint: Compute (/) for a 3-ary interval I.)
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|
More advanced problems

f:[0,1] — R%is Hélder continuous with index a > 0 if

)= W) _
0<x#y<1 |X - y’a

1. Prove that o < 1, and dim,, f(E) < min(d,a~"dim, E)
VE € $(]0,1]).

2. Prove that the Cantor—Lebesgue function is Hélder continuous
with index logs 2 (Hint: Compute (/) for a 3-ary interval I.)

3. Provethat C— C:={x—y:x,y € C} =[-1,1]. (Hint: x € C,
te[-1,1] = theline y = x + t intersects C x C at some 3-adic
square.)
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