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Gaussian Processes

1. Basic Notions

Let T be a set, and X := {X; }ter a stochastic process, defined on a suitable
probability space (2, F,P), that is indexed by T.

Definition 1.1. We say that X is a Gaussian process indexed by T when
(Xt .o, Xt,) is a Gaussian random vector for every fy,..., t, € T and
n > 1. The distribution of X—that is the Borel measure R’ 5 A+ p(A) :=
P{X € A}—is called a Gaussian measure.

Lemma 1.2. Suppose X = (Xy,..., Xn) is a Gaussian random vector. If
wesetT:={1,..., n}, then the stochastic process {X¢}er is a Gaussian
process. Conversely, if {X(}ter is a Gaussian process, then (X,..., Xn)
is a Gaussian random vector.

The proof is left as exercise.

Definition 1.3. If X is a Gaussian process indexed by T, then we define
ult) == E(X¢) [t € T) and C(s,t) := Cov(Xs, X¢) for all s,t € T. The
functions g and C are called the mean and covariance functions of X
respectively.

Lemma 1.4. A symmetric n x n real matrix C is the covariance of some
Gaussian random vector if and only if C is positive semidefinite. The
latter property means that

n n
ZCz = ZZZiszi,j >0 for all zy, ..., Zn € R.
=1 j=1

Proof. Consult any textbook on multivariate normal distributions. O
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80 6. Gaussian Processes

Corollary 1.5. A function C : T x T — R is the covariance function
of some T-indexed Gaussian process if and only if (C(ti, tj))1<ij<n is @
positive semidefinite matrix for all ty, ..., the.

Definition 1.6. From now on we will say that a function C: T x T — R is
positive semidefinite when (C(t; , tj))1<i j<n is a positive semidefinite matrix
forall t4,..., theT.

Note that we understand the structure of every Gaussian process by
looking only at finitely-many Gaussian random variables at a time. As a
result, the theory of Gaussian processes does not depend a priori on the
topological structure of the indexing set T. In this sense, the theory of
Gaussian processes is quite different from Markov processes, martingales,
etc. In those theories, it is essential that T is a totally-ordered set [such as
R or R,], for example. Here, T can in principle be any set. Still, it can
happen that X has particularly-nice structure when T is Euclidean, or more
generally, has some nice group structure. We anticipate this possibility and
introduce the following.

Definition 1.7. Suppose T is an abelian group and {X;}icr a Gaussian
process indexed by T. Then we use the additive notation for T, and say that
X is stationary when (Xy,, ..., X)) and (Xgvt, .-, Xs+1,) have the same law
for all s, t4,..., fr e T.

Lemma 1.8. Let T be an abelian group and let X := {X¢}icr denote
a T-indexed Gaussian process with mean function m and covariance
function C. Then X is stationary if and only if m and C are “translation
invariant.” That means that

m(s +t)=m(t) and C(t;,ty) = C(s +1t1,s+ 1) forall s, ty, ty € RM.

The proof is left as exercise.

2. Examples of Gaussian Processes

§1. Brownian Motion. By Brownian motion X, we mean a Gaussian pro-
cess, indexed by R, := [0, 00), with mean function 0 and covariance func-
tion

C(s,t) := min(s, t) [s,t >0].

In order to justify this definition, it suffices to prove that C is a posi-
tive semidefinite function on T x T = ]R%. Suppose z4, ..., zn € R and
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Therefore, Brownian motion exists.

§2. The Brownian Bridge. A Brownian bridge is a mean-zero Gaussian
process, indexed by [0, 1], and with covariance

C(s,t) = min(s, t) — st [0<s, t<1]. (6.1)

The most elegant proof of existence, that I am aware of, is due to J. L.
Doob: Let B be a Brownian motion, and define

Xii=B,—tB; [0<t<1].

Then, X := {X{}o<t<1 is @ mean-zero Gaussian process that is indexed by
[0,1] and has the covariance function of (6.1).

§3. The Ornstein—Uhlenbeck Process. An Ornstein—-Uhlenbeck process
is a stationary Gaussian process X indexed by R, with mean function O
and covariance

Cls, t) = eIt [s,t > 0].

It remains to prove that C is a positive semidefinite function. The proof
rests on the following well-known formula:*

x| 1 00 eixa
M= — ——d . 0.2
e - /OO g2 da [x € R) (6.2)

Thanks to (6.2),

n n
>3 amct. - [ 1+agzzme o

j=1 k=1 j=1 k=1

P e 20

1In other words, if ¥ has a standard Cauchy distribution on the line, then its characteristic function
is Eexp(ixV) = exp(—|x|).
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§4. Brownian Sheet. An N-parameter Brownian sheet X is a Gaussian
process, indexed by RY := [0,00)N, whose mean function is zero and
covariance function is

n
C(s,t) = '—[min(sj,tj) [s:=(s!,..., sV, t=(th, ..., tN) e RYY.
j=1

Clearly, a 1-parameter Brownian sheet is Brownian motion; in that case,
the existence problem has been addressed. In general, we may argue as
follows: For all z4, ..., zpn € Rand #4, ..., t, € ]Rﬂ\r’,

n n N n n N )
Zszzkﬂmin(sf,sﬁ) = Zszzkﬂ/o 1[0,3f}<r)1[0,5£}<r) dr

i=1 k=1 =1 k=1
n n N

=) 5% / A Tosp 1 () dr
i=1 k=1 RY oy

It is harmless to take the complex conjugate of z, since z is real valued.
But now z}e/ N — zz'W is in general complex-valued, and we may write

n n N n n N
. : 0 0y _ \1/N ¢ ¢
ZZZ]ZkaIH(Sj /Sp) = /RN ZZH(Z]Zk) Ljg,s (P g g (r7) dr
j=1 k=1 =1 T j=1 k=10=1

2

n N
= 1/N )
B /M ZHZJ ]l[o,sj](f’ )| dr > 0.

j=1 =1

This proves that the Brownian sheet exists.

§5. Fractional Brownian Motion. A fractional Brownian motion [or fBm]
is a Gaussian process indexed by R, that has mean function 0, Xy := 0,
and covariance function given by

E(1Xi = X”) = [t = s [s,t>0], (6.3)

for some constant a > 0. The constant « is called the Hurst parameter
of X.
Note that (6.3) indeed yields the covariance function of X: Since Var(X;) =
E(|X; — Xol?) = %,
It —s|@ = E <X? + X2 stxf> — 2 4§20 _ 9Cov(Xs, Xy).

Therefore,

t2a + SQa . |f - SIQC(
2

Cov(Xs, X¢) = [s,t > 0]. (6.4)
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Direct inspection shows that (6.4) does not define a positive-definite func-
tion C when a < 0. This is why we have limited ourselves to the case that
a > 0.

Note that an fBm with Hurst index a = 1/2 is a Brownian motion. The
reason is the following elementary identity:

t+s—|t—s|
2
which can be verified by considering the cases s > t and t > s separately.

= min(s, t) [s,t > 0],

The more interesting “if” portion of the following is due to Mandelbrot
and Van Ness (1968).

Theorem 2.1. An fBm with Hurst index a exists if and only if a < 1.

Fractional Brownian motion with Hurst index a = 1 is a trivial process
in the following sense: Let N be a standard normal random variable, and
define X := tN. Then, X := {X;}t>0 is fBm with index a = 1. For this
reason, many experts do not refer to the a = 1 case as fractional Brownian
motion, and reserve the teminology fBm for the case that a € (0,1). Also,
fractional Brownian motion with Hurst index a = 1/2 is Brownian motion.

Proof. First we examine the case that a < 1. Our goal is to prove that

tQa + 52(1 _ |f _ SIQa

Cls,t):= 5

is a covariance function.

Consider the function
o(t,r) = (t — )T ()T, (6.5)

defined for all t > 0 and r € R, where a, := max(a,0) for all a € R.
Direct inspection yields that [ fooo [®(t,r)]>dr < oo, since a < 1, and in fact
a second computation on the side yields

] d(t,r)d(s,r)dr = kC(s, t) forall s,t >0, (6.6)

where k is a positive and finite constant that depends only on a. In partic-
ular,

n n n n 00
ZZZiZ]’C(ti , t]) = % ZZZiZj /_OO Cb(tl ,I’>Cb(t]‘ , 1”) dr

i=1 j=2 i=1 j=2

I
K J_oo |4
i=1

2
dr > 0.
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This proves the Theorem in the case that a < 1. We have seen already that
theorem holds [easily] when a = 1. Therefore, we now consider a > 1,
and strive to prove that fBm does not exist in this case.

The proof hinges on a technical fact which we state without proof; this
and much more will be proved later on in Theorem 2.3 on page 97. Recall
that V is a modification of ¥ when P{V; = V;} =1 for all t.

Proposition 2.2. Let YV := {V{}(c[0,1] denote a Gaussian process indexed
by T := [0, 1], where T > 0 is a fixed constant. Suppose there exists a
finite constant C and a constant n > 0 such that

B <1yt - ys|2> <Clt—s|"  forall0O<s t<T.

Then Y has a Hélder-continuous modification Y. Moreover, for every
non-random constant p € (0,1/2),
Ve -V
sup M < 00 almost surely. (6.7)
o<stt<r |t — sl

We use Proposition 2.2 in the following way: Suppose to the contrary
that there existed an fBm X with Hurst parameter a > 1. By Proposition
2.2, X would have a continuous modification X such that for all p € (0, a)
and T >0,

X —X
Vit):= sup M < 0 almost surely.
0<s+t<t [t - S|p

Choose p € (1, a) and observe that

’)_{t - Xs| < V1)t —s)P  foralls, tec|0,1],

almost surely for all T > 0. Divide both side by |t — s| and let s — ¢ in
order to see that X is differentiable and its derivative is zero everywhere,
a.s. Since Xg = Xo = 0 as, it then follows that Xy = 0 as. for all t > 0.
In particular, P{X; = 0} = 1 for all t > 0. Since the variance of X; is
supposed to be t**, we are led to a contradiction. O

§6. White Noise and Wiener Integrals. Let H be a complex Hilbert space
with norm || ...|u and corresponding inner product (-, -)m.

Definition 2.3. A white noise indexed by T = H is a Gaussian process
{&(h) }hen, indexed by H, with mean function 0 and covariance function,

C(h1 ,hg) = <h1 ,h2>]H [h1,h2 € IH]
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The proof of existence is fairly elementary: For all z4, ..., zn € R and

n n n n
Z Z zjzxC(h;, hy) Z Z zjzp (hj, he)m

j=1 k=1 i=1 k=1

n n
<ZZjhj , Z Zkhk>
j=1 k=1

2

I

n
= |>_zhy
j=1

H H

which is clearly > 0.

The following simple result is one of the centerpieces of this section,
and plays an important role in the sequel.

Lemma 2.4. For every ay, ..., adm € Rand hy, -+ ,hm € H,
m m
55 Zajh]- = Zajé(hj) a.s.
j=1 j=1

Proof. We plan to prove that: (a) For alla € R and h € H,
&(ah) = a&(h) as. (6.8)
and (b) For all hy, hy € H,
E(hy + hg) = £(hy) + £(hg)  as. (6.9)

Together, (6.8) and (6.9) imply the lemma with m = 2; the general case
follows from this case, after we apply induction. Let us prove (6.8) then:

E (lS(ah) - a£(h)l2> - F <|s(ah)12> +d®E <|£(h)|2> — 2aCov (£(ah), £(h))
= |lah|} + a®|h|%4 - 2a(ah, h)y = 0.

This proves (6.8). As regards (6.9), we note that

E (Jelhs + ho) - £(hy) - £(ho)]?)

— B (|e(hs + h)?) + B (|€(hn) + Elho)|?) — 2Cov (€(hs + ho) , £(h1) + E(ho)
= bt + hollf; + [[hallE + [[helf + 2(ht, ho)m

-2 [<h1 + hg ,l’l1>]H + <h1 + hg ,h2>]H]
= |ht + hollf; — 2(h1, ho)u — | hu i — [l

which is zero, thanks to the Pythagorean rule on H. This proves (6.9) an
hence the lemma. O

Lemma 2.4 can be rewritten in the following essentially-equivalent
form.
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Theorem 2.5 (Wiener). The map £ : H — L%(Q, F,P) := L*(P) is a linear
Hilbert-space isometry.

Because of its isometry property, white noise is also referred to as the
iso-normal or iso-gaussian process.

Very often, the Hilbert space H is an L*-space itself; say, H = L%(1) :=
L*(A, A,p). Then, we can think of £(h) as an L?(P)-valued integral of
h € H. In such a case, we sometimes adopt an integral notation; namely,

/h(x) £(dx) := /hd&’ = &(h).
This operation has all but one of the properties of integrals: The triangle

inequality does not hold.?

Definition 2.6. The random variable [ hdé€ is called the Wiener integral
of h € H = L?(). One also defines definite Wiener integrals as follows:
For all h € L?(n) and E € A,

/h(x)é(dx) = / hdé = &(hlg).
E

E
This is a rational definition since |h1g| 2, < ||h|12q) < oo

An important property of white noise is that, since it is a Hilbert-space
isometry, it maps orthogonal elements of H to orthogonal elements of
L*(P). In other words:

E[£(hy)&é(hg)] = 0 if and only if (hy, ho)yr = O.

Because (£(hy), &(hg)) is a Gaussian random vector of uncorrelated co-
ordindates, we find that

&(hq) and &(ho) are independent if and only if (hq, ho)i = O.
The following is a ready consequence of this rationale.

Proposition 2.7. If Hy, Hy, ... are orthogonal subspaces of H, then
{€(h) fhem,  1=1,2,...

are independent Gaussian processes.

The following highlights the strength of the preceding result.
Proposition 2.8. Let {{; };2, be a complete orthonormal basis for H. Then,
we can find a sequence of i.i.d. standard normal random variables X1, Xo, . . .
such that

j=1

21 fact, |£(h)| > 0 as., whereas &(|h|) is negative with probability 1/2.
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where c;j:= (h,{;)u and the sum converges in L*(PP).

Remark 2.9. Proposition 2.8 yields a 1-1 identification of the white noise £
with the iid. sequence {X;[{2,. Therefore, in the setting of Proposition 2.8,
some people refer to a sequence of ii.d. standard normal random variables
as white noise.

Proof. Thanks to Proposition 2.7, X; := £(¥;) defines an iid. sequence
of standard normal random variables. According to the Riesz-Fischer
theorem

o0
h = chzpj for every h € H,
j=1
where the sum converges in H. Therefore, Theorem 2.5 ensures that

&(h) = chg(wj) = chXj for every h € H,
j—1 j—1

where the sum converges in L*(IP). We have implicitly used the following
ready consequence of Wiener’s isometry [Theorem 2.5]: If h, — h in H
then £(h,) — £(h) in L?(P). It might help to recall that the reason is simply
that [[£(hn — h)ll12p) = lhn — Bg- O

Next we work out a few examples of Hilbert spaces that arise in the
literature.

Example 2.10 (Zero-Dimensional Hilbert Spaces). We can identify H = {0}
with a Hilbert space in a canonical way. In this case, white noise indexed
by H is just a normal random variable with mean zero and variance O [i.e,

£(0) := Q].

Example 2.11 (Finite-Dimensional Hilbert Spaces). Choose and fix an in-
teger n > 1. The space H := R" is a real Hilbert space with inner product
(a,b)m := Y74 ajb; and norm [a||f; := Y Ly a?. Let & denote white noise
indexed by H = R" and define a random vector X := (Xj ,..., Xp) via

X]'Z= é(ej) j= 1,2 ..... n,

where eq :=(1,0,..., 0)y,..., e, :=(0,...0,1) denote the usual orthonor-
mal basis elements of R". According to Proposition 2.8 and its proof,
X, ..., X, are iid. standard normal random variables and for every n-
vector a := (ay, ..., an),

Ela) = a;X; = a'X. (6.10)
j=1
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Now consider m points ay, .. ., am € R™ and write the jth coordinate of a;
and a]. Define
Elay)
V.= :
&lam)

Then VY is a mean-zero Gaussian random vector with covariance matrix
A’A where A is an m x m matrix whose jth column is a;. Then we can
apply (6.10) to see that V¥ = A’X. In other words, every multivariate normal
random vector with mean vector 0 and covariance matrix A’A can be
written as a linear combination A’X of ii.d. standard normals.

Example 2.12 (Lebesgue Spaces). Consider the usual Lebesgue space H :=
L%R.). Since 1jog € L?(R4) for all t > 0, we can define a mean-zero
Gaussian process B := {By}>0 by setting

t
Bii= il - | de (6.41)

Then, B is a Brownian motion because

E[BsBi] = (Ljo,1 ,]1[0,51>L2(R ) = min(s, t).

+

Since (/B¢ — Bs|?) = |t — 5|, Kolmgorov's continuity theorem [Proposition
2.2] shows that B has a continuous modification B. Of course, B is also
a Brownian motion, but it has continuous trajectories [Wiener’s Brownian
motion]. Some authors intepret (6.11) somewhat loosely and present white
noise as the derivative of Brownian motion. This viewpoint can be made
rigorous in the following way: White noise is the weak derivative of Br-
ownian motion, in the sense of distribution theory. We will not delve into
this matter further though.

I will close this example by mentioning, to those that know Wiener
and Itd’s theories of stochastic integration against Brownian motion, that
the Wiener integral [, ¢sdBs of a non-random function ¢ & L*R,) is
the same object as fooo @dé = £(p) here. Indeed, it suffices to prove this
assertion when ¢s = 1y g(s) for some fixed number t > 0. But then the
assertion is just our definition (6.11) of the Brownian motion B.

Example 2.13 (Lebesgue Spaces, Continued). Here is a fairly general re-
ceipe for constructing mean-zero Gaussian processes from white noise:
Suppose we could write

Cls,t) = /K(s,r)K(t,r)p(dr) [s,teT],

where 11 is a locally-finite measure on some measure space (A, A), and
K:A x T — R is a function such that K(t,e) € L?(j1) for all t € T. Then,
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the receipe is this: Let & be white noise on H := L?(n), and define
X¢ = /K(t,r) &(dr) [t e T].

Then, X := {X{}ter defines a mean-zero T-indexed Gaussian process with
covariance function C. Here are some examples of how we can use this
idea to build mean-zero Gaussian processes from white noise.

(1) Let A:= R, p := Lebesgue measure, and K(t,r) := 1jo,4(r). These
choices lead us to the same white-noise construction of Brownian
motion as the previous example.

(2) Given a number a € (0,1), let £ be a white noise on H := L*(R).
Because of (6.6) and our general discussion, earlier in this exam-
ple, we find that

1

Xii= /R (=& — (P etar) (>0

defines an fBm with Hurst index a.

(3) For a more interesting example, consider the covariance function
of the Ornstein—Uhlenbeck process whose covariance function is,

we recall,
Cls,t) = eIt [s,t > 0].
Define
1 da

According to (6.2), and thanks to symmetry,

Cls,t) = /ei(t_s)’” p(dr) = /cos(tr — sr) p(dr)

= /cos(tr) cos(sr) u(dr) + /sin(tr) sin(sr) p(dr).

Now we follow our general discussion, let £ and & are two inde-
pendent white noises on L%(;1), and then define

X = /cos(tr) &(dr) — /sin(tr) £'(dr) [t > 0].

Then, X := {X¢}t=0 is an Ornstein-Uhlenbeck process.’

3One could just as easily put a plus sign in place of the minus sign here. The rationale for this
particular way of writing is that if we study the “complex-valued white noise” ¢ := &€ + i&/, where &
is an independent copy of & then X; = Re [ expl(itr) £(dr). A fully-rigorous discussion requires facts
about “complex-valued” Gaussian processes, which I will not develop here.



