Lévy Processes

Recall that a Lévy process \(\{X_t\}_{t \geq 0} \) on \(\mathbb{R}^d \) is a cadlag stochastic process on \(\mathbb{R}^d \) such that \(X_0 = 0 \) and \(X \) has i.i.d. increments. We say that \(X \) is continuous if \(t \mapsto X_t \) is continuous. On the other hand, \(X \) is pure jump if \(t \mapsto X_t \) can move only when it jumps [this is not a fully rigorous definition, but will be made rigorous en route the Itô–Lévy construction of Lévy processes].

Definition 1. If \(X \) is a Lévy process, then its tail sigma-algebra is \(\mathcal{T} := \cap_{t \geq 0} \sigma(\{X_{r+t} - X_t\}_{r \geq 0}) \).

The following is a continuous-time analogue of the Kolmogorov zero-one law for sequences of i.i.d. random variables.

Proposition 2 (Kolmogorov zero-one law). The tail sigma algebra of a Lévy process is trivial; i.e., \(\mathbb{P}(\Lambda) \in \{0, 1\} \) for all \(\Lambda \in \mathcal{T} \).

The Lévy–Itô construction

The following is the starting point of the classification of Lévy processes, and is also known as the Lévy–Khintchine formula; compare with the other Lévy–Khintchine formula (Theorem 6).

Theorem 3 (The Lévy–Khintchine formula; Itô, 1942; Lévy, 1934). For every Lévy exponent \(\Psi \) on \(\mathbb{R}^d \) there exists a Lévy process \(X \) such that for all \(t \geq 0 \) and \(\xi \in \mathbb{R}^d \),

\[
\mathbb{E} e^{i\xi X_t} = e^{-\Psi(\xi)}.
\]

(1)

Conversely, if \(X \) is a Lévy process on \(\mathbb{R}^d \) then (1) is valid for a Lévy exponent \(\Psi \).
In words, the collection of all Lévy processes on \mathbb{R}^d is in one-to-one correspondence with the family of all infinitely-divisible laws on \mathbb{R}^d.

We saw already that if X is a Lévy process, then X_t [in fact, X_t for every $t \geq 0$] is infinitely divisible. Therefore, it remains to prove that if Ψ is a Lévy exponent, then there is a Lévy process X whose exponent is Ψ. The proof follows the treatment of Itô (1942), and is divided into two parts.

Isolating the pure-jump part. Let $B := \{B_t\}_{t \geq 0}$ be a d-dimensional Brownian motion, and consider the Gaussian process defined by

$$W_t := \sigma B_t - a t. \quad (t \geq 0).$$

A direct computation shows that $W := \{W_t\}_{t \geq 0}$ is a continuous Lévy process with Lévy exponent

$$\Psi^{(c)}(\xi) = ia'\xi + \frac{1}{2} \|\sigma \xi\|^2 \quad \text{for all } \xi \in \mathbb{R}^d.$$

[W is a Brownian motion with drift $-a$, where the coordinates of W are possibly correlated, unless σ is diagonal.] Therefore, it suffices to prove the following:

Proposition 4. There exists a pure-jump Lévy process Z with characteristic exponent

$$\Psi^{(d)}(\xi) := \int_{\mathbb{R}^d} \left(1 - e^{i\xi \cdot z} + i(\xi : z) \mathbf{1}_{[0,1]}(\|z\|)\right) m(dz),$$

for all $\xi \in \mathbb{R}^d$.

Indeed, if this were so, then we could construct W and Z independently from one another, and set

$$X_t = W_t + Z_t \quad \text{for all } t \geq 0.$$

This proves Theorem 3, since $\Psi = \Psi^{(c)} + \Psi^{(d)}$. In fact, together with Theorem 6, this implies the following:

Theorem 5. (1) The only continuous Lévy processes are Brownian motions with drift, and; (2) The continuous [i.e., Gaussian] and pure-jump parts of an arbitrary Lévy process are independent from one another.

Therefore, it suffices to prove Proposition 4.

Proof of Proposition 4. Consider the measurable sets

$$A_{-1} := \left\{ z \in \mathbb{R}^d : \|z\| \geq 1 \right\}, \quad \text{and} \quad A_n := \left\{ z \in \mathbb{R}^d : 2^{-n+1} \leq \|z\| < 2^{-n} \right\}.$$
as \(n \) varies over all nonnegative integers. Now we can define stochastic processes \(\{X^{(n)}_{\cdot}\}_{n=-1}^{\infty} \) as follows: For all \(t \geq 0 \),

\[
X^{(n)}_t := \int_{A_{-1}} x \, \Pi_t(dx), \quad X^{(n)}_t := \int_{A_n} x \, \Pi_t(dx) - tm(A_n) \quad (n \geq 0).
\]

Thanks to the construction of Lecture 5 (pp. 26 and on), \(\{X^{(n)}_{\cdot}\}_{n=-1}^{\infty} \) are independent Lévy processes, and for all \(n \geq 0, t \geq 0, \) and \(\xi \in \mathbb{R}^d \),

\[
E e^{ix \cdot X^{(n)}_t} = e^{-t} \int_{A_n} \left(1 - e^{i\xi \cdot z} + i(\xi \cdot z)1_{[0,1]}(\|z\|) \right) m(dz).
\]

Moreover, \(X^{(-1)} \) is a compound Poisson process with parameters \(m(\bullet \cap A_{-1})/m(A_{-1}) \) and \(\lambda = m(A_{-1}) \), for all \(n \geq 0 \), \(X^{(n)} \) is a compensated compound Poisson process with parameters \(m(\bullet \cap A_n)/m(A_n) \) and \(\lambda = m(A_n) \).

Now \(Y^{(n)}_t := \sum_{k=0}^{n} X^{[k]}_t \) defines a Lévy process with exponent

\[
\psi_n(\xi) := \int_{1>|z|>2^{-n+1}} \left(1 - e^{i\xi \cdot z} + i(\xi \cdot z)1_{[0,1]}(\|z\|) \right) m(dz),
\]

valid for all \(\xi \in \mathbb{R}^d \) and \(n \geq 1 \). Our goal is to prove that there exists a process \(Y \) such that for all nonrandom \(T > 0 \),

\[
\sup_{t \in [0,T]} \left\| Y^{(n)}_t - Y_t \right\| \to 0 \quad \text{in } L^2(\mathcal{F}). \tag{2}
\]

Because \(Y^{(n)} \) is caglad for all \(n \), uniform convergence shows that \(Y \) is cadlag for all \(n \). In fact, the jumps of \(Y^{(n+1)} \) contain those of \(Y^{(n)} \), and this proves that \(Y \) is pure jump. And because the finite-dimensional distributions of \(Y^{(n)} \) converge to those of \(Y \), it follows then that \(Y \) is a Lévy process, independent of \(X^{(-1)} \), and with characteristic exponent

\[
\psi_{\infty}(\xi) = \lim_{n \to \infty} \psi_n(\xi) = \int_{1>|z|} \left(1 - e^{i\xi \cdot z} + i(\xi \cdot z)1_{[0,1]}(\|z\|) \right) m(dz).
\]

[The formula for the limit holds by the dominated convergence theorem.] Sums of independent Lévy processes are themselves Lévy. And their exponents add. Therefore, \(X^{(-1)} + Y_t \) is Lévy with exponent \(\Psi^{(d)} \).

It remains to prove the existence of \(Y \). Let us choose and fix some \(T > 0 \), and note that for all \(j, k \geq 1 \) and \(t \geq 0 \),

\[
Y^{(n+k)}_t - Y^{(n)}_t = \sum_{j=k+1}^{n+k} \left(\int_{A_j} x \, \Pi_t(dx) - tm(A_j) \right),
\]
and the summands are independent because the A_j’s are disjoint. Since the left-hand side has mean zero, it follows that

$$E \left(\left\| Y_t^{(n+k)} - Y_t^{(n)} \right\|^2 \right) = \sum_{j=k+1}^{n+k} E \left(\left\| \int_{A_j} x \Pi_t(dx) - tm(A_j) \right\|^2 \right)$$

$$\leq 2^{d-1} t \sum_{j=k+1}^{n+k} \int_{A_j} \|x\|^2 m(dx) = 2^{d-1} t \int_{\cup_{j=k+1}^{n+k} A_j} \|x\|^2 m(dx);$$

see Theorem 3. Every one-dimensional mean-zero Lévy process is a mean-zero martingale [in the case of Brownian motion we have seen this in Math. 6040; the reasoning in the general case is exactly the same]. Therefore, $Y_t^{(n+k)} - Y_t^{(n)}$ is a mean-zero cadlag martingale (coordinatewise). Doob’s maximal inequality tells us that

$$E \left(\sup_{t \in [0,T]} \left\| Y_t^{(n+k)} - Y_t^{(n)} \right\|^2 \right) \leq 2^{d+1} T \int_{2^{-k} \leq \|x\| < 2^{k+1}} \|x\|^2 m(dx).$$

This and the definition of a Lévy measure (p. 3) together imply (2), whence the result.

Problems for Lecture 6

1. Prove the Kolmogorov 0-1 law (page 29).

2. Prove that every Lévy process X on \mathbb{R}^d is a strong Markov process. That is, for all finite stopping times T [in the natural filtration of X], $t_1, \ldots, t_k \geq 0$, and $A_1, \ldots, A_k \in \mathcal{B}(\mathbb{R}^d),$

$$P \left(\bigcap_{i=1}^k \left\{ X_{t_i+t} - X_t \in A_j \right\} \mid \mathcal{F}_T \right) = P \left(\bigcap_{i=1}^k \left\{ X_{t_i} \in A_j \right\} \right) \text{ a.s.}$$

(Hint: Follow the Math. 6040 proof of the strong Markov property of Brownian motion.)