
Energy and Capacity

Polar and essentially-polar sets

Choose and fix a Borel set G ⊂ R� , and define the stopping time TG to be
the entrance time of G :

TG := inf {� > 0 : X� ∈ G or X�− ∈ G} (inf ∅ := ∞)� (1)

In other words, TG is the first time, if ever, that the closure of the range
of the process X enters the set G .

Definition 1. A Borel set G ⊆ R� is called polar if P{TG < ∞} = 0;
otherwise G is said to be nonpolar. Similarly, G is called essentially polar
if P{TG−� < ∞} = 0 for almost all � ∈ R�; otherwise G is deemed
essentially nonpolar. �

We are abusing notation slightly; “essentially nonpolar” is being treated
as an equivalent to “not essentially polar.”

We can note that
�

R�
P {TG−� < ∞} d� =

�

R�
P

�
X(R+) ∩ (G − �) �= ∅

�
d��

But X(R+)∩(G −�) is nonempty if and only if � is an element of G �X(R+).
Therefore, Fubini’s theorem tells us that

G is essentially polar iff E
���G � X(R+)

��� = 0�

Or equivalently,

G is essentially polar iff E
���X(R+) � G

��� = 0�
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86 13. Energy and Capacity

(Why?) In particular, set G := {�} to see that a singleton is essentially
polar if and only if the range of X(R+) has positive Lebesgue measure
with positive probability. [This ought to seem familiar!]

Our goal is to determine all essentially-polar sets, and relate them to
polar sets in most interesting cases. To this end define for all λ > 0 and
Borel probability measures ν and µ on R� the following:

�λ(µ � ν) := 1
(2π)�

�

R�
µ̂(ξ) ν̂(ξ) Re

�
1

λ + Ψ(ξ)

�
dξ� (2)

And if µ(d�) = � (�) d� and ν(d�) = �(�) d�, then we may write �λ(� � �) in
place of �λ(µ � ν) as well. Also define

Capλ(G) :=
�

inf
µ∈M1(G)

�λ(µ � µ)
�−1

� (3)

where M1(G) denotes the collection of all probability measures µ such that
µ(G�) = 0, inf ∅ := ∞, and ∞−1 := 0.
Definition 2. �λ(µ � ν) is called the mutual λ-energy between µ and ν, and
Capλ(G) the λ-capacity of G . �

Our goal is to prove the following:
Theorem 3. If Capλ(G) > 0 then G is essentially nonpolar. And if
Capλ(G) = 0, then G is polar.

Because of the preceding, we care mostly whether or not a given set
G has positive λ-capacity. Therefore, let me remind you that Capλ(G) > 0
if and only if there exists a probability measure µ, supported in G , such
that

�
R� |µ̂(ξ)|2Re(1 + Ψ(ξ))−1 dξ < ∞.

Note that Capλ(G) = Capλ(G + �) for all � ∈ R� . As a consequence of
Theorem 3 we find then that G is polar if and only if P{TG−� < ∞} = 0
for all � ∈ R� . That is: (a) All polar sets are essentially polar; and (b)
The difference between polarity and essential polarity is about at most a
Lebesgue-null set of shifts of G . As the following shows, there is in fact
no difference in almost all cases of interest.
Proposition 4. Suppose Uλ is absolutely continuous for some λ > 0. Then,
a Borel set G is essentially polar if and only if it is polar.

An energy identity

Theorem 5 (Foondun and Khoshnevisan, 2010, Corollary 3.7). If � is a
probability density on R� , then

�

R�
(Rλ� )(�)� (�) d� = �λ(� � � ) for all λ > 0� (4)
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Proof. If � ∈ C0(R�) with �̂ ∈ L1(R�), then (4) follows from direct compu-
tations. Indeed, we can use the fact that �̂λ(ξ) = Re(λ + Ψ(ξ))−1 ≥ 0 [see (2,
p. 63)] together with Fubini’s theorem and find that

�

R�
(Rλ� )(�)� (�) d� = 1

(2π)�
�

R�
|�̂ (ξ)|2Re

�
1

λ + Ψ(ξ)

�
dξ� (5)

But in the present case, Fubini’s theorem is not applicable. Instead, we
proceed in two steps: First we prove that

�

R�
(Rλ� )(�)� (�) d� ≥ �λ(� � � )� (6)

This holds trivially unless the left-hand side is finite, which we now assume
is the case. Because � is a density function, Lusin’s theorem tells us that
for all δ > 0 there exists a compact set Kδ ⊂ R� such that

�

K�
δ

� (�) d� ≤ δ� and Rλ� is continuous on Kδ�

In particular,
�

R�
(Rλ� )(�)� (�) d� ≥

�

Kδ

(Rλ� )(�)� (�) d� = lim
�↓0

�

Kδ
((Rλ� ) ∗ �� ) (�)� (�) d��

where �� denotes the density of B� for a �-dimensional Brownian motion
B. Let �δ := �1lKδ and note that �̂δ → �̂ , pointwise, as δ ↓ 0.

Since (Rλ� ) ∗ �� = Rλ(� ∗ �� ) ≥ Rλ(�δ ∗ �� ) and �� = ��/2 ∗ ��/2, we can
apply Tonelli’s theorem to find that
�

R�
(Rλ� )(�)� (�) d� ≥ lim inf

�↓0

�

R�
(Rλ(�δ ∗ �� )) (�)�δ(�) d�

= lim inf
�↓0

�

R�
(Rλ(�δ ∗ ��/2)) (�) (�δ ∗ ��/2) (�) d�

= 1
(2π)� lim inf

�↓0

�

R�
|�̂δ(ξ)|2e−��ξ�2/2Re

�
1

λ + Ψ(−ξ)

�
dξ�

thanks to (5). This proves that
�

R�
(Rλ� )(�)� (�) d� ≥ 1

(2π)� lim inf
δ↓0

�

R�
|�̂δ(ξ)|2Re

�
1

1 + Ψ(ξ)

�
dξ�

and Fatou’s lemma proves (6). The converse bound is much easier: We
merely note that, as above,

�

R�
(Rλ(� ∗ �� )) (�)� (�) d� =

�

R�
(Rλ(� ∗ ��/2)) (�) (� ∗ ��/2) (�) d�

= 1
(2π)�

�

R�
|�̂ (ξ)|2e−��ξ�2/2Re

�
1

λ + Ψ(ξ)

�
dξ�
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Then we let � ↓ 0; the right-most term converges to �λ(� � � ) by the dom-
inated convergence theorem, and the lim inf of the left-most term is at
most

�
R� (Rλ� )(�)� (�) d� by Fatou’s lemma. �

Proof of Theorem 3

Theorem 3 will follow immediately from Lemmas 7 and 9 below.
Define

(Jλ� )(�) :=
� ∞

0
e−λ�� (� + X�) d��

Lemma 6. For all � ∈ L1(R�) ∩ L2(R�) and λ > 0,
�

R�
E

�
(Jλ� )(�)

�
d� = 1

λ �
�

R�
E

�
|(Jλ� )(�)|2

�
d� = 1

λ �λ(� � � )�

Proof. The first computation follows because � is a probability density and
hence

�
R� (Jλ� )(�) d� = λ−1� Now we begin with the second computation of

the lemma:

E
�

|(Jλ� )(�)|2
�

= 2
� ∞

0
e−λ� d�

� ∞

�
e−λ� d� E

�
� (� + X�) · � (� + X� )

�

= 2
� ∞

0
e−λ� d�

� ∞

�
e−λ� d� E

�
� (� + X�) · (P�−�� )(� + X�)

�

= 2
� ∞

0
e−2λ�E

�
� (� + X�) · (Rλ� )(� + X�)

�
d��

thanks to the Markov property. Therefore,
�

R�
E

�
|(Jλ� )(�)|2

�
d� = 1

λ

�

R�
� (�) · (Rλ� )(�) d��

And the lemma follows from Theorem 5. �

Lemma 7. Regardless of the value of λ > 0,

E (|G � X(R+)|) =
�

R�
P {TG−� < ∞} d� ≥ 1

λ · Capλ(G)�

Remark 8. It is important to note that TG−� < ∞ if and only if the Lévy
process� + X� [which starts at � ∈ R� at time zero] everh hits G; more
precisely, there exists � > 0 such that �+X� ∈ G or �+X�− ∈ G . Therefore,
the preceding states that if G has positive λ-capacity, then X hits G , starting
from almost every starting point � ∈ R� . In fact, this property is one way
of thinking about the essential nonpolarity of G . �
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Proof. Let us begin with a simple fact from classical function theory.
The Paley–Zygmund inequality.1 Suppose Y : R� × Ω → R+ is nonneg-
ative and measurable, Y �≡ 0, Y ∈ L2(R� × Ω), and

�
R� EY (�) d� = � > 0.

Then, �

R�
P {Y (�) > 0} d� ≥ �2

�
R� E

�
|Y (�)|2

�
d�

�

where 1/∞ := 0.
Let � be a probability density that is supported on the closed [say] �-

enlargment G� of G . We apply Lemma 6 together with the Paley-Zygmund
inequality [with Y (�) := (Jλ� )(�)] and obtain

�

R�
P {(Jλ� )(�) > 0} d� ≥ 1

λ · �λ(� � � ) �

If (Jλ� )(�) > 0, then certainly � + X� ∈ G� for some � > 0; i.e., TG�−� < ∞.
Therefore, �

R�
P {TG�−� < ∞} d� ≥ 1

λ · sup
�

1
�λ(� � �) �

where the supremum is taken over all probability densities � that are
supported on G� . Let �� be a probability density, supported on B(0 � �),
and observe that ρ ∗ �� is a probability density supported on G� whenever
ρ ∈ M1(G). Because of (2), �λ(ρ ∗ �� � ρ ∗ �� ) ≤ �λ(ρ � ρ), and hence

�

R�
P {TG�−� < ∞} d� ≥ 1

λ · Capλ(G)�

Note that
�

�>0
{TG�−� < ∞} =

�

�>0
{� + X(R+) ∩ G� �= ∅} =

�
� + X(R+) ∩ G �= ∅

�
�

Therefore,
�

R�
P

�
� + X(R+) ∩ G �= ∅

�
d� ≥ 1

λ · Capλ(G)�

Now the left-hand side is the expectation of the Lebesgue measure of the
random set G � X(R+) [check!]. Because X is cadlag, the set difference
between X(R+) and its closure has zero measure (in fact, is countable).

1Here is the proof: By the Cauchy–Schwarz inequality,

� =
�

R�
E� (�) d� =

�

R�×Ω
1l{�>0}(� � ω) · � (� � ω) d� P(dω)

≤
��

R�×Ω
1l{�>0}(� � ω) d� P(dω) ·

�

R�×Ω
|� (� � ω)|2 d� P(dω)

�1/2

=
��

R�
P{� (�) > 0} d�

�1/2
·
��

R�
E

�
|� (�)|2

�
d�

�1/2
� �
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Therefore, the Lebesgue measure of G�X(R+) is the same as the Lebesgue
measure of G � X(R+). This proves the result. �

Lemma 9. P{TG ≤ �} ≤ eλ� · Capλ(G) for all �� λ > 0.

Proof. This is trivial unless
P {TG ≤ �} > 0� (7)

which we assume is the case.
For all measurable � : R� → R+,

E ( (Jλ� )(0) | �TG∧�) ≥
� ∞

TG

e−λ�E
�
� (X�)

�� �TG∧�
�

d� · 1l{TG≤�}

= e−λ�
� ∞

0
e−λ�E

�
� (X�+TG∧�)

�� �TG

�
d� · 1l{TG≤�}

= e−λ�
� ∞

0
e−λ�(P�� )(XTG∧�) d� · 1l{TG≤�}�

thanks to the strong Markov property. Therefore,
E ( (Jλ� )(0) | �TG∧�) ≥ e−λ�(Rλ� )(XTG ) · 1l{TG≤�}�

The expectation of the term on the left-hand side is 1, thanks to Lemma 6
and the optional stopping theorem. Therefore,

1 ≥ e−λ�E
�
(Rλ� )(XTG )

�� TG ≤ �
�

· P{TG ≤ �}

= e−λ�
�

R�
(Rλ� ) dρ · P{TG ≤ �}�

where ρ(A) := P(XTG ∈ A | TG ≤ �). In accord with (7), ρ ∈ M1(G).
We apply the preceding with � := ρ ∗ �� , where �� denotes the density

of B� for a �-dimensional Brownian motion. Because�

R�
(Rλ� ) dρ =

�

R�
(Rλ(ρ ∗ ��/2)) (�) (ρ ∗ ��/2) (�) d��

it follows from Theorem 5 that

eλ� ≥ 1
(2π)�

�

R�
e−��ξ�2/2|ρ̂(ξ)|2Re

�
1

λ + Ψ(ξ)

�
dξ · P {TG ≤ �} �

Let � ↓ 0 and appeal to the monotone convergence theorem to finish. �

Problems for Lecture 13

1. Prove that Capλ(G) > 0 for some λ > 0 iff Capλ(G) > 0 for all λ > 0.

2. Prove Proposition 4. (Hint: Inspect the proof of Theorem 10 on page
82.)


