Lot 75

Energy and Capacity

Polar and essentially-polar sets

Choose and fix a Borel set G ¢ RY, and define the stopping time Tg to be
the entrance time of G:

Tg:=inf{s >0: Xs€ G or Xs_ € G} (inf & := o0). (1)

In other words, T is the first time, if ever, that the closure of the range
of the process X enters the set G.

Definition 1. A Borel set G € R? is called polar if P{Tg < oo} = 0;
otherwise G is said to be nonpolar. Similarly, G is called essentially polar
if P{Tg_x < oo} = 0 for almost all x € RY; otherwise G is deemed
essentially nonpolar. O

We are abusing notation slightly; “essentially nonpolar” is being treated
as an equivalent to “not essentially polar.”

We can note that

/RdP{TGx<oo}dx=/RdP{X(R+)m(G_x)%@} dr.

But X(R,)N(G —x) is nonempty if and only if x is an element of GE& X(R.).
Therefore, Fubini’'s theorem tells us that

G is essentially polar iff E ‘G & X(Ry)| =0.

Or equivalently,

G is essentially polar iff E ‘X R,) O G) = 0.
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(Why?) In particular, set G := {x} to see that a singleton is essentially
polar if and only if the range of X(R,) has positive Lebesgue measure
with positive probability. [This ought to seem familiar!]

Our goal is to determine all essentially-polar sets, and relate them to
polar sets in most interesting cases. To this end define for all A > 0 and
Borel probability measures v and g on R? the following:

1

1 \ e\ ST
&, v) = W/Rd &) v(€) Re <)L+\{,(£>> de. (2)

And if p(dx) = f(x)dx and v(dx) = g(x)dx, then we may write &,(f ,g) in
place of &, (i, v) as well. Also define

-1
Cap,(G):= | inf 8)»(;11'}1)} , (3)

pneMi(G)

where M;(G) denotes the collection of all probability measures i such that
1(G¢) = 0, inf @ 1= 0o, and co~! := 0.

Definition 2. &, (i1, v) is called the mutual A-energy between p and v, and
Cap, (G) the A-capacity of G. O

Our goal is to prove the following:

Theorem 3. If Cap,(G) > 0 then G is essentially nonpolar. And if
Cap,(G) = 0, then G is polar.

Because of the preceding, we care mostly whether or not a given set
G has positive A-capacity. Therefore, let me remind you that Cap,(G) > 0
if and only if there exists a probability measure 1, supported in G, such
that [pa [2(€)]?Re(1 + ¥(£))~1 d¢ < oo

Note that Cap, (G) = Cap, (G + x) for all x € R?. As a consequence of
Theorem 3 we find then that G is polar if and only if P{Tg_» < co} =0
for all x € RY. That is: (a) All polar sets are essentially polar; and (b)
The difference between polarity and essential polarity is about at most a
Lebesgue-null set of shifts of G. As the following shows, there is in fact
no difference in almost all cases of interest.

Proposition 4. Suppose U, is absolutely continuous for some A > 0. Then,
a Borel set G is essentially polar if and only if it is polar.
An energy identity

Theorem 5 (Foondun and Khoshnevisan, 2010, Corollary 3.7). If f is a
probability density on RY, then

/Rd(RAf)(x)f(x) dx = &,\(f,f) for all A > 0. (4)
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Proof. If f € Co(RY) with f € L(R?), then (4) follows from direct compu-
tations. Indeed, we can use the fact that @1;(£) = Re(A + ¥(£))~! > 0 [see (2,
p. 63)] together with Fubini's theorem and find that

[ s - o [ perre (o) e

But in the present case, Fubini's theorem is not applicable. Instead, we
proceed in two steps: First we prove that

/R (R dx > S 1) )

This holds trivially unless the left-hand side is finite, which we now assume
is the case. Because f is a density function, Lusin’s theorem tells us that
for all 6 > 0 there exists a compact set Ks ¢ RY such that

flx)dx <6, and R,f is continuous on Ks.
K§

In particular,
J e = [ R = tim [ (R 00 )

where . denotes the density of B¢ for a d-dimensional Brownian motion
B. Let fs := f1k, and note that fs — f, pointwise, as 6 | O.

Since (Raf) * @c = Ry(f * ¢c) > Rulfs * @c) and @c = @ejo * @cjo, we can
apply Tonelli’s theorem to find that

/ (Rof)(x)f (x) dx > Tim inf / (Ralfs * 92)) (0)fs(x) dx
Rd €l0 Rd
= liminf /R  (Ralf  @ero)) (x) s * pere) ) dx

_ b 2.(&)[2clél?/2 1
0 hr?i(l)nf,/gd Ifs(&)|%e Re T de,
thanks to (5). This proves that

[ Rl > g mint [ st 2Re< (£)> a,

and Fatou's lemma proves (6). The converse bound is much easier: We
merely note that, as above,

[ Rt g ) = [ (Rl ) ()1 ) )

Rd

1 A —ell? 1
= (27T)d/Rd F&)PeIEl2Re <)\,—|—\Ij(€)> de.
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Then we let € | O; the right-most term converges to &,(f , f) by the dom-
inated convergence theorem, and the liminf of the left-most term is at
most [pa(R;f)(x)f(x)dx by Fatou’s lemma. O

Proof of Theorem 3

Theorem 3 will follow immediately from Lemmas 7 and 9 below.
Define

Jaf)(x) = /OOO e Mf(x + X)ds.

Lemma 6. For all f € L'(R?Y) n L*(RY) and A > 0,

1 ) 1
[ Elnm) ar-z [ E(nAwP) dx - et

Proof. The first computation follows because f is a probability density and
hence fRd (I.f)(x)dx = A~'. Now we begin with the second computation of
the lemma:

(I(M = 2/ s ds/ e Mdt E [flx + Xq) - flx + Xy)]
= 2/ e ds/ e Mdt E[f(x + Xs) - (Pr_sf)(x + Xs)]|
0 s

=2 [T R [flr + X0 (Rufix + X)) ds,
0

thanks to the Markov property. Therefore,

|(Tf)(x dx— fly)- (Rif)(y)dy
fu 7l

And the lemma follows from Theorem b. O

Lemma 7. Regardless of the value of A > 0,

E(G o X(R,)|) = /de [To. < oo dx > | -Cap, (6).

Remark 8. It is important to note that Tg_ < oo if and only if the Lévy
processx + X¢ [which starts at x € R? at time zero] everh hits G; more
precisely, there exists t > 0 such that x+X; € G or x+X;_ € G. Therefore,
the preceding states that if G has positive A-capacity, then X hits G, starting
from almost every starting point x € R?. In fact, this property is one way
of thinking about the essential nonpolarity of G. O
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Proof. Let us begin with a simple fact from classical function theory.

The Paley-Zygmund inequality.1 Suppose ¥V : R x Q@ — R, is nonneg-
ative and measurable, Y £ 0, Y € L*(R? x Q), and [pq EY(x)dx = ¢ > 0.
Then,

c2

Jre E(|Y(x)]?) dx’

] P {V(x)> 0] dr >
Rd

where 1/o00 := 0.

Let f be a probability density that is supported on the closed [say]| e-
enlargment G€ of G. We apply Lemma 6 together with the Paley-Zygmund
inequality [with Y(x):= (J,f)(x)] and obtain

1
/Rd 12 {(])j)(f) > O]’ dx > m

If (J,f)(x) > 0O, then certainly x + X € G€ for some s > 0; ie., Tge_ < .

Therefore,

1 1
PITge_y <oco}ldx > - -sup ———,
/Rd {Taex <cofdr 2 7-sup g

where the supremum is taken over all probability densities g that are
supported on G€. Let h. be a probability density, supported on B(0, €),
and observe that p x he is a probability density supported on G¢ whenever
p € Mi(G). Because of (2), &(o* he,p* he) < 8,(p,p), and hence

/ P {Toer < 0o} dr > + - Capy(G).
Rd A
Note that
(M {Ter—x < o0} = () {x + XRy) NG + o] = {x+X(R+)mG#®}.
e>0 e>0
Therefore,

/r{dP{er}{(RQﬂG%—@} drz%'Cap;L(G).

Now the left-hand side is the expectation of the Lebesgue measure of the
random set G & X(R,) [check!]. Because X is cadlag, the set difference
between X(R.) and its closure has zero measure (in fact, is countable).

1Here is the proof: By the Cauchy—Schwarz inequality,

c = ,/Rd Ef(x)dx = ,/Rdxgz Tpo0p(x, w) - flx, w) dx P(dw)

‘ 1/2
< ([, Aot wdep@o [ (e nf e

) </R(,P{f<x) . om)”g </RdE(V(r>12) d1>1/2. D
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Therefore, the Lebesgue measure of GSX (R, ) is the same as the Lebesgue
measure of G & X(R,). This proves the result. ([

Lemma 9. P{Tg < n} < e - Cap,(G) for all n, A > 0.

Proof. This is trivial unless
P{Tg <n}>0, (7)
which we assume is the case.

For all measurable f: RY — R,

E((])J)(O) l gTG/\n) > /TOO ei)»sE [f(XS) } gT(;/\n] ds - 11{T(;Sn}

- e_m/o e ME [f (Xs+T6nn) ’ Fre] ds - Yyrocn

= GAH/O e (Psf)(Xronn) ds - 1y7y<ng
thanks to the strong Markov property. Therefore,
E(A)0) | Froan) = e " (Raf)(X1s) - 1rgcn)-

The expectation of the term on the left-hand side is 1, thanks to Lemma 6
and the optional stopping theorem. Therefore,

1> e ™E[(Rif)(X1g) | Te < n] - P{Tc < n}

= e_}‘”/ (Rif)dp - P{TG < n},
R4

where p(A) := P(X7, € A| Tg < n). In accord with (7), p € My (G).

We apply the preceding with f := p % ¢, where ¢, denotes the density
of B¢ for a d-dimensional Brownian motion. Because

/ (R.f)dp = / (Ralp * @cpo)) (x) (0 * pepo) (x) dx,
Rd Rd

it follows from Theorem 5 that

ne L[ elepe, R Ry
o [ el PRe <M\P(£>> d€ P {Te < n}.

Let € | 0 and appeal to the monotone convergence theorem to finish. [

Problems for Lecture 13
1. Prove that Cap,(G) > 0 for some A > 0 iff Cap,(G) > 0 for all 1 > 0.

2. Prove Proposition 4. (Hint: Inspect the proof of Theorem 10 on page
82.)



