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Chapter 1

The Canonical Gaussian
Measure on Rn

?〈ch:Canonical_Gaussian〉?

1 Introduction

The main goal of this book is to study “Gaussian measures,” the simplest ex-
ample of which is the canonical Gaussian measure Pn on Rn, where n > 1 is an
arbitrary integer. The measure Pn is defined simply as

Pn(A) :=

∫
A

γn(x) dx for all Borel sets A ⊆ Rn,

where γn denotes the standard normal density function on Rn, viz.,

γn(x) :=
e−‖x‖

2/2

(2π)n/2
[x ∈ Rn]. (1.1) gamma_n

The function γ1 describes the famous “bell curve,” and γn looks like a suitable
“rotation” of the curve of γ1 when n > 1.

We frequently drop the subscript n from Pn when it is clear which dimension
we are in.

Throughout, we consider the probability space (Ω ,F ,P), where we have
dropped the subscript n from Pn, and

Ω := Rn, and F := B(Rn),

where B(Rn) denotes the Borel subsets of Rn.
Recall that measurable functions f : Rn → R are random variables, and

measurable functions F : Rn → Rn can be regarded as random vectors. Through-
out this book, we designate by Z = (Z1 , . . . , Zn) the random vector

Zj(x) := xj for all x ∈ Rn and 1 6 j 6 n. (1.2) Z

3



4 CHAPTER 1. THE CANONICAL GAUSSIAN MEASURE ON RN

Thus, Z always denotes a random vector of n i.i.d. standard normal random
variables on our probability space. In particular,

Pn(A) = P{Z ∈ A} for all Borel sets A ⊆ Rn.

We also let E := En denote the expectation operator for P = Pn, which allows
us to write integrals, using shorthand, as

E[f(Z)] =

∫
Rn
f(x) P(dx) =

∫
Rn
f(x)γn(x) dx.

One of the elementary, though useful, properties of the measure Pn is that
its “tails” are vanishingly small.

〈lem:tails〉Lemma 1.1. As t→∞,

P {x ∈ Rn : ‖x‖ > t} =
2 + o(1)

2n/2Γ(n/2)
tn−2e−t

2/2,

where Γ(ν) :=
∫∞

0
tν−1 exp(−t) dt is the gamma function evaluated at ν > 0.

Proof. Define

Sn := ‖Z‖2 =

n∑
i=1

Z2
i for all n > 1. (1.3) S_n

Because Sn has a χ2
n distribution,

P{x ∈ Rn : ‖x‖ > t} = P{Sn > t2}

=
1

2n/2Γ(n/2)

∫ ∞
t2

x(n−2)/2e−x/2 dx,
(1.4) eq:chi2:tail

for all t > 0. Now apply l’Hôpital’s rule of calculus.

The following large-deviations estimate is one of the ready consequences of
Lemma 1.1: For every n > 1,

lim
t→∞

1

t2
log P {x ∈ Rn : ‖x‖ > t} = − 1

2 . (1.5) eq:LD

Of course, (1.5) is a weaker statement than Lemma 1.1. But it has the ad-
vantage of being “dimension independent.” Dimension independence properties
play a prominent role in the analysis of Gaussian measures. Here, for exam-
ple, (1.5) teaches us that the tails of Pn behave roughly as do the tails of P1

regardless of the value of n > 1.
Still, many of the more interesting properties of Pn are radically different

from those of P1 when n is large. In low dimensions—say n = 1, 2, 3—one can
visualize the probability density function γn from (1.1). Based on that, or other
methods, one knows that in low dimensions most of the mass of Pn concentrates
near the origin. For example, an inspection of the standard normal table reveals
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that more than 68.26% of the total mass of P1 is within one unit of the origin;
see Figure 1.1.

In higher dimensions, however, the structure of Pn can be quite different. For
example, let us first recall the random variable Sn from (1.3). Then, apply the
weak law of large numbers XXX to deduce that Sn/n converges in probability
to one, as n→∞.1 Stated in other words,

lim
n→∞

P
{
x ∈ Rn : (1− ε)n1/2 6 ‖x‖ 6 (1 + ε)n1/2

}
= 1, (1.6) pbm:CoM

for every ε > 0. The proof of (1.6) is short and can be reproduced right
here: Recall that E denotes the expectation operator for P := Pn, and let
Var be the corresponding variance operator. Since Sn has a χ2 distribution
with n degrees of freedom, simple computations show that E(Sn) = n and
Var(Sn) = 2n; see Problem 2 below. Therefore, Chebyshev’s inequality yields
P{|Sn − E(Sn)| > εn} 6 2ε−2n−1. Equivalently,

P
{
x ∈ Rn : (1− ε)1/2n1/2 6 ‖x‖ 6 (1 + ε)1/2n1/2

}
> 1− 2

nε2
. (1.7) WLLN

Thus we see that, when n is large, the measure Pn concentrates much of its
total mass near the boundary of the centered ball of radius n1/2, very far from
the origin. A more careful examination shows that, in fact, very little of the
total mass of Pn is elsewhere when n is large. The following theorem makes this
statement much more precise. Theorem 1.2 is a simple consequence of a remark-
able property of Gaussian measures that is known commonly as concentration
of measure XXX. We will discuss this topic in more detail in due time.

〈th:CoM:n〉Theorem 1.2. For every ε > 0,

P
{
x ∈ Rn : (1− ε)n1/2 6 ‖x‖ 6 (1 + ε)n1/2

}
> 1− 2e−nε

2

. (1.8) CoM:n

Theorem 1.2 does not

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

x

γ1(x)

Figure 1.1. Area over [−1 , 1] under the normal curve.
〈fig:N(0,1)〉

merely improve the crude
bound (1.7). Rather, it
describes an entirely new
phenomenon in high di-
mensions. To wit, let us
consider the measure Pn
when n = 30, 000. When
ε = 0, the left-hand side
of (1.8) is equal to 0. But
if ε is increased slightly,

say to ε = 0.01, then the left-hand side of (1.8) increases to a probability > 0.9,
whereas (1.7) reports a mere probability lower bound of 1/3.

Proof. The result follows from a standard large-deviations argument that we
reproduce next.

1In the present setting, it does not make sense to discuss almost-sure convergence since
the underlying probability space is (Rn ,B(Rn) ,Pn).
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Since Sn :=
∑n
i=1 Z

2
i has a χ2

n distribution, its moment generating function
is

E eλSn = (1− 2λ)−n/2 for −∞ < λ < 1/2, (1.9) mgf:chi2

and E exp(λSn) =∞ when λ > 1/2. See Problem 2 below.
We use the preceding as follows: For all t > 0 and λ ∈ (0 , 1/2),

P
{
x ∈ Rn : ‖x‖ > n1/2t

}
= P

{
eλSn > eλnt

2
}

6 (1− 2λ)−n/2e−λnt
2

,

thanks to (1.9) and Chebyshev’s inequality. The left-hand side is independent
of λ ∈ (0 , 1/2). Therefore, we may optimize the right-hand side over λ ∈ (0 , 1/2)
to find that

P
{
x ∈ Rn : ‖x‖ > n1/2t

}
6 exp

{
−n sup

0<λ<1/2

[
λt2 +

1

2
log(1− 2λ)

]}
= exp

{
−n

2

[
t2 − 1− 2 log t

]}
. (1.10) eq:tail:log

In particular, if t > 1, then it follows easily that the exponent of the right-most
exponential in (1.10) is strictly positive, whence we have exponential decay of
the probability as n → ∞. This exponential decay is sharp; see Problem 3
below.

In any case, because log t < t− 1 when t > 1, it follows from (1.10) that

P
{
x ∈ Rn : ‖x‖ > n1/2t

}
6 e−n(t−1)2 . (1.11) BooBooBound

The special choice t = 1 + ε yields (1.8) when t > 1.
When t < 1, we may argue similarly and write

P
{
x ∈ Rn : ‖x‖ < n1/2t

}
= P

{
e−λSn > e−λnt

2
}

for all λ > 0

6 exp

{
−n sup

λ>0

[
−λt2 +

1

2
log(1 + 2λ)

]}
= exp

{
−n

2

[
t2 − 1− 2 log t

]}
.

Since −2 log t > 2(1− t) + (1− t)2 when t < 1, it follows that

P
{
x ∈ Rn : ‖x‖ < n1/2t

}
6 exp

{
−n

2

[
t2 − 1 + 2(1− t) + (1− t)2

]}
6 e−n(1−t)2 .

Set t = 1− ε and combine with (1.11) to complete the proof.

The preceding discussion shows that P{‖Z‖ ≈ n1/2} is extremely close to one
when n is large; that is, with very high probability, Z lies close to the boundary
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of the centered sphere of radius n1/2. Of course, the latter is the sphere in
the `2-norm, and it is worthwhile to consider how close Z lies to spheres in
`p-norm instead, where p 6= 2. This problem too follows from the same analysis
as above. In fact, another appeal to the weak law of large numbers shows that
for all ε > 0,

P
{

(1− ε)µpn1/p 6 ‖Z‖p 6 (1 + ε)µpn
1/p
}
→ 1 as n→∞, (1.12) l_p

for all p ∈ [1 ,∞), where µp := E(|Z1|p), and ‖ · ‖p denotes the `p-norm on Rn;
that is, ‖x‖p := (

∑n
i=1 |xi|p)1/p for all x ∈ Rn.

These results suggest that the n-dimensional Gauss space (Rn,B(Rn) ,Pn)
has unexpected geometry when n� 1.

Interestingly enough, the analogue of (1.12) in the case that p = ∞ has
a still different form. In this case, one is examining the maximum of n i.i.d.
unbounded random variables. Naturally the maximum grows as n → ∞. The
following anticipates the rate of growth, which turns out to be only logarithmic.
See also Problem 18.

〈pr:max〉
Proposition 1.3. Let Mn denote either max16i6n |Zi| or max16i6n Zi. Then,

E(Mn) =
√

2 log n+ o(1) as n→∞.

We will see later on (see XXX) that, in part because of Proposition 1.3,
there exists a finite constant c > 0 such that

Pn

{
(1− ε)

√
2 log n 6Mn 6 (1 + ε)

√
2 log n

}
> 1− 2e−cε

2(logn)2 , (1.13) ?CoM:max?

simultaneously for all integers n > 2 and real numbers ε ∈ (0 , 1). Thus, the
measure Pn concentrates on `∞-balls of radius

√
2 log n as n→∞.

Before we prove Proposition 1.3, let us mention only that it is possible to
evaluate E(Mn) much more precisely than was done in Proposition 1.3; see
Problem 19 below. However, Proposition 1.3 is strong enough for our present
needs.

Proof of Proposition 1.3. Throughout the proof, define

Mn := max
16j6n

|Zj | and Mn := max
16j6n

Zj .

Since Mn 6 Mn 6 Mn, it suffices to study E(Mn) for an upper bound and
E(Mn) for a lower bound. We begin with the former.

For all t > 0, the event {Mn > t} is equivalent to the event that some |Zi|
exceeds t. Therefore, a simple union bound and Lemma 1.1 together yield a
finite constant A such that

P
{
Mn > t

}
6

n∑
i=1

P{|Zi| > t} = nP{|Z1| > t} 6 Ant−1e−t
2/2,
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valid uniformly for all n > 1, and for all sufficiently large t > 1. We will use this
bound when n exp(−t2/2) < 1; that is, when t >

√
2 log n. For smaller values

of t, an upper bound of one is frequently a better choice. Thus, we write

E
(
Mn

)
=

∫ ∞
0

P

{
max

16i6n
|Zi| > t

}
dt

6
√

2 log n+An

∫ ∞
√

2 logn

t−1e−t
2/2 dt

=
√

2 log n+ o(1) as n→∞.

This proves the upper bound.
The lower bound is also simple to establish. First, let us choose and fix an

ε > 0 and then note that

E (Mn) > E
[
Mn; Mn >

√
2 log n− ε

]
>
(√

2 log n− ε
)

P
{
Mn >

√
2 log n− ε

}
.

(1.14) eq:E(M_n):LB

We plan to prove that√
log nP

{
Mn 6

√
2 log n− ε

}
→ 0 as n→∞. (1.15) goal:LB:M_n

Indeed, (1.15) and (1.14) together imply that, as n→∞,

E (Mn) >
[√

2 log n− ε
](

1− o
(

1√
log n

))
=
√

2 log n− ε+ o(1).

Since ε is arbitrary, it follows that E(Mn) >
√

2 log n + o(1), which completes
the proof. It remains to verify (1.15).

Since 1− a 6 exp(−a) for all a ∈ R, it follows from independence that

P
{
Mn 6

√
2 log n− ε

}
=
(

1− P
{
Z1 >

√
2 log n− ε

})n
6 exp

(
−nP

{
Z1 >

√
2 log n− ε

})
.

(1.16) eq:P(M_n):UB

According to Lemma 1.1, as n→∞,

P
{
Z1 >

√
2 log n− ε

}
=

e−ε
2/2 + o(1)

2n
√
π log n

exp
(
ε
√

2 log n
)
.

Because exp(ε
√

2 log n) grows faster than any given power of log n, the preceding
probability must exceed n−1(log n)2 for all n sufficiently large.2 In particular,
(1.16) implies that, as n→∞,

P
{
Mn 6

√
2 log n− ε

}
6 e−(logn)2 = o

(
1√

log n

)
. (1.17) eq:under:M

2Of course, the same sentence continues to hold if we replace (logn)2 by (logn)p for an
arbitrary p > 0. We need only to choose p > 1—here, p = 2—in order to ensure the final
identity in (1.17).
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This verifies (1.15), and completes the proof of the proposition.

2 The Projective CLT

The following projective central limit theorem is a different way to say that a
Gaussian vector in Rn lies very close to the `2-sphere of radius n1/2.

〈pr:ProjCLT〉Proposition 2.1. Choose and fix an integer k > 1 and a bounded and contin-
uous function f : Rk → R. Let µn denote the uniform measure on

√
nSn−1.

Then, as n→∞,∫
√
nSn−1

f(x1 , . . . , xk)µn(dx1 · · · dxn)→
∫
Rk
f(x1 , . . . , xk) Pk(dx1 · · · dxk).

Proposition 2.1 is a rigorous way to say that, when n � 1, the canonical
Gaussian measure on Rn is very close to the uniform distribution on the ball√
n Sn−1 of radius n1/2 in Rn.

Proof. By the weak law of large numbers XXX,

‖Z‖√
n

=

 1

n

n∑
j=1

Z2
j

1/2

→ 1 in probability as n→∞.

Therefore, for every integer k > 1,

√
n(Z1 . . . , Zk)

‖Z‖
⇒ (Z1 , . . . , Zk) as n→∞, (1.18) pCLT

where “⇒” denotes weak convergence in Rk. Now the distribution of the ran-
dom vector

√
nZ/‖Z‖ is rotationally invariant—see (1.1)—and supported on√

n Sn−1. Consequently, a classical fact about the uniqueness of Haar mea-
sures (see XXX) implies that the uniform measure µn coincides with the law of√
nZ/‖Z‖. In other words, the proposition is just a paraphrase of the already-

proved assertion (1.18).

3 Anderson’s Shifted-Ball Inequality

One of the defining features of Pn is that it is “unimodal.” This property is
sometimes called Anderson’s theorem, which is in fact a theorem of convex anal-
ysis; see Anderson XXX. When n = 1, “unimodality” refers to the celebrated
bell-shaped curve of γ1, and can be seen for example in Figure 1.1 on page
5. There are similar, also visual, ways to think about “unimodality” in higher
dimensions.

Anderson’s theorem has many deep applications in probability theory, as
well as multivariate statistics, which originally was one of the main motivations
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for Anderson’s work. We will see some of these applications later on. For now
we contend ourselves with a statement and proof.

The proof of Anderson’s theorem requires some notions from convex analysis,
which we develop first.

Recall that a set E ⊂ Rn is convex if for all x, y ∈ E the line segment xy
that joins x and y lies entirely in E. Equivalently put, E is convex if and only
if λx+ (1− λ)y ∈ E for all x, y ∈ E and λ ∈ [0 , 1]. See Figure 1.2.

E

x

y

Figure 1.2. A bounded, convex set E ⊂ R2: xy ⊆ E ∀x, y ∈ E.
〈fig:Cvx:Set〉

One can check, using only first principles, that a set E ⊂ Rn is convex if
and only if

E = λE + (1− λ)E for all λ ∈ [0 , 1], (1.19) eq:EEE

where αA+ βB denotes the Minkowski sum of αA and βB for all α, β ∈ R and
A,B ⊆ Rn. That is,

αA+ βB := {αx+ βy : x ∈ A , y ∈ B}.

See Problem 12.
Convex sets are measurable sets as the following result shows.

〈pr:convpbm:meas〉Proposition 3.1. Every convex set E ⊂ Rn is Lebesgue measurable.

Proposition 3.1 will be established en route the proof of Anderson’s inequal-
ity. In order to state Anderson’s inequality, we need to recall two standard
definitions.

Definition 3.2. A set E ∈ Rn is symmetric if E = −E.

Definition 3.3. If f : Rn → R is a measurable function, then its level set at
level r ∈ R is defined as f−1[r ,∞) := {x ∈ Rn : f(x) > r} := {f > r}. We say
f is symmetric if f(x) = f(−x) for all x ∈ Rn, or equivalently if all of its level
sets are symmetric.

We can finally state Anderson’s theorem.

〈th:Anderson〉Theorem 3.4 (Anderson’s inequality). Let f ∈ L1(Rn) be a non-negative sym-
metric function that has convex level sets. Then,∫

E

f(x− λy) dx >
∫
E

f(x− y) dx,

for all symmetric convex sets E ⊂ Rn, every y ∈ Rn, and all λ ∈ [0 , 1].
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The proof will take up the remainder of this chapter. For now, let us remark
briefly on how the Anderson inequality can be used to analyse the Gaussian
measure Pn.

Recall γn from (1.1), and note that for every r > 0, the level set

γ−1
n [r ,∞) =

{
x ∈ Rn : ‖x‖ 6

√
2 log r + n log(2π)

}
is a closed, whence convex and symmetric, ball in Rn. Therefore, we can apply
Anderson’s inequality with λ = 0 to immediately deduce the “unimodality” of
Pn in the sense of the following result.

〈co:Anderson〉Corollary 3.5 (Unimodality of Pn). For all symmetric convex sets E ⊂ Rn,
0 6 λ 6 1, and y ∈ Rn, Pn(E + λy) > Pn(E + y). In particular,

sup
y∈Rn

Pn(E + y) = Pn(E).

It is important to emphasize the remarkable fact that Corollary 3.5 is a
“dimension-free theorem.” Here is a typical consequence: P{‖Z − a‖ 6 r} is
maximized at a = 0 for all r > 0. For this reason, Corollary 3.5 is sometimes
referred to as a “shifted-ball inequality.”

One can easily generalize the preceding example with a little extra effort.
Let us first note that if M is an n × n positive-semidefinite matrix, then
E := {x ∈ Rn : x′Mx 6 r} is a symmetric convex set for every real num-
ber r > 0 (it is an ellipsoid).3 Equivalently, E is the event—in our probability
space (Rn,B(Rn) ,Pn)—that Z ′MZ 6 r. Therefore, Anderson’s shifted-ball
inequality implies that

P {(Z − µ)′M(Z − µ) 6 r} 6 P {Z ′MZ 6 r} ∀ r > 0 and µ ∈ Rn.

This inequality has applications in multivariate statistics; see, for example, the
final section of Anderson XXX. We will see other interesting examples of An-
derson’s inequality later on.

The proof of Anderson’s inequality takes up the rest of this section and is
divided into four parts. The first three parts are self-contained and establish a
series of ancillary results. Some readers may wish to accept the statements of the
first three parts on faith, and then proceed directly to the proof of Anderson’s
inequality in the fourth part.

§3.1 Part 1. Measurability of Convex Sets

Here we prove Proposition 3.1. But first let us mention the following example.

Example 3.6. Suppose n > 2 and E = B(0 , 1) ∪ F , where B(0 , 1) is the usual
notation for the Euclidean ball of radius one about 0 ∈ Rn, and F ⊂ ∂B(0 , 1).
The set E is convex, but it is not Borel measurable unless F is. Still, E is always
Lebesgue measurable, in this case because F is Lebesgue null in Rn.

3We frequently identify the elements of Rn with column vectors. In this way, we see that
a quantity such as x′Mx is a scalar for all x ∈ Rn and all n× n matrices M .
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This example shows that, in general, one cannot hope to replace the Lebesgue
measurability of convex sets by their Borel measurability.

Proof of Proposition 3.1. We will prove the following: Every bounded convex
set is measurable.

This does the job since whenever E is convex and n > 1, E ∩ B(0 , n) is
a bounded convex set, which is measurable by the above. Therefore, E =
∪∞n=1E ∩B(0 , n) is also measurable.

The closure ∂E of ∂E is manifestly closed; therefore, it is measurable. We
will prove that |∂E| = 0. This shows that the difference between E and the
open set E0 is a subset of a null set, whence E is Lebesgue measurable. There
are many proofs of this fact. Here is an elegant one, due to Lang XXX.

Define
M :=

{
B ∈ B(Rn) :

∣∣B ∩ ∂E∣∣ 6 (1− 3−n
)
|B|
}
.

Then M is clearly a monotone class; that is, M is closed under countable,
increasing unions and also closed under countable, decreasing intersections. We
plan to prove that every upright rectangle, that is every nonempty set of of
the form

∏n
i=1(ai , bi], is in M. If this were so, then Sierpiński’s monotone

class theorem would imply that M = B(Rn). That would show, in turn, that
|∂E| = |∂E ∩ ∂E| 6 (1− 3−n)|∂E|, which proves the claim.

Choose and fix a rectangle B :=
∏n
i=1(ai , bi], where ai < bi for all 1 6

i 6 n. Subdivide each 1-dimensional interval (ai , bi] into 3 equal-sized parts:
(ai , ai + ri], (ai + ri , ai + 2ri], and (ai + 2ri , ai + 3ri] where ri := (bi − ai)/3.
We can write B as a disjoint union of 3n equal-sized rectangles, each of which
has the form

∏n
i=1(ai + ciri , ai + (1 + ci)ri] where ci ∈ {0 , 1 , 2}. Call these

rectangles B1, . . . , B3n .
Direct inspection shows that, be-

a1 + r1 a1 + 2r1

a2 + r2

a2 + 2r2

4

4

4

4 4

B

Figure 1.3. A subdivison of B. The region
above the curved line belongs to the convex
set E. The smaller, darker, checked boxes are
those boxes in B that do not intersect ∂E.

〈fig:Cvx:Set:1〉

cause E is assumed to be convex, there
must exist an integer 1 6 L 6 3n

such that ∂E ∩ BL = ∅. For other-
wise the middle rectangle

∏n
i=1(ai +

ri , ai + 2ri] would have to lie entirely
in the interior E◦ and intersect ∂E
at the same time; this would contra-
dict the existence of a supporting hy-
perplane at every point of ∂E which
is a defining feature of convexity (see
Figure 1.3). Let us fix the integer L
alluded to here. Since the Bj ’s are
translates of one another they have

the same measure. Therefore,∣∣B ∩ ∂E∣∣ 6 ∑
16j63n

j 6=L

|Bj | = |B| − |BL| =
(
1− 3−n

)
|B|.

This proves that every rectangle B is in M, whence completes the proof.
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§3.2 Part 2. The Brunn–Minkowski Inequality

In this subsection we state and prove the Brunn–Minkowski inequality. That
inequality XXX is a classical result from convex analysis, and has profound
connections to several other areas of research.

In order to partially motivate what is to come, define

Br := {x ∈ Rn : ‖x‖ 6 r} (1.20) def:B_r

to be the closed ball of radius r > 0 about the origin.
The ε-enlargement of a compact set A ⊂

ε

A

A+ εB1

Figure 1.4. The ε-enlargement, A +
εB1, of the inner square A.

〈fig:Cvx:Set:2〉

Rn is defined as the set A+Bε = A+ εB1;
see Figure 1.4. The Brunn–Minkowski in-
equality is one of the many ways in which
we can describe how the volume A relates
to the volume of the perturbed set A+ εB1

when ε > 0 is small. See Problem 14 for a
sampler.

More generally still, one can consider two
compact sets A,B ⊂ Rn and ask about the
relation between the volume of A and the
volume of the perturbed set A+B.

It is easy to see that if A and B are compact, then so is A + B, since the
latter is clearly bounded and closed. In particular, A + B is measurable. The
Brunn–Minkowski inequality relates the Lebesgue measure of the Minkowski
sum A+B to those of A and B.

〈th:BrunnMinkowski〉
Theorem 3.7 (The Brunn–Minkowski Inequality). For all compact sets A,B ⊂
Rn,

|A+B|1/n > |A|1/n + |B|1/n.

We can replace A by αA and B by (1 − α)B, where 0 6 α 6 1, and recast
the Brunn–Minkowski inequality in the following equivalent form:

|αA+ (1− α)B|1/n > α|A|1/n + (1− α)|B|1/n, (1.21) eq:BrunnMink:bis

for all compact sets A,B ⊂ Rn and α ∈ [0 , 1]. Among other things, this formu-
lation suggests the existence of deeper connections to convex analysis because
if A and B are convex sets, then so is αA+ (1−α)B for all α ∈ [0 , 1]. Problem
13 contains a small generalization of (1.21).

Proof. The proof is elementary but tricky. In order to clarify the underlying
ideas, we will divide it up into 3 small steps.
Step 1. Say that K ⊂ Rn is a rectangle when K has the form,

K = [x1 , x1 + k1]× · · · × [xn , xn + kn],

for some x := (x1 , . . . , xn) ∈ Rn and k1, . . . , kn > 0. We refer to the point x as
the lower corner of K, and k := (k1 , . . . , kn) as the length of K.
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In this first step we verify the theorem in the case that A and B are rectangles
with respective lengths a and b. In this case, we can see that A+B is an rectangle
of side length a+ b. The Brunn–Minkowski inequality, in this case, follows from
the following application of Jensen’s inequality [the arithmetic–geometric mean
inequality ]:(

n∏
i=1

ai
ai + bi

)1/n

+

(
n∏
i=1

bi
ai + bi

)1/n

6
1

n

n∑
i=1

(
ai

ai + bi

)
+

1

n

n∑
i=1

(
bi

ai + bi

)
= 1.

Step 2. Now we consider the case that A and B are interior-disjoint [or “ID”]
finite unions of rectangles.

For every compact set K let us write K+ := {x ∈ K : x1 > 0} and K− :=
{x ∈ K : x1 6 0}.

Now we apply a so-called “Hadwiger–Ohmann cut”: Notice that if we trans-
late A and/or B, then we do not alter |A + B|, |A|, or |B|. Therefore, after
we translate the sets suitably, we can always ensure that: (a) A+ and B+ are
rectangles; (b) A− and B− are ID unions of rectangles; and (c)

|A+|
|A|

=
|B+|
|B|

.

With this choice in mind, we find that

|A+B| > |A+ +B+|+ |A− +B−| >
(
|A+|1/n + |B+|1/n

)n
+ |A− +B−|,

thanks to Step 1 and the fact that A+ +B+ is disjoint from A− +B−. Now,(
|A+|1/n + |B+|1/n

)n
= |A+|

(
1 +
|B+|1/n

|A+|1/n

)n
= |A+|

(
1 +
|B|1/n

|A|1/n

)n
,

whence

|A+B| > |A+|
(

1 +
|B|1/n

|A|1/n

)n
+ |A− +B−|.

Now split up, after possibly also translating, A− into A−,± and B− into B−,±

such that:
1. A−,± are interior disjoint;
2. B−,± are interior disjoint; and
3. |A−,+|/|A−| = |B−,+|/|B−|.

Thus, we can apply the preceding to A− and B− in place of A and B in order
to see that

|A+B| > |A+|
(

1 +
|B|1/n

|A|1/n

)n
+ |A−,+|

(
1 +
|B|1/n

|A|1/n

)n
+ |A−,− +B−,−|

=
(
|A+|+ |A−,−|

)(
1 +
|B|1/n

|A|1/n

)n
+ |A−,− +B−,−|.
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And now continue to split and translate A−,− and B−,−, etc. In this way we
obtain a countable sequence A0 := A+, A1 := A−,+, . . . , B0 := B+, B1 :=
B−,+, . . . of ID rectangles such that:

1. ∪∞j=0Bj = B [after translation];
2. ∪∞j=0Aj = A [after translation]; and
3. |A+B| is bounded below by

∞∑
j=0

|Aj |
(

1 +
|B|1/n

|A|1/n

)n
= |A|

(
1 +
|B|1/n

|A|1/n

)n
=
(
|A|1/n + |B|1/n

)n
.

This proves the result in the case that A and B are ID unions of rectangles.

Step 3. Every compact set can be written as an countable union of ID rectangles.
In other words, we can find A1, A2, . . . and B1, B2, . . . such that:

1. Every Aj and Bk is a finite union of ID rectangles;
2. Aj ⊆ Aj+1 and Bk ⊆ Bk+1 for all j, k > 1; and
3. A = ∪∞j=1A

j and B = ∪∞j=1B
j .

By the previous step,

|A+B|1/n > |Am +Bm|1/n > |Am|1/n + |Bm|1/n for all m > 1.

Let m ↑ ∞ and appeal to the inner continuity of Lebesgue measure in order to
deduce the theorem in its full generality.

§3.3 Part 3. Change of Variables

In the second part of the proof we develop an elementary fact from integration
theory.

Let A ⊆ Rn be a Borel set, and g : A→ R+ a Borel-measurable function.

Definition 3.8. The distribution function of g is the function Ḡ : [0 ,∞)→ R+,
defined as

Ḡ(r) :=
∣∣g−1[r ,∞)

∣∣ := |{x ∈ A : g(x) > r}| := |{g > r}| for all r > 0.

This is standard notation in classical analysis, and should not be mistaken
with the closely-related definition of cumulative distribution functions in prob-
ability and statistics. In any case, the following ought to be familiar.

〈pr:ChangeofVar〉Proposition 3.9 (Change of Variables Formula). For every Borel measurable
function F : R+ → R+,∫

A

F (g(x)) dx = −
∫ ∞

0

F (r) dḠ(r).

If, in addition, A is compact and F is absolutely continuous, then∫
A

F ′(g(x)) dx =

∫ ∞
0

F ′(r)Ḡ(r) dr.
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Proof. First consider the case that F = 1[a,b) for some b > a > 0. In that case,∫ ∞
0

F (r) dḠ(r) = Ḡ(b−)− Ḡ(a)

= − |{x ∈ A : a 6 g(x) < b}|

= −
∫
A

F (g(x)) dx.

This proves our formula when F is a simple function. By linearity, it holds also
when F is an elementary function. The general form of the first assertion of the
proposition follows from this and Lebesgue’s dominated convergence theorem.
The second follows from the first and integration by parts for Stieldjes integrals.

§3.4 Part 4. The Proof of Anderson’s Inequality

Recall f , E, λ, and y from Theorem 3.4. Let us define a new number α ∈ [0 , 1]
by α := (1 + λ)/2. The number α is chosen so that

αy + (1− α)(−y) = λy.

Since E is convex, we have E = αE+(1−α)E. Therefore, the preceding display
implies that

(E + λy) ⊇ α(E + y) + (1− α)(E − y).

And because the intersection of two convex sets is a convex set, we may infer
that

(E + λy) ∩ f−1[r ,∞)

⊇ α
[
(E + y) ∩ f−1[r ,∞)

]
+ (1− α)

[
(E − y) ∩ f−1[r ,∞)

]
.

Now we apply the Brunn–Minkowski inequality (Theorem 3.7), in the form
(1.21), in order to see that∣∣(E + λy) ∩ f−1[r ,∞)

∣∣1/n
> α

∣∣(E + y) ∩ f−1[r ,∞)
∣∣1/n + (1− α)

∣∣(E − y) ∩ f−1[r ,∞)
∣∣1/n .

Since E is symmetric, E − y = −(E + y). Because of this identity and the fact
that f has symmetric level sets, it follows that

(E − y) ∩ f−1[r ,∞) = −
[
(E + y) ∩ f−1[r ,∞)

]
.

Therefore, ∣∣(E + y) ∩ f−1[r ,∞)
∣∣1/n =

∣∣(E − y) ∩ f−1[r ,∞)
∣∣1/n ,

whence

H̄λ(r) :=
∣∣(E + λy) ∩ f−1[r ,∞)

∣∣ > ∣∣(E + y) ∩ f−1[r ,∞)
∣∣ := H̄1(r).
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Now two applications of the change of variables formula [Proposition 3.9] yield
the following:∫

E

f(x+ λy) dx−
∫
E

f(x+ y) dx =

∫
E+λy

f(x) dx−
∫
E+y

f(x) dx

= −
∫ ∞

0

rdH̄λ(r) +

∫ ∞
0

r dH̄1(r)

=

∫ ∞
0

[
H̄λ(r)− H̄1(r)

]
dr > 0.

This completes the proof of Anderson’s inequality for −y, which completes the
proof overall since y was arbitrary.

4 Gaussian Random Vectors

In the first three sections of this chapter we worked exclusively with the stan-
dard Gaussian distribution on Rn, but as most readers are aware, there is an
entire family of Gaussian distributions on Rn, indexed by their mean vectors
and covariance matrices. Rather than continue this discussion in this way, it
turns out to be convenient to begin with a slightly different characterization:
A random vector is Gaussian iff all linear combinations of its entries are real
Gaussian random variables. For the formal definition let (Ω ,F ,Q) be a general
probability space, and recall the following.

Definition 4.1. A random n-vector X = (X1 , . . . , Xn) in (Ω ,F ,Q) is Gaussian
if a′X has a normal distribution for every non-random n-vector a.

General theory ensures that we can always assume that Ω = Rn, F = B(Rn),
and Q = Pn, which we will do from now on without further mention in order
to save on the typography.

If X is a Gaussian random vector in Rn and a ∈ Rn is fixed, then a′X has
a one-dimensional Gaussian distribution, and hence has finite moments of all
orders. Let µ and Γ respectively denote the mean vector and the covariance
matrix of X; that is,

µi = E(Xi), Γi,j = Cov(Xi , Xj),

where the expectation and covariance are computed with respect to the measure
P. It is often convenient to write this in vector form as

µ = E(X), Γ = E [(X − µ)(X − µ)′] ,

where we regard X and µ as n× 1 vectors.
It is easy to see that if X = (X1 , . . . , Xn) is Gaussian with mean µ and

covariance Γ, then a′X is necessarily distributed as N(a′µ , a′Γa). In particular,
the characteristic function of X is described by

E
[
eia
′X
]

= exp
(
ia′µ− 1

2a
′Γa
)

for all a ∈ Rn. (1.22) chf:Gauss
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Definition 4.2. Let X be a Gaussian random vector in Rn with mean µ and
covariance matrix Γ. The distribution of X is then called a multivariate normal
distribution on Rn and is denoted by Nn(µ ,Γ).

When Γ is non singular we can invert the Fourier transform to find that
the probability density function of X at any point x ∈ Rn is the following (see
Problem 7):

pX(x) =
1

(2π)n/2 |det Γ|1/2
exp

{
− 1

2 (x− µ)′Γ−1(x− µ)
}
. (1.23) pdf:Gauss

The identity (1.1) for γ1 corresponds to the special case where µ is the zero
vector and Γ the identity matrix.

When Γ is singular, the distribution of X is singular with respect to the
Lebesgue measure on Rn, and hence does not have a density.

Example 4.3. Suppose n = 2 and W has a N(0 , 1) distribution on the line [which
you might recall is denoted by P1]. Then, the distribution of X = (W ,W ) is
concentrated on the diagonal {(x , x) : x ∈ R} of R2. Since the diagonal has
zero Lebesgue measure, it follows that the distribution of X is singular with
respect to the Lebesgue measure on R2.

The following are a series of simple, though useful, facts from elementary
probability theory.

〈lem:G1〉Lemma 4.4. If X has a Nn(µ ,Γ) distribution, then AX + b is distributed as
Nm(Aµ+ b , AΓA′) for every b ∈ Rm and all m× n matrices A.

〈lem:G2〉Lemma 4.5. Suppose X has a Nn(µ ,Γ) distribution. Choose and fix an integer
1 6 K 6 n, and suppose in addition that I1, . . . , IK are K disjoint subsets of
{1 , . . . , n} such that

Cov(Xi , Xj) = 0 whenever i and j lie in distinct I`’s.

Then, {Xi}i∈I1 , . . . , {Xi}i∈IK are independent, each having a multivariate nor-
mal distribution.

〈lem:G3〉
Lemma 4.6. Suppose X has a Nn(0 ,Γ) distribution, where Γ is symmetric and
non singular. Then Γ−1/2X has the same distribution Nn(0 , I) as Z.

We can frequently use one, or more, of these basic lemmas to study the
general Gaussian distribution on Rn via the canonical Gaussian measure Pn.
Here is a typical example.

〈th:Anderson:Gauss〉Theorem 4.7 (Anderson’s Shifted-Ball Inequality). If X has a Nn(0 ,Γ) dis-
tribution and Γ is positive definite, then for all convex symmetric sets F ⊂ Rn
and a ∈ Rn,

P{X ∈ a+ F} 6 P{X ∈ F}.
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Proof. Since Γ−1/2X has the same distribution as Z,

P{X ∈ a+ F} = P
{
Z ∈ Γ−1/2a+ Γ−1/2F

}
.

Now Γ−1/2F is symmetric and convex because F is. Apply Anderson’s shifted-
ball inequality for Pn [Corollary 3.5] to see that

P
{
Z ∈ Γ−1/2a+ Γ−1/2F

}
6 P

{
Z ∈ Γ−1/2F

}
.

This proves the theorem.

The following comparison theorem is one of the noteworthy corollaries of the
preceding theorem.

〈th:Anderson:Gauss:2〉Corollary 4.8. Suppose X and Y are respectively distributed as Nn(0 ,ΓX) and
Nn(0 ,ΓY ), where ΓX − ΓY is positive semidefinite. Then,

P{X ∈ F} 6 P{Y ∈ F},

for all symmetric, closed convex sets F ⊂ Rn.

Proof. First consider the case that ΓX , ΓY , and ΓX − ΓY are positive definite.
Let W be independent of Y and have a Nn(0 ,ΓX − ΓY ) distribution. The
distribution of W has a probability density pW , and W +Y is distributed as X,
whence

P{X ∈ F} = P{W + Y ∈ F} =

∫
Rn

P{Y ∈ −a+ F}pW (a) da 6 P{Y ∈ F},

thanks to Theorem 4.7. This proves the theorem in the case that ΓX − ΓY
is positive definite. If ΓY is positive definite but ΓX − ΓY is only positive
semidefinite, then we define for all 0 < δ < ε < 1,

X(ε) := X + εU, Y (δ) := Y + δU,

where U is independent of (X ,Y ) and has the Nn(0 , I) distribution. The respec-
tive distributions of X(ε) and Y (δ) are Nn(0 ,ΓX(ε)) and Nn(0 ,ΓY (δ)), where
ΓX(ε) := ΓX + εI and ΓY (δ) := ΓY + δI. Since ΓX(ε), ΓY (δ), and ΓX(ε) − ΓY (δ)

are positive definite, the portion of the theorem that has been proved so far im-
plies that P{X(ε) ∈ F} 6 P{Y (δ) ∈ F}, for all symmetric convex sets F ⊂ Rn.
Let ε and δ tend down to zero, all the while ensuring that δ < ε, to deduce the
result from the fact that F is closed [F = F̄ ].

Example 4.9 (Comparison of Moments). Recall that for 1 6 p 6∞, the `p-norm
of x ∈ Rn is

‖x‖p :=

{
(
∑n
i=1|xi|p)

1/p
if p <∞,

max16i6n |xi| if p =∞.



20 CHAPTER 1. THE CANONICAL GAUSSIAN MEASURE ON RN

It is easy to see that all centered `p-balls of the form {x ∈ Rn : ‖x‖p 6 t}
are convex and symmetric. Therefore, it follows immediately from Corollary 4.8
that if ΓX − ΓY is positive semidefinite, then

P {‖X‖p > t} > P {‖Y ‖p > t} for all t > 0 and 1 6 p 6∞.

Multiply both sides by rtr−1 and integrate both sides [dt] from t = 0 to t =∞
in order to see that

E
[
‖X‖rp

]
> E

[
‖Y ‖rp

]
for r > 0 and 1 6 p 6∞.

These are examples of moment comparison, and can sometimes be useful in
estimating expectation functionals of X in terms of expectation functionals of
a Gaussian random vector Y with a simpler covariance matrix than that of X.
Similarly, P{‖X+a‖p > t} > P{‖X‖p > t} for all a ∈ Rn, t > 0, and 1 6 p 6∞
by Theorem 4.7. Therefore,

E
(
‖X‖rp

)
= inf
a∈Rn

E
(
‖X + a‖rp

)
for all 1 6 p 6∞ and r > 0.

This is a nontrivial generalization of the familiar fact that when n = 1, Var(X) =
infa∈R E(|X + a|2).

5 The Isserlis Formula

The Isserlis formula XXX, later rediscovered by Wick XXX, is a computation
of the joint product moment mn := E(

∏n
i=1Xi), where X = (X1 , . . . , Xn) is

distributed as Nn(0 ,Γ) for an arbitrary n×n covariance matrix Γ. The answer
is found immediately when n is odd: Because X and −X have the same law, it
follows from the parity of n that mn = −mn, whence mn = 0 when n is odd.
The Isserlis formula deals with the less elementary case that n is even.

〈th:Isserlis〉Theorem 5.1 (Isserlis, 1918). Let X have a Nn(0 ,Γ) distribution, where n > 2
is an even integer and Γ is an n× n covariance matrix. Then,

E

[
n∏
i=1

Xi

]
=

∑
(i1,...,in)

n/2∏
j=1

Γi2j−1,i2j

where
∑

(i1,...,in) denotes the sum over all perfect matchings ((i1 , i2) , . . . , (in−1 , in))

of pairs in {1 , . . . , n}.

Perfect matchings are matchings or pairings of every element in the set with
exactly one other element. Clearly a perfect matching exists if and only if
the number of elements in the set is even. Note that in using the symbols
((i1, i2), . . . , (in−1, in)) to denote a perfect matching there are many equiva-
lent symbols that denote the same matching. For example, if n = 4 then
((1, 2), (3, 4)) is equivalent to ((2, 1), (3, 4)) which is equivalent to ((3, 4), (1, 2)),
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etc. Whichever symbol is used the product
∏

Γi2j−1,i2j is the same. Enumerat-
ing the number of non-equivalent symbols can be done by the following scheme.
Regard any permutation σ of {1, . . . , n} as an ordered list of the elements, and
group the first two elements of the list into a pair, the third and fourth into a
pair, etc. Then equivalent symbols are produced by permuting the n/2 pairs
arbitrarily, and the two elements within each pair can be listed in arbitrary
order. Thus the total number of non-equivalent symbols is∑

(i1,...,in)

1 =
n!

2n/2(n/2)!
whenever n > 2 is even. (1.24) partition:count

Furthermore, this enumeration scheme allows us to rewrite the Isserlis formula
as

E

[
n∏
i=1

Xi

]
=

1

2n/2(n/2)!

∑
σ∈Πn

n/2∏
j=1

Γσ(2j−1),σ(2j), (1.25) Isserlis:bis

where Πn denotes the collection of all n! permutations of {1 , . . . , n}.
Note that the Isserlis formula states that the product moment mn can be

fully expressed using only the pairwise covariances Γi,j for i, j = 1, . . . , n, which
is of course obvious since the covariance matrix uniquely determines the joint
distribution of the Xi. The Isserlis formula basically says that the formula for
mn has the simplest possible form that can be described via the Γi,j ’s. For
example, it will follow immediately from the Theorem 5.1 that

m2 = E(X1X2) = Γ1,2,

m4 = E(X1X2X3X4) = Γ1,2Γ3,4 + Γ1,3Γ2,4 + Γ1,4Γ2,3,

m6 = E(X1X2X3X4X5X6) = Γ1,2Γ3,4Γ5,6 + Γ1,2Γ3,5Γ2,6 + Γ1,2Γ3,6Γ2,4

+ Γ1,3Γ2,4Γ5,6 + Γ1,3Γ2,5Γ3,6 + Γ1,3Γ2,6Γ3,4

+ Γ1,4Γ2,3Γ5,6 + Γ1,4Γ2,5Γ3,6 + Γ1,4Γ2,6Γ3,5

+ Γ1,5Γ2,3Γ4,6 + Γ1,5Γ2,3Γ4,6 + Γ1,5Γ2,4Γ3,6

+ Γ1,6Γ2,3Γ4,5 + Γ1,6Γ2,4Γ3,5 + Γ1,6Γ2,5Γ4,6,

and so on. The number of individual summands in mn is, thanks to (1.24),
cn := n!/{2n/2(n/2)!} for every even integer n > 2. In particular, we set X1 =
X2 = · · · = Xn := X to deduce the well-known fact that if X has a standard
normal distribution, then E[X2] = c2 = 1, E[X4] = c4 = 3, E[X6] = c6 = 15,
and in general

E[Xn] = cn =
n!

2n/2(n/2)!
, whenever n > 2 is even.

Theorem 5.1 will be proved using moment generating functions. The proof
hinges on an elementary computation from multivariate calculus. For that let
us introduce some notation.

Define f1, . . . , fn : Rn → R via

fk(t) := (t′Γ)k =

n∑
i=1

tiΓk,i for k = 1, . . . , n and t ∈ Rn.
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〈lem:partial:exp〉Lemma 5.2. Suppose n > 2. Then, for all t ∈ Rn and all 1 6 ` 6 n

∂`

∂t1 · · · ∂t`
e

1
2 t
′Γt = e

1
2 t
′Γt

∑
partial matchings

of {1,...,`}

∏
(i,j)

matched

Γi,j
∏
k

unmatched

fk(t),

where a partial matching of {1, . . . , `} matches together some of the elements of
the set but can also leave some of the elements unmatched.

Proof. First observe that, for all integers j, k = 1, . . . , n and for every t ∈ Rn,

∂

∂tj
fk(t) = Γj,k = Γk,j and

∂

∂tk
e

1
2 t
′Γt = fk(t)e

1
2 t
′Γt.

With these two formulas in mind, we find that

∂2

∂t1∂t2
e

1
2 t
′Γt = Γ1,2e

1
2 t
′Γt + f1(t)f2(t)e

1
2 t
′Γt = e

1
2 t
′Γt[Γ1,2 + f1(t)f2(t)].

Thus the formula is true for the case ` = 2, since the two elements in {1, 2} are
either matched or unmatched. Now proceed by induction on `, i.e. assume the
statement of the lemma is true for some 2 6 ` < n. Then differentiate the right
hand side with respect to t`+1 using the product rule. The derivative of the
exponential produces an extra factor of f`+1(t), which is equivalent to taking all
the partial matchings of {1, . . . , l} in the summation and adding in `+1 but not
matching it to anything. Similarly, the derivative of the summation turns the
fk(t) terms into Γk,`+1 terms, which is equivalent to taking a partial matching
of {1, . . . , `}, adding in ` + 1, and matching it to the previously unmatched
number k. Adding these two components of the integration-by-parts formula
produces a summation over all partial matchings of {1, . . . , `} with `+ 1 added
onto it and then either matched to an unmatched element or left unmatched.
This generates all partial matchings of {1, . . . , ` + 1} in a unique way, which
completes the inductive step and hence the proof.

Once armed with the calculus lemma 5.2 we can easily dispense with the
proof of Theorem 5.1.

Proof of Theorem 5.1. Let us write all n-vectors as column vectors. Then, by
virtue of definition, E[exp(t′X)] = exp( 1

2 t
′Γt) for all t ∈ Rn. Therefore, the

dominated convergence theorem yields the following for all t ∈ Rn:

E
[
X1 · · ·Xn et

′X
]

=
∂n

∂t1 · · · ∂tn
E
[
et
′X
]

=
∂n

∂t1 · · · ∂tn
e

1
2 t
′Γt.

Set t = 0 in order to see that

E[X1 · · ·Xn] =
∂n

∂t1 · · · ∂tn
e

1
2 t
′Γt

⌋
t=0

.

We may now deduce the Isserlis theorem from Lemma 5.2 because, in that
lemma fk(0) = 0, so the only terms which contribute are those in which every
number is matched. These are exactly the perfect matchings.
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Problems

1. Use Lemma 4.4 to show that if X has a Nn(µX ,ΓX) distribution and Y has
a Nn(µY ,ΓY ) distribution, with (X ,Y ) jointly Gaussian, then X + Y has a
Nn(µX + µY ,ΓX + ΓY + 2ΓX,Y ) distribution, where ΓX,Y is the matrix

ΓX,Y = 1
2

E[(X − µX)(Y − µY )′ + (Y − µY )(X − µX)′].

Is ΓX,Y symmetric and positive semi-definite? Would this result continue to
hold if X and Y were not jointly Gaussian?

〈pbm:chi:2〉 2. Prove that ‖Z‖2 = Z2
1 + · · · + Z2

n has a χ2
n distribution; that is, show that the

probability density function of ‖Z‖2 is

p(x) =
x(n−2)/2e−x/2

2n/2Γ(n/2)
for all x > 0,

and p(x) = 0 otherwise. Also verify that the mean and variance of ‖Z‖2 are n
and 2n, respectively, while the moment generating function of ‖Z‖ is described
by the formula (1.9).

〈pbm:Laplace〉 3. Use (1.4) to prove that

P {x ∈ Rn : ‖x‖ > t} > (t2/2)(n−2)/2e−t
2/2

Γ(n/2)
for all t > 1 and n > 2.

Conclude from this fact that, for all ε > 0 and n > 2,

λ(ε) := lim inf
n→∞

1

n
log P

{
x ∈ Rn : ‖x‖ > (1 + ε)n1/2

}
> 0.

You may use, without proof, the following form of Stirling’s formula for the
gamma function: Γ(ν) ∼ (2π/ν)1/2(ν/e)ν as ν → ∞; see XXX. Compute λ(ε),
and show that “lim inf” is a bona fide limit.

〈pbm:BM:QV〉
4. Recall that a collection of random variables {Xt}t>0 is a Brownian motion if

for each collection of disjoint intervals [si , ti] ⊂ R+, , i = 1, . . . , n, the random
variables Xti−Xsi (i = 1, . . . , n) are independent, the ith one with a N(0 , ti−si)
distribution. In addition, the sample functions t 7→ Xt are continuous with
probability one, and for convenience we may assume that X0 = 0.

(a) Choose and fix an unbounded, non decreasing sequence {mn}∞n=1 of pos-
itive integers, and define ti,n := i/mn for i = 0, 1, . . . ,mn. Compute the
mean and variance of the quadratic variation process,

Vn :=

mn∑
i=1

(Xti,n −Xti−1,n)2 (n > 1).

(b) Use your answer to preceding part in order to show that Vn → 1 in prob-
ability as n→∞.

(c) Apply the Borel–Cantelli lemma to prove that limn→∞ Vn = 1 almost
surely if

∑∞
n=1(1/mn) <∞.

(d) Improve the preceding, using Theorem 1.2 in place of Chebyshev’s inequal-
ity, and deduce the following much stronger theorem, essentially observed
first by Dudley XXX: If limn→∞(mn/ logn) = ∞, then limn→∞ Vn = 1
almost surely.
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5. Let {Xt}t>0 denote a Brownian motion, as in Problem 4. Prove that

P

{
sup
t∈[0,T ]

|Xt| 6 r

}
= sup
a∈R

P

{
sup
t∈[0,T ]

|Xt − a| 6 r

}
for all r, T > 0,

and, additionally for all real numbers p > 1,

P

{∫ T

0

|Xt|p dt < r

}
= sup
a∈R

P

{∫ T

0

|Xt − a|p dt < r

}
.

6. Suppose that the random variablesX0, X1, . . . , Xn are jointly Gaussian, E(Xi) =
0 and Cov(Xi , Xj) = %(i − j) for all i, j = 0, . . . , n, where % is a function from
{−n , . . . , n} to [−1 , 1] such that %(0) = 1.

(a) Prove that E(Xi | X0) = κiX0 for every i = 1, . . . , n. (Hint: Find κi such
that Xi − κiX0 and X0 are independent.)

(b) Compute σ2
i := Var(Xi | X0) for i = 1, . . . , n. Is σi random?

(c) Conclude from the previous part that Y1, . . . , Yn are jointly Gaussian,
where Yi := Xi − κiX0 for i = 1, . . . , n. Compute E(Yi) and Cov(Yi , Yj)
for all i, j = 1, . . . , n.

(d) Prove that, for all λ > 0,

P

{
max

16i6n
|Xi| < λ

}
6 P

{
max

16i6n
|Yi| < λ

}
.

〈ex:pdf:chf:Gauss〉 7. Suppose µ ∈ Rn and Γ is an n × n, strictly positive definite matrix. Then,
prove that the function pX , defined in (1.23) on page 18, is a probability density
function onRn, whose characteristic function is given in (1.22). In the particular
case that n = 2, µ = 0, and

Γ =

[
1 ρ
ρ 1

]
for some ρ ∈ (−1 , 1),

show that the expression for the probability density simplifies to the following:

pX (x) =
1

2π
√

1− ρ2
exp

(
−x

2
1 − 2ρx1x2 + x2

2

2(1− ρ2)

)
for x := (x1 , x2) ∈ R2.

?〈pbm:P(XY<0)〉? 8. Suppose, as in Problem 7, that (X ,Y ) has a N2(0 ,Γ) distribution where Γ1,1 =
Γ2,2 = 1 and Γ1,2 = Γ2,1 = ρ for a fixed number ρ ∈ (−1 , 1). Show that

P{XY < 0} =
1

2
− 1

π
arcsin ρ =

1

π
arccos ρ.

9. Suppose that X = (X1 , . . . , Xn) is distributed as Nn(µ ,Γ) for some µ ∈ Rn
and a covariance matrix Γ ∈ Rn×n.

(a) Prove that if Γ is non singular, then for every k ∈ {1 , . . . , n − 1} and
L ∈ {k + 1 , . . . , n} there exist finite constants c1, . . . , ck such that

E(XL | X1, . . . , Xk) = µL + c1X1 + · · ·+ ckXk a.s.

(Hint: Use Lemma 4.6 to reduce the problem to one about i.i.d. Gaussian
random variables.)

(b) Use an approximation argument to remove the restriction on the non-
singularity of Γ.
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(c) Prove that Var(XL | X1, . . . , Xk) is always non random.
(d) Prove that Var(XL | X1, . . . , Xk) 6 Var(XL | X1, . . . , Xk−1).

10. Verify Lemmas 4.4, 4.5, and 4.6 using Fourier analysis.
11. Improve Theorem 3.4 by demonstrating that λ 7→

∫
E
f(x − λy) dx is non in-

creasing on [0 , 1].
〈pbm:EEE〉 12. Verify that a set E ⊂ Rn is convex if and only if it satisfies (1.19).
〈pbm:Brunn〉 13. Prove that |αA+ βB|1/n > α|A|1/n + β|B|1/n for all α, β ∈ R and all compact

sets A,B ⊂ Rn.
〈pbm:Minkowski〉 14. Recall (1.20). Minkowski XXX has defined the surface area |∂A| of set A ⊂ Rn

as

|∂A| := lim
ε↓0

|A+ εB1| − |A|
ε

=
d

dε
|A+ εB1|

∣∣∣∣
ε=0

,

and proved that the limit exists whenever A ⊂ Rn is compact and convex.
Moreover, the limit agrees with the usual notion of surface area. You may use
these facts without proof in the sequel.

(a) Prove that, because Br = rB1, we have |Br| = rn|B1| and |∂Br| =
rn−1|∂B1| for every r > 0. (Hint: Start by proving that |rK| = rn|K|
for every closed and bounded set K ⊂ Rn.)

(b) Integrate in spherical coordinates to justify the following:

1 =

∫
Rn
γn(x) dx =

∫ ∞
0

dr

∫
∂Br

dσ
e−r

2/2

(2π)n/2
;

whence deduce a formula for |∂B1| in terms of the gamma function.
(c) Prove that |∂B1| = n|B1|.
(d) Use the Brunn–Minkowski inequality and the previous parts of the problem

in order to derive the isoperimetric inequality for convex bodies: If A is a
compact, convex set and |A| = |B1|, then |∂A| > |∂B1|. In words, prove
that balls have minimum surface area among all convex bodies of a given
volume.

?〈pbm:E(X_n):general〉?
15. Suppose that {Yj}nj=1 is an arbitrary sequence of standard normal random vari-

ables on (Rn,B(Rn) ,Pn) for every n > 1. Verify that, for every real number
p > 1,

E

(
max

16j6n
|Yj |p

)
6 (2 logn)p/2 + o(1) as n→∞.

16. Verify (1.24), and use it to prove that (1.25) is an equivalent formulation of
Theorem 5.1.

17. Use Lemma 5.2 to find an alternative proof of the fact that if X has a Nn(0 ,Γ)
distribution and n is odd, then E(X1 · · ·Xn) = 0.

The following problems are nontrivial variations of Proposition 1.3, and
should not be missed. From here on, Mn denotes either max16j6n |Zj | or
max16j6n Zj for every integer n > 1.

〈pbm:1:M_n〉 18. Define

c =

{
1 if Mn = max16j6n Zj ,

2 if Mn = max16j6n |Zj |.
(1.26) c
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Then, use Lemma 1.1 to prove that, as n→∞,

M2
n − 2 logn+ log logn+ 2 log

(
c

2
√
π

)
⇒ −2 log E ,

where “⇒” denotes convergence in distribution, and E has a mean-one expo-
nential distribution. Use this to prove that, as n→∞,

a1

√
logn

(
Mn −

√
2 logn

)
+ a2 log log n+ a3 ⇒ − log E , (1.27) ?eq:2:M_n?

where a1, a2, and a3 are numerical constants. Compute these constants.
〈pbm:2:M_n〉 19. (Problem 18, continued) Check that log E has finite moments of all orders. Then

do the following:
(a) Prove that, as n→∞,

E(Mn) =
√

2 logn+
b1 log log n√

logn
+

b2√
logn

+ o

(
1√

logn

)
,

for numerical constants b1 and b2, which you should also calculate in terms
of the constant c – see (1.26) – and the moments of log E .

(b) Prove that

Var(Mn) ∼ λ

logn
as n→∞,

where λ is a numerical constant. Compute λ in terms of c and the moments
of E .

(c) Conclude that E(|Mn −
√

2 logn|2) convergence to zero as n → ∞, and
estimate its exact rate of convergence.



Chapter 2

Calculus in Gauss Space
〈ch:Calc_on_Gauss_Space〉

In this section we develop the basics of calculus on the finite-dimensional Gauss space.
The differences between this calculus and the “regular” calculus that we first learn
(which we call calculus on Lebesgue space) are not that stark. At the end of the
day we still compute integrals and derivatives in the same way, but there are some
modifications that must be taken into account. The most important of these is the
integration-by-parts formula, which must be modified to properly accomodate for the
Gaussian background measure. On a computational level this modification is elemen-
tary. But we shall see that it has far-reaching consequences.

1 The Gradient Operator

The n-dimensional Lebesgue space is the measurable space (En,B(En))—where E =
[0 , 1) or E = R—endowed with the Lebesgue measure, and the “calculus of functions”
on Lebesgue space is just “real and harmonic analysis.”

The n-dimensional Gauss space is the same measure space (Rn,B(Rn)) as in the
previous paragraph, but is now endowed with the Gauss measure Pn in place of the
Lebesgue measure. Since the Gauss space (Rn,B(Rn) ,Pn) is a probability space, we
can—and frequently will—think of a measurable function f : Rn → R as a random
variable. Therefore,

P{f ∈ A} = Pn{f ∈ A} = Pn{x ∈ Rn : f(x) ∈ A},

E(f) = En(f) =

∫
f dPn =

∫
f dP,

Cov(f , g) = 〈f , g〉L2(P) =

∫
fg dP,

etc. Note, also, that f = f(Z) for all random variables f , where Z is the standard
normal random vector Z(x) := x for all x ∈ Rn, as before. In particular,

E(f) = En(f) = E[f(Z)],

Var(f) = Var[f(Z)], Cov(f , g) = Cov[f(Z) , g(Z)], . . .

and so on, notation being typically obvious from context.
Let ∂j := ∂/∂xj for all 1 6 j 6 n. From now on we will use the following.

27
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Definition 1.1. Let Ck0 (Pn) denote the collection of all infinitely-differentiable func-
tions f : Rn → R such that f and all of its mixed derivatives of order 6 k grow more
slowly than [γn(x)]−ε for every ε > 0. We also define

C∞0 (Pn) :=

∞⋂
k=1

Ck0 (Pn).

It is not hard to see that f ∈ Ck0 (Pn) if and only if for every ε > 0

lim
‖x‖→∞

e−ε‖x‖
2

|f(x)| = lim
‖x‖→∞

e−ε‖x‖
2

|(∂i1 · · · ∂imf)(x)| = 0,

for all 1 6 i1, . . . , im 6 n and 1 6 m 6 k (see Problem 4).
We will frequently use the following result without explicit mention.

〈lem:Ck_moments〉Lemma 1.2. If f ∈ Ck0 (Pn), then

E (|f |p) <∞ and E (|∂i1 · · · ∂imf |
p) <∞,

for all 1 6 p <∞, 1 6 i1, . . . , im 6 n, and 1 6 m 6 k.

The proof is relegated to Problem 1.
For every f ∈ C1

0 (Pn), define

‖f‖21,2 :=

∫
|f(x)|2 Pn(dx) +

∫
‖(∇f)(x)‖2 Pn(dx)

= E
(
|f |2

)
+ E

(
‖∇f‖2

)
,

where ∇ := (∂1 , . . . , ∂n) denotes the gradient operator. Notice that ‖ · ‖1,2 is a bona
fide Hilbertian norm on C1

0 (Pn) with Hilbertian inner product

〈f , g〉1,2 :=

∫
fg dPn +

∫
(∇f) · (∇g) dPn

= E[fg] + E[∇f · ∇g].

We will soon see that C1
0 (Pn) is not a Hilbert space with the preceding norm and inner

product because it is not complete; that is, there are Cauchy sequences in C1
0 (Pn) that

fail to converge in C1
0 (Pn). Thus, we are led to the following.

Definition 1.3. The Gaussian Sobolev space D1,2(Pn) is the completion of C1
0 (Pn)

in the norm ‖ · ‖1,2.

In order to understand what the elements of D1,2(Pn) look like, let us consider a
function f ∈ D1,2(Pn). By definition, we can find a sequence f1, f2, . . . ∈ C1

0 (Pn) such
that ‖f` − f‖1,2 → 0 as `→∞. Since L2(Pn) is complete, we can deduce also that

Djf := lim
`→∞

∂jf` exists in L2(Pn) for every 1 6 j 6 n.

It follows, by virtue of construction, that

Df = ∇f for all f ∈ C1
0 (Pn).

Therefore, D is an extension of the gradient operator from C1
0 (Pn) to D1,2(Pn). From

now on, we will almost always write Df in favor of ∇f when f ∈ C1
0 (Pn). This is



1. THE GRADIENT OPERATOR 29

because Df can make sense even when f is not in C1
0 (Pn), as we will see in the next

few examples.

In general, we can think of elements of D1,2(Pn) as functions in L2(Pn) that
have one weak derivative in L2(Pn). We may refer to the linear operator D as the
Malliavin derivative, and the random variable Df as the [generalized] gradient of f .
We will formalize this notation further at the end of this section. For now, let us note
instead that the standard Sobolev space W 1,2(Rn) is obtained in exactly the same
way as D1,2(Pn) was, but the Lebesgue measure is used in place of Pn everywhere.
Since γn(x) = dPn(x)/dx < 1,1 it follows that the Hilbert space D1,2(Pn) is richer
than the Hilbert space W 1,2(Rn), whence the Malliavin derivative is an extension of
Sobolev’s [generalized] gradient. The extension is strict; see Problem 6.

It is a natural time to produce examples to show that the space D1,2(Pn) is strictly
larger than the space C1

0 (Pn) endowed with the norm ‖ · ‖1,2.

〈ex:Smoothing:1〉Example 1.4 (n = 1). Consider the case n = 1 and let f denote the “tent function,”
f(x) := (1− |x|)+ on R. We claim that f ∈ D1,2(P1) \ C1

0 (P1). Moreover, we claim

−1 1

1

x

f(x) = (1− |x|)+

Figure 2.1. A tent function.
?〈fig:tent〉?

the P1-a.s. identity,2

(Df)(x) = −sign(x)1[−1,1](x).

In a sense, this formula is obvious. We propose to derive it rigorously, thus emphasizing
the fact that Df should be regarded as an element of L2(Pn).

Let ψ1 ∈ C∞(R) be a symmetric probability density function on R such that
ψ1 ≡ a positive constant on [−1 , 1], and ψ1 ≡ 0 off [−2 , 2]. For every real number
r > 0, define ψr(x) := rψ1(rx) and fr(x) := (f ∗ψr)(x). Then supx |fN (x)−f(x)| → 0
as N → ∞ because f is uniformly continuous. In particular, ‖fN − f‖L2(Pn) → 0 as
N →∞. To complete the proof it remains to verify that

lim
N→∞

∫
|f ′N (x) + sign(x)1[−1,1](x)|2 Pn(dx) = 0. (2.1) goal:n=1

1In other words, E(|f |2) <
∫
Rn
|f(x)|2 dx for all f ∈ L2(Rn) that are strictly positive on

a set of positive Lebesgue measure.
2It might help to recall that Df is defined as an element of the Hilbert space L2(P1) in this

case. Therefore, it does not make sense to try to compute (Df)(x) for all x ∈ R. This issue
arises when one constructs any random variable on any probability space, of course. Also,
note that P1-a.s. equality is the same thing as Lebesgue-a.e. equality, since the two measures
are mutually absolutely continuous.
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By the dominated convergence theorem and integration by parts,

f ′N (x) =

∫ ∞
−∞

f(y)ψ′N (x− y) dy

=−
∫ 1

0

ψN (x− y) dy +

∫ 0

−1

ψN (x− y) dy

:= −AN (x) +BN (x).

We now prove that AN → 1[0,1] as N → ∞ in L2(P1); a small adaptation of this
argument will also prove that BN → 1[−1,0] in L2(P1), from which (2.1) ensues.

By a change of variables, AN (x) =
∫ Nx
N(x−1)

ψ1(y) dy. Because ψ1 is a probability

density function, it follows that AN (x) → 1[0,1](x) as N → ∞ for P1-almost all x.
Similarly Bn(x) → 1[−1,0](x) for P1-almost all x, and therefore f ′N (x) = −AN (x) +
BN (x) → −sign(x)1[−1,1](x) for P1-almost all x. Since f ′N (x) − sign(x)1[−1,1](x) is
bounded uniformly by 2, the dominated convergence theorem implies that the conver-
gence also takes place in L2(P1). This concludes our example.

〈ex:Smoothing:2〉Example 1.5 (n > 2). Let us consider the case that n > 2. In order to produce a
function F ∈ D1,2(Pn) \C1

0 (Pn) we use the construction of the previous example and
set

F (x) :=

n∏
j=1

f(xj) and ΨN (x) :=

n∏
j=1

ψN (xj) for all x ∈ Rn and N > 1.

Then the calculations of Example 1.4 also imply that FN := F ∗ΨN → F as N →∞
in the norm ‖ · · · ‖1,2 of D1,2(Pn), FN ∈ C1

0 (Pn), and F 6∈ C1
0 (Pn). Thus, it follows

that F ∈ D1,2(Pn) \ C1
0 (Pn). Furthermore,

(DjF )(x) = −sign(xj)1[−1,1](xj)×
∏

16`6n
6̀=j

f(x`),

for every 1 6 j 6 n and Pn-almost every x ∈ Rn.
〈ex:Lipschitz:D12〉Example 1.6. The previous two examples are particular cases of a more general family

of examples. Recall that a function f : Rn → R is Lipschitz continuous if there exists
a finite constant K such that

|f(x)− f(y)| 6 K‖x− y‖ for all x, y ∈ Rn.

The smallest such constant K is called the Lipschitz constant of f and is denoted by
Lip(f); that is,

Lip(f) := sup
x 6=y

|f(x)− f(y)|
‖x− y‖ .

Let f : Rn → R be a Lipschitz function. According to Rademacher’s theorem XXX,
f is almost everywhere [equivalently, Pn-a.s.] differentiable and ‖(∇f)(x)‖ 6 Lip(f)
a.s. Also note that

|f(x)| 6 |f(0)|+ Lip(f)‖x‖ for all x ∈ Rn.

In particular, E(|f |k) <∞ for all k > 1. A density argument, similar to the one that
appeared in the preceding examples, shows that f ∈ D1,2(Pn) and

‖(Df)(x)‖ 6 Lip(f) P1-almost all x.

We will appeal to this fact several times in this book.
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The generalized gradient D follows more or less the same general set of rules as
does the more usual gradient operator ∇. And it frequently behaves as one expect it
should even when it is understood as the Gaussian extension of ∇; see Examples 1.4
and 1.5, for instance. The following ought to reinforce this point of view.

〈lem:ChainRule〉Lemma 1.7 (Chain Rule). For all ψ ∈ D1,2(P1) and f ∈ D1,2(Pn),

D(ψ ◦ f) = [(Dψ) ◦ f ]D(f) a.s.

Proof. If f and ψ are smooth functions, then the chain rule of calculus ensures that
[∂j(ψ ◦ f)](x) = ψ′(f(x))(∂jf)(x) for all x ∈ Rn and 1 6 j 6 n. That is,

D(g ◦ f) = ∇(ψ ◦ f) = (ψ′ ◦ f)(∇f) = (Dψ)(f)D(f),

where Dψ refers to the one-dimensional Malliavin derivative of ψ and D(f) := Df
refers to the n-dimensional Malliavin derivative of f . The general case follows from
the smooth case and a density argument.

Here is a final example that is worthy of mention.
〈ex:DM〉Example 1.8. Let M := max16j6n Zj and note that

M(x) = max
16j6n

xj =

n∑
j=1

xj1Q(j)(x) for Pn-almost all x ∈ Rn,

where Q(j) denotes the cone of all points x ∈ Rn such that xj > maxi 6=j xi. We
can approximate the indicator function of Q(j) by a smooth function to see that
M ∈ D1,2(Pn) and DjM = 1Q(j) a.s. for all 1 6 j 6 n. Let

J(x) := arg max(x).

Clearly, J(x) is defined uniquely for Pn-almost every x ∈ Rn. For all other values of
x, redefine J(x) := 0 to be concrete. Our computation of DjM equivalently yields

(DM)(x) = eJ(x) for Pn-almost all x ∈ Rn, (2.2) eq:DM

where e1, . . . , en denote the standard basis of Rn.

Let us end this section by introducing a little more notation.
The preceding discussion constructs, for every function f ∈ D1,2(Pn), the Malliavin

derivative Df as an Rn-valued function with coordinates in L2(Pn). We will use the
following natural notations exchangeably:

(Df)(x , j) := [(Df)(x)]j = (Djf)(x),

for every f ∈ D1,2(Pn), x ∈ Rn, and 1 6 j 6 n. In this way we may also think of Df
as a scalar-valued element of the real Hilbert space L2(Pn × χn), where

Definition 1.9. χn always denotes the counting measure on {1 , . . . , n}.

We see also that the inner product on D1,2(Pn) is

〈f , g〉1,2 = 〈f , g〉L2(Pn) + 〈Df ,Dg〉L2(Pn×χn)

= E(fg) + E (Df ·Dg) for all f, g ∈ D1,2(Pn).

Definition 1.10. The random variable Df ∈ L2(Pn × χn) is called the Malliavin
derivative of the random variable f ∈ D1,2(Pn).
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2 Higher-Order Derivatives

One can define higher-order weak derivatives just as easily as we obtained the direc-
tional weak derivatives.

Choose and fix f ∈ C2(Rn) and two integers 1 6 i, j 6 n. The mixed derivative of
f in direction (i , j) is the function x 7→ (∂2

i,jf)(x), where

∂2
i,jf := ∂i∂jf = ∂j∂if.

The Hessian operator ∇2 is defined as

∇2 :=

∂
2
1,1 · · · ∂2

1,n

...
. . .

...
∂2
n,1 · · · ∂2

n,n

 .

With this in mind, we can define a Hilbertian inner product 〈 · , ·〉2,2 via

〈f , g〉2,2 :=

∫
fg dPn +

∫
(∇f) · (∇g) Pn(dx) +

∫
tr
[
(∇2f)(∇2g)

]
dPn

=

∫
f(x)g(x) Pn(dx) +

n∑
i=1

∫
(∂if)(x)(∂ig)(x) Pn(dx)

+

n∑
i,j=1

∫
(∂2
i,jf)(x)(∂2

i,jg)(x) Pn(dx)

= 〈f , g〉1,2 +

∫
(∇2f) · (∇2g) dPn

= E(fg) + E [∇f · ∇g] + E
[
∇2f · ∇2g

]
[f, g ∈ C2

0 (Pn)],

where K ·M denotes the matrix—or Hilbert–Schmidt—inner product,

K ·M :=

n∑
i,j=1

Ki,jMi,j = tr(K′M),

for all n× n matrices K and M .
We also obtain the corresponding Hilbertian norm ‖ · ‖2,2 where:

‖f‖22,2 = ‖f‖2L2(Pn) +

n∑
i=1

‖∂if‖2L2(Pn) +

n∑
i,j=1

∥∥∂2
i,jf
∥∥2

L2(Pn)

= ‖f‖21,2 +
∥∥∇2f

∥∥2

L2(Pn×χ2
n)

= E
(
f2)+ E

(
‖∇f‖2

)
+ E

(
‖∇2f‖2

)
[f ∈ C2

0 (Pn)];

χ2
n := χn × χn denotes the counting measure on {1 , · · · , n}2; and

‖K‖ :=
√
K ·K =

√√√√ n∑
i,j=1

K2
i,j =

√
tr(K′K)

denotes the Hilbert–Schmidt norm of any n× n matrix K.

Definition 2.1. The Gaussian Sobolev space D2,2(Pn) is the completion of C2
0 (Pn)

in the norm ‖ · ‖2,2.
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For every f ∈ D2,2(Pn) we can find functions f1, f2, . . . ∈ C2
0 (Pn) such that ‖f` −

f‖2,2 → 0 as ` → ∞ Then Dif and D2
i,jf := lim`→∞ ∂

2
i,jf exist in L2(Pn) for every

1 6 i, j 6 n. Equivalently, Df = lim`→∞∇f exists in L2(Pn × χn) and D2f =
lim`→∞∇2f exists in L2(Pn × χ2

n).
Now we extend the definition to derivatives of order greater than two. Choose

and fix an integer k > 2, and as a convenient shorthand introduce the notation [n] =
{1, 2, . . . , n}. As in the usual calculus the kth derivative is described by a k-tensor,
which we recall is a function K : [n]k → R, where [n]k is the set of vectors (q1, . . . , qk)
of k integers in {1, 2, . . . , n}. The 2-tensors are simply n× n matrices and the higher
order ones are their natural generalizations. If q = (q1, . . . , qk) ∈ [n]k, then let

(∂kq f)(x) := (∂q1 · · · ∂qkf)(x) [f ∈ Ck(Rn), x ∈ Rn].

Thus ∂kq takes k successive derivatives of f in the order specified by the directions
(q1, . . . , qk). For example, if n = 3 and k = 5 with q = (3, 1, 2, 1, 2) then ∂kq computes
the derivative of f in the direction of the second coordinate, then the first, then the
second again, the first again, and finally the third. By equality of mixed partial
derivatives all that matters is the number of times the derivative is taken in each
direction, not the order in which they are taken.

Let ∇k denote the formal k-tensor whose q-th coordinate is ∂kq . We define a
Hilbertian inner product 〈 · , ·〉k,2 inductively via

〈f , g〉k,2 = 〈f , g〉k−1,2 +

∫
(∇kf) · (∇kg) dPn,

for all f, g ∈ Ck0 (Pn), where “·” denotes the Hilbert–Schmidt inner product for k-
tensors:

K ·M :=
∑
q∈[n]k

KqMq,

for all k-tensors K and M . The corresponding norm is defined via ‖f‖k,2 := 〈f , f〉1/2k,2 .

Definition 2.2. The Gaussian Sobolev space Dk,2(Pn) is the completion of Ck0 (Pn)
in the norm ‖ · ‖k,2. We also define D∞,2(Pn) := ∩k>1D

k,2(Pn).

If f ∈ Dk,2(Pn) then we can find a sequence of functions f1, f2, . . . ∈ Ck0 (Pn) such
that ‖f` − f‖k,2 → 0 as `→∞. It then follows that

Djf := lim
`→∞

∇jf` exists in L2(Pn × χjn),

for every 1 6 j 6 k, where χjn := χn × · · · × χn [j − 1 times] denotes the counting
measure on {1 , . . . , n}j . The operator Dk is called the kth Malliavin derivative.

It is easy to see that the Gaussian Sobolev spaces are nested; that is,

D
k,2(Pn) ⊂ Dk−1,2(Pn) for all 2 6 k 6∞.

Also, whenever f ∈ Ck0 (Pn), the kth Malliavin derivative of f is just the classically-
defined derivative ∇kf , which is a k-tensor. By equality of mixed partial derivatives
∇kf is in fact a symmetric k-tensor, which for a general k-tensor K means that
Kq = Kσ(q) where σ is any permutation of {1, . . . , k} and σ(q) = (qσ(1), . . . , qσ(k)).
That is, Kq depends only on the number of times each element in [n] appears in the
qth-coordinate, not the order of the elements in q. Because every polynomial in n
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variables3 is in C∞0 (Pn), it follows immediately that D∞,2(Rn) contains all n-variable
polynomials; and that all Malliavin derivatives acts as one might expect them to. This
last fact will be important for the Wiener chaos decomposition, which is a way to write
a fairly generic random variable as an infinite sum of polynomials, much like a Taylor
series does. If the required sum converges properly then the last fact says that the
Malliavin derivative acts on it as we expect it should.

More generally, we have the following.

?〈def:D:k,p〉?Definition 2.3. For every integer k > 1 and real p > 1, the Gaussian Sobolev spaces
Dk,p(Pn) is defined as the completion of the space C∞0 (Pn) in the norm

‖f‖Dk,p(Pn) := ‖f‖k,p :=

[
‖f‖pLp(Pn) +

k∑
j=1

‖Djf‖p
Lp(Pn×χjn)

]1/p

.

Each Dk,p(Pn) is a Banach space in the preceding norm. Note that, as usual, these
norms are not induced by an inner product unless p = 2. Furthermore, for each fixed
k the spaces Dk,p are non-increasing in p.

3 The Adjoint Operator

Recall the canonical Gaussian probability density function γn := dPn/dx from (1.1).
Since (Djγn)(x) = −xjγn(x), we can apply integration by parts and the product rule
to see that for every f, g ∈ C1

0 (Pn),

E [Dj(f)g] =

∫
Rn

(Djf)(x)g(x)γn(x) dx

= −
∫
Rn
f(x)Dj [g(x)γn(x)] dx

= −
∫
Rn
f(x)(Djg)(x) Pn(dx) +

∫
Rn
f(x)g(x)xj Pn(dx),

for 1 6 j 6 n. Using the L2(Pn) inner product notation we can rewrite the latter
identity as the “adjoint relation,”

E [Dj(f)g] = 〈Djf , g〉L2(Pn) = 〈f ,Ajg〉L2(Pn) = E [fAj(g)] , (2.3) IbP

where A is the formal adjoint of D; that is,

(Ag)(x) := −(Dg)(x) + xg(x). (2.4) A:g

Note that g : Rn → R is a real-valued function, but Ag : Rn → Rn, and

(Ajg)(x) = −(Djg)(x) + xjg(x).

Furthermore, (2.4) is defined pointwise whenever g ∈ C1
0 (Pn), but it also makes sense

as an identity in L2(Pn × χn) if, for example, g ∈ D1,2(Pn) and x 7→ xg(x) is in
L2(Pn × χn).

3A function f : Rn → R is a polynomial in n variables if it can be written as a linear

combination of monomials xd11 · · ·x
dn
n , where each dj is a non-negative integer. The degree of

each monomial is the sum of the exponents appearing in it, and the degree of the polynomial
is the maximum degree of all monomials appearing in it. Thus, for example g(x) = x1x3

2−2x5

is a polynomial of degree 4 in 5 variables.
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Let us pause to emphasize that (2.3) can be stated equivalently as

E[gD(f)] = E[fA(g)], (2.5) D:delta

as n-vectors.4

If f ∈ D1,2(Pn), then we can always find functions f1, f2, . . . ∈ C1
0 (Pn) such that

‖f` − f‖1,2 → 0 as `→∞. Note that∥∥∥∥∫ gDf` dPn −
∫
gDf dPn

∥∥∥∥ 6 ‖g‖L2(Pn)‖Df` −Df‖L2(Pn×χn)

6 ‖g‖L2(Pn)‖f` − f‖1,2 → 0,

(2.6) DfDf

as `→∞. Also,∥∥∥∥∫ f`Ag dPn −
∫
fAg dPn

∥∥∥∥ 6 ‖Ag‖L2(Pn×χn)‖f` − f‖L2(Pn)

6 ‖Ag‖L2(Pn×χn)‖f` − f‖1,2 → 0,

(2.7) fDgfDg

whenever g ∈ C1
0 (Pn). We can therefore combine (2.5), (2.6), and (2.7) in order to see

that (2.5) in fact holds for all f ∈ D1,2(Pn) and g ∈ C1
0 (Pn).

Finally define

Dom[A] :=
{
g ∈ D1,2(Pn) : Ag ∈ L2(Pn × χn)

}
. (2.8) ?Dom:A?

Since C1
0 (Pn) is dense in L2(Pn) , we may infer from (2.5) and another density argu-

ment the following.

?〈pr:adjoint〉?Proposition 3.1. The adjoint relation (2.5) is valid for all f ∈ D1,2(Pn) and g ∈
Dom[A].

Definition 3.2. The linear operator A is the adjoint operator, and Dom[A] is called
the domain of the definition—or just domain—of A.

The linear space Dom[A] has a number of nicely-behaved subspaces. The following
records an example of such a subspace.

〈pr:Subspace〉Proposition 3.3. For every 2 < p 6∞,

D
1,2(Pn) ∩ Lp(Pn) ⊂ Dom[A].

Proof. We apply Hölder’s inequality to see that

E
(
‖Z‖2[g(Z)]2

)
=

∫
‖x‖2[g(x)]2 Pn(dx) 6 cp‖g‖2Lp(Pn),

where

cp =
[
E
(
‖Z‖2p/(p−2)

)](p−2)/p

<∞.

Therefore, Zg(Z) ∈ L2(Pn × χn), and we may apply (2.4) to find that

‖Ag‖L2(Pn×χn) 6 ‖Dg‖L2(Pn×χn) + c1/2p ‖g‖Lp(Pn) 6 ‖g‖1,2 + c1/2p ‖g‖Lp(Pn) <∞.

This proves that g ∈ Dom[A].

4If ζ = (ζ1 , . . . , ζm) is a random m-vector then E(ζ) is the m-vector whose jth coordinate
is E(ζj).
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Problems
〈pbm:Ck_moments〉

1. Prove Lemma 1.2.
2. For which values of s ∈ R is m(s) := E(‖Z‖s) finite? When it is finite, compute

E(‖Z‖s) in terms of the gamma function. These constants arose earlier during
the course of the proof of Proposition 3.3.

3. Let Z : Rn → Rn denote the usual vector of independent, standard normal
random variables, and define X := ‖MZ‖s, where M is a nonrandom n × n
matrix and s > 0 is a non random real number. For which values of s and k is
X ∈ Dk,2(Rn)?

〈pbm:C^k_0〉 4. Prove that f ∈ Ck0 (Pn) if and only if f is infinitely differentiable in all of its
variables, and

lim
‖x‖→∞

e−ε‖x‖
2

|f(x)| = lim
‖x‖→∞

e−ε‖x‖
2

|(∂i1 · · · ∂imf)(x)| = 0,

for all 1 6 i1, . . . , im 6 n and 1 6 m 6 k.
5. Show directly from integration by parts that the standard Laplace operator

∆ := D ·D =

n∑
i=1

∂2
i,i

is not self-adjoint on L2(Pn), even though it is self-adjoint on the Lebesgue space
L2(Rn). What is the adjoint of ∆ on L2(Pn)?

〈pbm:Malliavin:Sobolev〉 6. Let C∞c (Rn) denote the collection of all infinitely-differentiable functions of
compact support from Rn to R, and recall that the Sobolev space W 1,2(Rn)
is the completion of C∞c (Rn) in the norm ‖f‖L2(Rn) + ‖∇f‖L2(Rn) for every

f ∈ C∞c (Rn). Construct an element of D1,2(Pn) that is not an element of
W 1,2(Rn).

7. Fill in the details of the derivation of the identity (2.2).
〈pbm:Dmax||〉 8. Define N := max16j6n |Zj |. Prove that N ∈ D1,2(Pn) and evaluate DN .

〈pbm:MG:transform〉 9. Suppose n > 2 is an integer. A stochastic process X1, . . . , Xn is said to be
adapted if Xi is measurable with respect to the σ-algebra generated by Z1, . . . , Zi
for every i = 1, . . . , n. Given an adapted process X, define a new stochastic
process M – a so-called martingale transform of Z – as follows:

M0 := 0 and Mk :=

k∑
i=2

Xi−1Zi for k = 2, . . . , n.

Suppose Xi ∈ D1,2(Pn) for every i = 2, . . . , n.
(a) Prove that M is a mean-zero martingale and Mi ∈ D1,2(Pn) for every

i = 1, . . . , n.
(b) Compute DMi for all i = 1, . . . , n.

10. (The “Divergence Operator” δ) If G : Rn → Rn, then define δG := A · G =∑n
i=1 AiGi, when possible. Notice that δD = −L.

(a) Verify that if G1, . . . , Gn ∈ C1
0 (Pn), then

(δG)(Z) = −(divG)(Z) + Z ·G(Z) Pn-a.s.

(b) Define Dom[δ] to be the collection of all G : Rn → Rn such that Gi ∈
D1,2(Pn) for all i = 1, . . . , n and Z · G(Z) ∈ L2(Pn). Prove the following
integration by parts formula,

E [G · (Df)] = E [δ(G)f ] for all f ∈ D1,2(Pn) and G ∈ Dom[δ].
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(c) We say that G : Rn → Rn is adapted when G1 is a constant and Gi(x)
depends only on (x1 , . . . , xi−1) for all i = 2, . . . , n. [See also Problem
9.] Prove that, if in addition G ∈ Dom[δ], then δ(G) is the “discrete Itô
integral,” δ(G) = G · Z. The random variable δ(F ) is sometimes called
the Skorohod integral of F ∈ Dom[δ]. And you have just shown that the
Skorohod integral of an adapted process is the same as its Itô integral.

(d) Prove that

Di(δG) = δ(DiG) +Gi for all i = 1, . . . , n and G ∈ Dom[δ],

where Di(F ) = (DiF1 , . . . , DiFn) whenever F : Rn → Rn satisfies Fi ∈
D1,2(Pn) for all i = 1, . . . , n.

(e) Use the preceding formula to prove that E[δ(F )] = 0 and

E [δ(F )δ(G)] = E[FG] +

n∑
i=1

n∑
j=1

E [Dj(Fi) ·Di(Gj)] ,

for all F,G ∈ Dom[δ].
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Chapter 3

Harmonic Analysis
〈ch:Harmonic_Analysis〉

Recall that if f ∈ L2([0 , 2π]n), then we can write f as

f(x) = (2π)−n
∑
k∈Zn

e−ik·xf̂k, (3.1) F:L

where f̂k :=
∫

[0,2π]n
eik·xf(x) dx denotes the “kth Fourier coefficient” of f , and conver-

gence holds in L2([0 , 2π]n); that is,
∫

[0,2π]n
|f(x)− fN (x)|2dx→ 0 as N →∞, where

fN (x) :=
∑
‖k‖6N exp{ik · x}f̂k.

Eq. (3.1) is one of the many possible starting points of the theory of harmonic
analysis in the Lebesgue space [0 , 2π]n. In this chapter we develop a parallel theory
for the Gauss space (Rn,B(Rn) ,Pn). Problems 17 through 22 work out the analogous
details for “Poisson” spaces. And other distributional spaces are also possible; see XXX
for more discussion on this topic.

1 Hermite Polynomials in Dimension One

Before we discuss the general n-dimensional case, let us consider the special case that
n = 1. We may observe the following elementary computations:

γ′1(x) = −xγ1(x), γ′′1 (x) = (x2 − 1)γ1(x), γ′′′1 (x) = −(x3 − 3x)γ1(x), etc.

It follows from these computations, and from induction, that the kth derivative of γ1

satisfies
γ

(k)
1 (x) = (−1)kHk(x)γ1(x) [k > 0, x ∈ R], (3.2) def:Hermite

where Hk is a polynomial of degree at most k. Moreover,

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1,

H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3, etc.
(3.3) eq:H1-4

Definition 1.1. Hk is called the Hermite polynomial of degree k > 0.

Be warned that some authors normalize their Hermite polynomials differently than
has been done here. Therefore, it might help to remember that our Hermite polyno-
mials are monic; this will be explained shortly.

39
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The following basic lemma records some of the salient features of Hermite polyno-
mials.

〈lem:Hermite〉
Lemma 1.2. For all x ∈ R and k ∈ Z+:

〈lem:Hermite:1〉 1. Hk+1(x) = xHk(x)−H ′k(x);
〈lem:Hermite:2〉 2. H ′k+1(x) = (k + 1)Hk(x); and
〈lem:Hermite:3〉 3. Hk(−x) = (−1)kHk(x).

This simple lemma teaches us a great deal about Hermite polynomials. For in-
stance, we learn from part 1 and induction that

Hk is a polynomial of exact degree k for every k > 0,

and the following Rodriguez formula [or reproduction formula] holds:

Hk+1(x) = xHk(x)− kHk−1(x) for all k > 0 and x ∈ R. (3.4) Rodriguez

Moreover, every Hk is monic; that is, the coefficient of xk in Hk(x) is one for all k > 0.
To observe another interesting property of Hermite polynomials, let us first recall

the adjoint operator A from (2.4) on page 34. Presently, n = 1; therefore, in this
case, A maps a scalar function to a scalar function. Then we can notice that, since
polynomials are in the domain of the definition of A [Chapter 2, Proposition 3.3], parts
1 and 2 of Lemma 1.2 respectively say that:

Hk+1 = AHk and DHk+1 = (k + 1)Hk for all k > 0. (3.5) A:D:H

In other words, we can remember the above as saying that Hk plays the same role in
the Gauss space (R ,B(R) ,P1) as does the monomial x 7→ xk in the Lebesgue space:
DHk+1 = (k + 1)Hk is the Gaussian analogue of the statement that d(xk+1)/dx =
(k+1)xk. As it turns out the adjoint operator behaves a little like an integral operator,
and the identity AHk = Hk+1 is the Gaussian analogue of the anti-derivative identity∫
xk dx ∝ xk+1, valid in Lebesgue space.

Other properties of Hermite polynomials will unfold themselves in due time. For
the time being, let us prove Lemma 1.2.

Proof. We prove part 1 of the lemma by direct computation:

(−1)k+1Hk+1(x)γ1(x) = γ
(k+1)
1 (x) [by (3.2)]

=
d

dx
γ

(k)
1 (x)

= (−1)k
d

dx
[Hk(x)γ1(x)] [by (3.2)]

= (−1)k
[
H ′k(x)γ1(x) +Hk(x)γ′1(x)

]
= (−1)k

[
H ′k(x)− xHk(x)

]
γ1(x),

where the last line follows from a third appeal to (3.2), together with the fact that
H1(x) = x. Divide both sides by (−1)k+1γ1(x) to complete the proof of part 1.

Part 2 is clearly correct when k = 0. We now apply induction: Suppose H ′j+1(x) =
(j + 1)Hj(x) for all 0 6 j 6 k. We plan to prove this for j = k + 1. By part 1
and the induction hypothesis, the Rodriguez formula (3.4) holds. Therefore, we can
differentiate the latter formula in order to find that

H ′k+1(x) = Hk(x) + xH ′k(x)− kH ′k−1(x)

= Hk(x) + kxHk−1(x)− kH ′k−1(x),
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thanks to a second appeal to the induction hypothesis. Because of Part 1, xHk−1(x)−
H ′k−1(x) = Hk(x). This proves that H ′k+1(x) = (k + 1)Hk(x), and part 2 follows.

We apply parts 1 and 2 of the lemma, and induction, in order to see that Hk is
odd [and H ′k is even] if and only if k is. This proves part 3.

The following is the raison d’être for our study of Hermite polynomials. Specifi-
cally, it states that the sequence {Hk}∞k=0 plays the same sort of harmonic-analyatic
role in the 1-dimensional Gauss space (R ,B(R) ,P1) as do the complex exponentials
in Lebesgue spaces.

〈th:Hermite:1〉Theorem 1.3. The normalized Hermite polynomials {Hk/
√
k!}∞k=0 form a complete,

orthonormal basis for L2(P1).

Before we prove Theorem 1.3 let us mention the following corollary.

〈co:Hermite:1〉Corollary 1.4. For every f ∈ L2(P1),

f = f(Z) =

∞∑
k=0

1

k!
〈f ,Hk〉L2(P1) Hk(Z) =

∞∑
k=0

1

k!
E [fHk]Hk a.s.

To prove this we merely apply Theorem 1.3 and the Riesz–Fischer theorem. Next
is another corollary which also has a probabilistic flavor.

〈co:Hermite:Wiener:1〉Corollary 1.5 (Wiener XXX). For all f, g ∈ L2(P1),

E[fg] =

∞∑
k=0

1

k!
E[fHk] E[gHk] and Cov(f , g) =

∞∑
k=1

1

k!
E[fHk] E[gHk].

Proof. Multiply both sides of the first identity of Corollary 1.4 by g(x) and integrate
[dP1] in order to obtain the identity,

〈g , f〉L2(P1) =

∞∑
k=0

1

k!
〈f ,Hk〉L2(P1) 〈g ,Hk〉L2(P1).

The exchange of sums and integrals is justified by Fubini’s theorem. The preceding is
another way to say the first result. The second follows from the first and the fact that
H0 ≡ 1.

We now prove Theorem 1.3.

Proof of Theorem 1.3. Thanks to (3.5) and the fact that A is the adjoint to D,

E(H2
k) = E [Hk ·A(Hk−1)] = E [D(Hk) ·Hk−1] = kE

[
H2
k−1

]
.

Since E(H2
0 ) = 1, induction shows that E(H2

k) = k! for all integers k > 0.
Next we prove that

E(HkHk+`) = 0 for integers ` > 0, k > 0.

By (3.5),

E(HkHk+`) = E [Hk ·A(Hk+`−1)] = E [D(Hk)Hk+`−1] = kE [Hk−1Hk+`−1] .
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Now iterate this identity to find that

E (HkHk+`) = k! E [H0H`] = k!

∫ ∞
−∞

H`(x)γ1(x) dx = 0,

since H` γ1 = (−1)`γ
(`)
1 , thanks to (3.2). It follows that {Hk/

√
k!}∞k=0 is an orthonor-

mal sequence of elements of L2(P1).
In order to complete the proof, we need to show the orthonormal basis is complete.

We do this in a standard way. Namely, we suppose that f ∈ L2(P1) is orthogonal in
L2(P1) to Hk for all k > 0, and then proceed to prove that, as a consequence, f = 0
almost surely [P1].

Part 1 of Lemma 1.2 shows that Hk(x) = xk − p(x) where p is a polynomial of
degree k− 1 for every k > 1. Consequently, the span of H0, . . . , Hk is the same as the
span of the monomials 1, x, · · · , xk for all k > 0. In particular,

∫∞
−∞ f(x)xkγ1(x) dx = 0

for all k > 0. Multiply both sides by (−it)k/k! and add over all k > 0 in order to see
that ∫ ∞

−∞
f(x)e−itxγ1(x) dx = 0 for all t ∈ R. (3.6) pre:Hermite

If the Fourier transform ĝ of a function g ∈ Cc(R) is absolutely integrable, then by
the inversion theorem of Fourier transforms,

g(x) =
1

2π

∫ ∞
−∞

e−itxĝ(t) dt for all x ∈ R.

Multiply both sides of (3.6) by ĝ(t) and integrate [dt] in order to see from Fubini’s
theorem that

∫
fg dP1 = 0 for all g ∈ Cc(R) such that ĝ ∈ L1(R). Since the class of

such functions g is dense in L2(P1), it follows that
∫
fg dP1 = 0 for every g ∈ L2(P1).

Set g ≡ f to see that f = 0 a.s.

Finally, let us mention one more important corollary.

〈co:Nash〉Corollary 1.6 (A Poincaré Inequality). Var(f) 6 E(|Df |2) for all f ∈ D1,2(P1).

Thus, we see from the Poincaré inequality that, if the [Malliavin] derivative of f is
“small,” then f is close to the constant E(f) with high probability.

Proof. By Corollary 1.5 and (3.5),

Var(f) =

∞∑
k=0

1

(k + 1)!
|E[fHk+1]|2 =

∞∑
k=0

1

(k + 1)!
|E[fA(Hk)]|2

=

∞∑
k=0

1

(k + 1)!
|E[D(f)Hk]|2 6

∞∑
k=0

1

k!
|E[D(f)Hk]|2 .

The right-most quantity is equal to E(|Df |2), thanks to Corollary 1.5.

2 Hermite Polynomials in General Dimensions

One can easily extend the domain of definition of Hermite polynomials from R to Rn

by tensorization: For every k ∈ Zn+ let Hk := Hk1 ⊗ · · · ⊗ Hkn . Or written out the
long way,

Hk(x) :=

n∏
j=1

Hkj (xj) [k ∈ Zn+, x ∈ Rn].
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As it turns out, these are the natural n-variable extensions of Hermite polynomials on
R. Though, when n = 1, we will continue to write Hk(x) in place of Hk(x) in order
to distinguish the multi-dimensional case from the case n = 1.

Clearly, x 7→ Hk(x) is a polynomial, in n variables, of degree kj in the variable xj .
For instance, when n = 2,

H(0,0)(x) = 1, H(1,0)(x) = x1, H(0,1)(x) = x2, (3.7) {?}

H(1,1)(x) = x1x2, H(1,2)(x) = x1(x2
2 − 1), . . . . (3.8) {?}

Because each measure Pn has the product form Pn = P1 × · · · × P1, Theorem 1.3
immediately extends to the following.

〈th:Hermite〉Theorem 2.1. Define k! :=
∏n
ν=1 kν ! for all k ∈ Zn+. Then, for every integer n > 1,

the collection {Hk/
√
k!}k∈Zn+ is a complete, orthonormal basis in L2(Pn).

Corollary 1.4 has the following immediate extension.

〈co:Hermite〉Corollary 2.2. For every n > 1 and f ∈ L2(Pn),

f =
∑
k∈Zn+

E(fHk)

k!
Hk almost surely,

where the infinite sum converges in L2(Pn).

Similarly, the following immediate extension of Corollary 1.5 computes the covari-
ance between two arbitrary square-integrable random variables in the Gauss space.

〈co:Hermite:Wiener〉Corollary 2.3 (Wiener XXX). For all n > 1 and f, g ∈ L2(Pn),

E[fg] =
∑
k∈Zn+

1

k!
E[fHk] E[gHk] and Cov(f , g) =

∑
k∈Zn+
k 6=0

1

k!
E(fHk) E(gHk).

And the following generalizes Corollary 1.6 to several dimensions.

〈pr:Nash〉Proposition 2.4 (The Poincaré Inequality). Var(f) 6 E(‖Df‖2) for all f ∈ D1,2(Pn).

Proof. By Corollary 2.2, the following holds a.s. for all 1 6 q 6 n:

Dqf =
∑
k∈Zn+

E[Dq(f)Hk]

k!
Hk =

∑
k∈Zn+

E[fAq(Hk)]

k!
Hk,

where we recall Aq denotes the qth coordinate of the vector-valued adjoint operator.
By orthogonality and (3.5),

E
(
‖Df‖2

)
=

n∑
q=1

∑
k∈Zn+

1

k!
|E[fAq(Hk)]|2

=

n∑
q=1

∑
k∈Zn+

1

k!

∣∣∣∣∣∣∣∣E
f(Z)Hkq+1(Zq)

∏
16`6n
6̀=q

Hk`(Z`)


∣∣∣∣∣∣∣∣
2

.
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Fix an integer 1 6 q 6 n and relabel the inside sum as j` := k` if ` 6= q and jq := kq+1.
In this way we find that

E
(
‖Df‖2

)
>

n∑
q=1

∑
j∈Zn+
jq>1

1

j1! · · · jn!

∣∣∣∣∣∣∣∣E
f(Z)Hjq (Zq)

∏
16`6n
6̀=q

Hj`(Z`)


∣∣∣∣∣∣∣∣
2

=

n∑
q=1

∑
j∈Zn+
jq>1

1

j1! · · · jn!
|E [fHj ]|2 .

using only the fact that 1/(jq − 1)! > 1/jq!. This completes the proof since the right-
hand side is simply ∑

j∈Zn+

1

j1! · · · jn!
|E [fHj ]|2 − |E[fH0]|2 ,

which is equal to the variance of f(Z) [Corollary 2.3].

Consider a Lipschitz-continuous function f : Rn → R. Recall [Example 1.6, page
30] that this means that Lip(f) <∞, where

Lip(f) := sup
x,y∈Rn
x 6=y

|f(x)− f(y)|
‖x− y‖ .

Since f ∈ D1,2(Pn) and ‖Df‖ 6 Lip(f) a.s., the Poincaré inequality has the following
ready consequence.

〈co:Nash:Lip〉Corollary 2.5. For every Lipschitz-continuous function f : Rn → R,

Var(f) 6 |Lip(f)|2.

Thus, Corollary 2.5 implies the intuitively-pleasant fact that if Lip(f) is small,
then f ≈ E(f) with high probability.

Let us now mention two concrete examples.

Example 2.6. The function f(x) := n−1∑n
i=1 xi is Lipschitz continuous and Lip(f) =

1/
√
n. In this case, Corollary 2.5 implies that

Var
(
n−1∑n

i=1 Zi
)
6 n−1,

which is in fact an identity. This example shows that the bound in the Poincaré
inequality can be saturated.

Example 2.7. For a more interesting example consider either the function f(x) :=
max16i6n |xi| or the function g(x) := max16i6n xi. Both f and g are Lipschitz-
continuous functions with Lipschitz constant 1. The Poincaré inequality implies that
Var(Mn) 6 1,1 where Mn denotes either max16i6n Zi or max16i6n |Zi|. This is a non-
trivial result about, for example, the absolute size of the centered random variable
Mn − EMn. The situation changes completely once we remove the centering. Indeed
by Proposition 1.3 (p. 7) and Jensen’s inequality,

E(M2
n) > |E(Mn)|2 ∼ 2 logn as n→∞.

1This bound is sub optimal. The optimal bound is Var(Mn) = O(1/ logn). For more
information on this see part (b) of Problem 19 on page 26.
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Similar examples can be constructed for more general Gaussian random vectors
than Z, thanks to the following.

〈pr:Poincare:X〉
Proposition 2.8. Let Q be a positive semidefinite matrix, and define λ∗ to be its
largest eigenvalue. If X is distributed as Nn(0 , Q), then

Var[f(X)] 6 λ∗ E
(
‖(Df)(X)‖2

)
for every f ∈ D1,2(Pn).

Proof. We can write Q = S2 where S is a symmetric n×n matrix; that is, S is a square
root of Q. Define g(x) := f(Sx) for every x ∈ Rn, and observe that: (i) X has the
same distribution as SZ; and therefore (ii) Var(f(X)) = Var(g(Z)) 6 E(‖(Dg)(Z)‖2)
thanks to Proposition 2.4. By the chain rule, (Dg)(Z) = (Df)(SZ)S, whence

‖(Dg)(Z)‖2 = 〈(Df)(SZ)S , (Df)(SZ)S〉Rn = 〈(Df)(SZ) , (Df)(SZ)Q〉Rn ,

thanks to the facts that Q = S2 and S is symmetric.2 Since Q is symmetric, Rayleigh’s
principle yields 〈x , xQ〉Rn 6 λ∗‖x‖2 for all x ∈ Rn. Set x := (Df)(SZ) to see that

E(‖(Dg)(Z)‖2) 6 λ∗ E(‖(Df)(SZ)‖2),

which is equal to λ∗ E(‖(Df)(X)‖2).

The above proposition is in general unimproveable: For example, the case that
Df is Pn-a.s. a constant multiple of the eigenvector that corresponds to the largest
eigenvalue of Q. Still, the proposition can be sharpened for certain specific choices of
f . The next proposition highlights this assertion in a particular case.

〈pr:Var:max〉
Proposition 2.9. Suppose X has a Nn(0 , Q) distribution, and let Mn denote either
max16i6nXi or max16i6n |Xi|. Then,

Var(Mn) 6 max
16i6n

Var(Xi).

Proof. Let S denote a symmetric square root of Q, and define f(x) = max16i6n xi.
Because f(X) has the same distribution as f(SZ), the Poincaré inequality (Proposition
2.4) implies that

Var

(
max

16i6n
Xi

)
6 E

[
〈(Df)(SZ) , (Df)(SZ)Q〉

Rn

]
.

See also the proof of Proposition 2.8. Because Df is Pn-a.s. a standard basis vector
of Rn (see Example 1.8, p. 31), it follows that 〈(Df)(SZ) , (Df)(SZ)Q〉Rn is Pn-
almost surely a diagonal entry of Q and hence is bounded above by max16i6nQi,i
a.s. This verifies the proposition in the case that Mn = max16i6nXi. The case that
f(x) = max16i6n |xi| is handled the same way, except that now Df is ±1 times some
standard basis element of Rn; see Problem 8 on page 36.

2Needless to say, 〈a , b〉Rn := a · b =
∑n
i=1 aibi for all a, b ∈ Rn.



46 CHAPTER 3. HARMONIC ANALYSIS

3 Wick’s Formula

Theorem 1.3 asserts that, after they are suitably normalized, the Hermite polynomials
form a complete, orthonormal basis for L2(Pn). Using this fact, a change of variables
allows us to find a basis for L2(Qn), where Qn denotes the law of an Nn(0 ,Γ) random
variable provided that Γ has full rank (equivalently, is positive definite). Here is a
precise statement of this fact.

〈co:Hermite:correlated〉Corollary 3.1. Let Qn denote the law of a Nn(0 ,Γ) random variable, where Γ is a
positive-definite n × n matrix. Define Ck(x) := Hk(Γ−1/2x) for every k ∈ Zn+ and
x ∈ Rn. Then {Ck/

√
k!}k∈Zn+ is a complete, orthonormal basis for L2(Qn). Hence,

f =
∑
k∈Zn+

E[fCk]

k!
Ck for every f ∈ L2(Qn).

Corollary 3.1 follows readily from Theorem 2.1 and Corollary 2.2. In practice, this
particular representation of a general function f ∈ L2(Qn) is not always useful. This
is because it is in general hard to calculate E[fCk] as its computation involves working
with unwieldly multi-dimensional integrals. Nevertheless, when f is a polynomial,
additional combinatorial ideas can be used to help organize the above representation
of f in a useful way. The resulting representation is then called Wick’s formula. Before
we state and prove Wick’s formula, let us introduce some notation.

For every integer j > 1, let Pj denote the following linear subspace of the Gaussian
Hilbert space L2(Qn):

Pj := Span{Ck : k ∈ Zn+, |k| = j};

where we recall |k| =
∑n
m=1 km for every k ∈ Zn+. We also define P0 to be the space of

all real-valued, constant functions on Rn. In this way, Corollary 3.1 can be rephrased
succintly as an orthogonal decomposition of L2(Qn) in terms of the subspaces {Pj}∞j=0.
Or, equivalently,

L2(Qn) =

∞⊕
j=0

Pj . (3.9) eq:Wiener_chaos_defn

In other words, suppose X is distributed as Qn and explicitly construct the Gaus-
sian Hilbert space L2(Qn) as L2(Ω , σ(X),Qn). Then Pj is the linear subspace of all
degree-j polynomials in the variables X1, . . . , Xn that are uncorrelated with all degree
< j polynomials in X1, . . . , Xn. This interpretation of (3.9) is particularly nice because
it does not suppose knowledge of the explicit polynomial basis {Ck : k ∈ Zn+, |k| = j}
in order to define {Pj}∞j=0. Another nice feature of this “basis-free definition” is that
it does not require the covariance matrix Γ = (Cov(Xi , Xj))16i,j6n of X to be posi-
tive definite (Γ is of course always positive semi-definite). In particular, this basis-free
definition allows for some of the Xi’s to be equal to one another. Nonetheless the
decomposition (3.9) continues to remain valid, and simply states that every Borel
function of X with finite variance can be written uniquely as a (possibly) infinite sum
of polynomials, one from every Pj .

Definition 3.2. The orthogonal decomposition (3.9) is referred to as the Wiener
chaos decomposition of the Gaussian Hilbert space L2(Qn). Moreover, for every integer
j > 0, Pj is called the jth Wiener chaos of L2(Qn). We define πj : L2(Qn)→ Pj to be
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the orthogonal projection operator onto Pj in the L2(Qn) inner product. Thus, every
random variable Y ∈ L2(Qn) can be decomposed uniquely as Y = πjY + Y − πjY ,
with E[πjY (Y − πjY )] = 0.

Recall that that the degree of a monomial is the sum of its exponents, and the
degree of a polynomial is the maximum degree of all monomials that appear in that
polynomial. Then we learn immediately from (3.9) that a polynomial f(X) of degree
` ∈ Z+ in X1, . . . , Xn can be decomposed uniquely into a sum of elements from
P0,P1, . . . ,P`. As was noted above, the part in Pj is simply the orthogonal projection
πj(f(X)) of f(X) in L2(Qn) onto Pj .3

Wick’s theorem, or Wick’s formula, is a combinatorial expression for
∏n
i=1 Xi and

essentially contains the Isserlis theorem (p. 20) as a special case; see Remark 3.6 below
for details. As such, Wick’s formula inevitably involving the notion of matchings. With
this in mind, let A denote a finite set. We write a partial matching of A as m ⊕ u,
where m is a perfect matching of a subset of A and u denotes the remaining unmatched
elements. In the statement of Wick’s theorem we also adopt the conventions that∑

∅ := 0 and
∏

∅ = 1.

〈th:Wick〉Theorem 3.3 (Wick, YYYY). Suppose X has a Nn(0 ,Γ) distribution, where Γ is an
arbitrary n× n covariance matrix. Then,

πn

(
n∏
j=1

Xj

)
=
∑
m⊕u

(−1)|m|
∏

(i,j)∈m

Γi,j
∏
k∈u

Xk, (3.10) eqn:Wick_projection

where the sum ranges over all partial matchings m ⊕ u of pairs in {1 , . . . , n} and |m|
denotes the number of matched pairs in the partial matching m⊕ u. Furthermore, the
Wiener chaos decomposition of

∏n
j=1 Xj into orthogonal parts can be written as

n∏
j=1

Xj =
∑
m⊕u

∏
(i,j)∈m

Γi,j π|u|

(∏
k∈u

Xk

)
, (3.11) eqn:Wick_decomposition

where π|u| denote the projection operator onto the Wiener chaos P|u| corresponding to
the number of unmatched terms |u|.

Wick’s theorem makes two distinct assertions: The first is that every projection
is itself a polynomial in the variables X1 , . . . , Xn. Whereas the second assertion of
the theorem is that every polynomial in Gaussian variables X1, . . . , Xn can be written
uniquely as a sum of polynomials in the same variables with the property that any
two terms in the sum are uncorrelated.

Let us consider two examples. The first is a “trivial” one.

Example 3.4. A single Gaussian variable X1 has to be left unmatched, and hence
X1 = π1(X1). Consequently, π1(aX1 + b) = aπ1(X1) for all real numbers a and b.

For a more interesting example consider the following.

Example 3.5. If (X1 , X2) has a Gaussian distribution, then X1 and X2 can either be
matched or unmatched. This observation readily leads us to the formula

π2(X1X2) = X1X2 − E[X1X2].

3Wick’s theorem was introduced originally in the context of quantum field theory in order
to reduce a complicated product of creation and annihilation operators to sums of products
of pairs of such operators. Physicists prefer to write :Y : for the projection πn(Y ) of a random
variable Y ∈ L2(Qn).
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Equivalently, X1X2 = π2(X1X2) + E[X1X2], which is the orthogonal decomposition
of X1X2. In particular, we may specialize to the case that X1 = X2 = X in order to
see that

π2(X2) = X2 − E[X2] = X2 −Var(X). (3.12) pi2:Var

One can deduce from the above, especially from (3.12), that if a real-valued random
variable X has a standard normal distribution, then π1(X) = X and π2(X2) = X2−1.
Since π0(X0) = 1, one might hope to have stumbled upon the general pattern,

πn(Xn) = Hn(X) for every n > 0. (3.13) eq:Hermite_projection_formula

It turns out that (3.13) is true. Let us verify it for n = 3 and n = 4, and leave the
general case to the interested reader (Problem 7).

In order to verify (3.13) for the case n = 3, we first appeal to the Wick theorem
(Theorem 3.3) to see that for every Gaussian random variable (X1 , X2 , X3),

π3(X1X2X3) = X1X2X3 − E[X1X2]X3 − E[X1X3]X2 − E[X2X3]X1.

Then, we specialize this formula to the degenerate case where X1 = X2 = X3 = X in
order to see that π3(X3) = X3− 3X, which agrees with (3.13) for n = 3. See (3.3) on
page 39.

Similarly, for four variables, we have

π4(X1X2X3X4) = X1X2X3X3 − E[X1X2]X3X4 − E[X1X3]X2X4 − E[X1X4]X2X3

− E[X2X3]X1X4 − E[X2X4]X1X3 − E[X3X4]X1X2

+ E[X1X2] E[X3X4] + E[X1X3] E[X2X4] + E[X1X4] E[X2X3],

which specializes to π4(X) = X4 − 6X2 + 3 = H4(X). See (3.3) on page 39.

〈rem:Wick->Isserlis〉Remark 3.6. As was alluded to earlier, equation (3.11) contains the Isserlis formula
(Theorem 5.1, p. 20) as a special case. In order to see why let m⊕u denote a [non void]
partial matching of pairs in {1 , . . . , n} and notice that

∑
(i,j)∈m⊕u Γi,j

∏
k∈uXk lies in

∪ni=1Pj and is therefore orthogonal to P0. Equivalently, it has mean zero. Thus, we
see that if we take expectations of both sides of (3.11), then all terms vanish except
the ones that come from a perfect matching m [i.e., u = ∅]. The Isserlis formula then
follows from the identity π0(

∏
k∈∅Xk) = 1, which is a tautology.

Although the statement of Wick’s theorem contains the statement of the Isserlis
theorem, the proof of Wick’s theorem actually relies on the Isserlis theorem. It also
hinges on the following elementary combinatorial fact which we leave as exercise (see
Problem 5).

〈lem:comb〉Lemma 3.7. For every non-empty finite set A and for all x, y ∈ R,

(x+ y)|A| =
∑
B⊆A

x|A|y|A\B|,

where | · · · | denotes cardinality.

Proof of Wick’s theorem (Theorem 3.3). We prove Wick’s formula via a series of claims.
First, let Y denote the quantity on the right-hand side of (3.10). One of the contribut-
ing terms to the expression for Y is

∏n
i=1 Xi [corresponding to m = ∅], and all the

other terms are polynomials in X1, . . . , Xn of degree < n. Therefore, Y is a polynomial
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in X1, . . . , Xn of degree n.

Claim 1. E[Y ] = 0; that is, Y is orthogonal to P0.

In order to see why, let us note that E[Y ] =
∑

m⊕u(−1)|m|
∏

(i,j)∈m Γi,j E[
∏
k∈uXk],

and E[
∏
k∈uXk] = 0 unless |u| is even. Remember also that a sum over the empty set

is zero. We can combine these remarks with the Isserlis formula (Theorem 5.1, p. 20)
in order to see that

E[Y ] =
∑
m⊕u

(−1)|m|
∏

(i,j)∈m

Γi,j
∑

perfect matchings
m′ of u

∏
(i′,j′)∈m′

Γi′,j′

=
∑
m⊕u

∑
perfect matchings

m′ of u

(−1)|m|
∏

(i,j)∈m

Γi,j
∏

(i′,j′)∈m′
Γi′,j′ .

The first two sums are over all partial matchings of [n] and perfect matchings of
the remaining unmatched terms within the partial matching, where we are using the
standard combinatorial notation,

[L] := {1 , . . . , L} for all L ∈ N.

This is equivalent to summing over all perfect matchings of the original set [n], so we
may rearrange the sum in order to see that

E[Y ] =
∑

perfect matchings
m of [n]

∏
(i,j)∈m

Γi,j
∑
m′⊆m

(−1)|m
′|.

Because of Lemma 3.7,
∑

m′⊆m(−1)|m
′| = (−1 + 1)|m| = 0. This shows that

E[Y ] = 0, and hence Y is orthogonal to P0, as was asserted.

Claim 2. Y ∈ Pn.

In order to avoid trivialities, we assume that n > 2. Thanks to this and Claim 1,
it remains to prove that Y is orthogonal to P1, . . . ,Pn−1.

Choose and fix an integer ` = 1, . . . , n − 1, and let Xn+1, . . . , Xn+` denote any `
predescribed elements of {X1 , . . . , Xn}. We plan to show that E[Y Xn+1 . . . Xn+`] = 0.
This will prove that Y is orthogonal to P1, . . . ,Pn−1, and ends the proof of Claim 2.

We first apply the definition of Y , and then the Isserlis formula (Theorem 5.1, p.
20) for the [degenerate] Gaussian random variable (X1 , . . . , Xn , Xn+1 , . . . , Xn+`), in
order to see that

E[Y Xn+1 . . . Xn+`] =
∑
m⊕u

(−1)|m|
∏

(i,j)∈m

Γi,j E

[
Xn+1 . . . Xn+`

∏
k∈u

Xk

]

=
∑
m⊕u

(−1)|m|
∏

(i,j)∈m

Γi,j
∑

perfect matchings
m′ of u∪{n+1,...,n+`}

∏
(i′,j′)∈m′

Γi′,j′ ,

where, we recall, the final sum over perfect matchings m′ defaults to zero when there
are no such perfect matchings; that is when |u| + ` is odd. And of course, Γi′,j′ =
Cov(Xi′ , Xj′) for (i′, j′) ∈ m′ even when one or both of i′ and j′ exceed n.
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Now we rearrange the sum in order to see that

E[Y Xn+1 · · ·Xn+`] =
∑

non-empty
perfect matchings

m of [n + `]

∏
(i,j)∈m

Γi,j
∑

perfect matchings
m′ of [n]:

m′⊆m

(−1)|m
′|,

which is zero by Lemma 3.7. This proves Claim 2.

Claim 3. Eq. (3.10) holds; that is, Y = πn(
∏n
i=1 Xi).

Recall that, for every W ∈ L2(Qn), πn(W ) is the unique element of Pn that is or-
thogonal to W−πn(W ). Since Y ∈ Pn (Claim 2), it remains to show that

∏n
i=1 Xi−Y

is orthogonal to Y . But this follows from Claim 2 since (3.10) implies that
∏n
i=1 Xi−Y

is a polynomial of degree n−2, and hence is an element of P0∪· · ·∪Pn−2. Indeed, the
only term of degree > n − 1 in Y is

∏n
i=1 Xi itself, which corresponds to the partial

matching in which every element is left unmatched. This proves Claim 3.

Claim 4. Eq. (3.11) is valid.

Claim 4 implies Wick’s theorem, and follows by using (3.10) and similar combi-
natorial computations as above. Here are some of the details, written in short hand:
Insert (3.10) into the right-hand side of (3.11) in order to deduce the identity,

∑
m⊕u
of [n]

∏
(i,j)∈m

Γi,jπ|u|

(∏
k∈u

Xk

)
=
∑
m⊕u
of [n]

∑
m′⊕u′
of u

(−1)|m
′|
∏

(i,j)∈m

Γi,j
∏

(i′,j′)∈m′
Γi′,j′

∏
k∈u′

Xk.

Note that the sum
∑

m⊕u of [n]( · · · ) on the right-hand side is zero unless |u| is even.
Therefore, every non-zero term in the right-hand side’s double summation corresponds
to a partial matching of [n] (namely to (m ∪ m′) ⊕ u′), and the only term in the sum
that does not depend on this partial matching (i.e., does not depend on m ∪m′ or u′)

is (−1)|m
′|. Thus, by renaming the matched part as simply m and the unmatched part

as u, the right-hand side can be rewritten as∑
m⊕u
of [n]

∏
(i,j)∈m

Γi,j
∏
k∈u

Xk
∑
m′⊆m

(−1)|m
′|.

As in the previous claims,
∑

m′⊆m(−1)|m
′| = 0 for all partial matchings m ⊕ u of [n]

except when m = ∅ when it trivially gives a value of one. Thus the entire sum collapses
to
∏n
j=1 Xj , thereby completing the proof of (3.11).
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Problems

1. Prove that if we apply the Gram-Schmidt orthogonalization procedure – in
Gauss space – to the monomials {1, x, x2, x3, . . .}, then we obtain the Hermite
polynomials H1, H2, . . . .

〈ex:Hermite:Taylor〉 2. Choose and fix an w ∈ R and define f(z) = exp(wz − w2/2) for all z ∈ R.
(a) Verify that f ∈ D1,2(Pn) and calculate ‖f‖1,2.
(b) Use integration by parts to show that E[f(Z)Hk] = wk.
(c) Conclude that Hk(x) is the coefficient of wk/k! in the Taylor series expan-

sion of w 7→ exp(wx−w2/2). In other words, the Hermite polynomials are
defined uniquely via the relation,

exp

(
wx− w2

2

)
=

∞∑
k=0

wk

k!
Hk(x).

3. Verify that Hn(0) = 0 for all odd integers n, and

Hn(0) = (−1)n−1(n− 1)!! for all even integers n,

where k!! := k × (k − 2)× (k − 4)× · · · × 1 for all even integers k.
4. Recall the adjoint operators Aj of (2.4). Show that for k ∈ Zn+

Ak11 . . . Aknn 1 = Hk(Z),

where A0
j is the identity operator. Show that the order of the adjoint opera-

tors does not matter, so that if q ∈ {1, . . . , n}p and if σ is a permutation of
{1, 2, . . . , p} then Aq1 . . . Aqp1 = Aqσ(1) . . . Aqσ(p)1.

〈pbm:comb〉 5. Verify Lemma 3.7 and use it to derive the binomial theorem for (x+ y)n.
6. Derive the following “binomial theorem” for Hermite functions:

Hn(x+ y) =

n∑
k=0

(
n

k

)
ykHn−k(x) for all x, y ∈ R and n ∈ Z+.

(Hint: See Problem 2.)
〈pbm:HPF〉 7. In the following, consider the canonical probability space (Rn,B(Rn) ,Pn), so

that P` denotes the linear subspace spanned by {Hk : k ∈ Zn+, |k| = `} for
every ` = 0, 1, · · · , and π` denotes projection onto P`.

(a) Prove that, when n = 1, πm(Zm) = Hm(Z) a.s. [P1] for every m ∈ N.
(Hint: Zm −Hm(Z) is polynomial of degree m− 1.)

(b) Deduce (3.13) from the previous part.
(c) Define a polynomial P : Rn → R by P =

∑
α(m)Zm1

1 · · ·Zmnn , where
{α(m)}m∈Zn+ are real numbers, the sum is taken over all m ∈ Zn+ such

that |m| = `, and ` > 1 is integral. Prove the following generalization of
(3.13): For every integer ` > 0,

π`(P ) =
∑

m∈Zn+: |m|=`

α(m)Hm(Z) a.s.[Pn].

8. Use Wick’s formula (3.10) and the fact that πn(Zn) = Hn(Z) to show that the
Hermite polynomials can be written as

Hn(x) =

bn/2c∑
k=0

(−1)k
n!

2kk!(n− 2k)!
xn−2k,

for every even integer n and x ∈ R.
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9. Use Wick’s formula (3.11) to show that for every even integer n and x ∈ R,

xn =

bn/2c∑
k=0

(
n

2k

)
(2k)!

2kk!
Hn−2k(x).

Then re-verify this formula using induction and (3.4) on page 40.
10. (This problem requires some background in Itô calculus.)

Let B be a standard Brownian motion, and define Bn(t) :=
∫ t

0
Bn−1(s) dB(s)

as an Itô integral for every integer n > 1, where B0(t) := 1 for all t > 0. These
are multiple Itô integrals; for example,

B1(t) = B(t), B2(t) =

∫ t

0

∫ s

0

dB(r) dB(s), · · ·

Bn+1(t) =

∫ t

0

∫ s1

0

· · ·
∫ sn

0

dB(sn+1) · · ·dB(s2) dB(s1), · · · .

Choose and fix some α > 0, and define X(t) :=
∑∞
n=0 α

nBn(t) for all t > 0.
(a) Verify that for every T > 0, the series converges in L2(Ω), uniformly for

t ∈ [0 , T ]. [Hint: Doob’s maximal L2(Ω) inequality.]
(b) Prove that X satisfies the Itô stochastic differential equation, dX(t) =

αX(t)dB(t) subject to X(0) = 1. Conclude that

X(t) = exp

(
αB(t)− tα2

2

)
for all t > 0 a.s.

(c) Compare (b) to Problem 2 in order to conclude that

Hn(B(1)) = n!

∫ t

0

∫ s1

0

· · ·
∫ sn−1

0

dB(sn) · · ·dB(s2) dB(s1) a.s.

Because B(1) has the same distribution as Z, the above gives a particular
construction of Hn(Z) using Brownian motion. This construction is part
of a deep theory of Wiener XXX and Itô XXX. The exposition is due to
McKean XXX.

11. Extend Problem 2 to Rn for all n > 1 by showing that

exp

(
w · x− ‖w‖

2

2

)
=
∑
k∈Zn+

wk

k!
Hk(x) for every w, x ∈ Rn,

where wk :=
∏n
i=1 w

ki
i .

〈ex:Dk,2〉 12. Suppose that f ∈ L2(Pn) satisfies∑
k∈Zn+

‖k‖2m

k!
|E(fHk)|2 <∞ for some m ∈ N.

Prove that f ∈ Dm,2(Pn), using the following steps:
(a) Expand f in terms of Hermite polynomials, and let f` denote the same

sum but restricted to indices k ∈ Zn+ that satisfy ‖k‖ 6 `. Prove that
f` ∈ C∞0 (Pn) and lim`→∞ f` = f in L2(Pn). Use this to deduce that it
suffices to prove that {Di1 · · ·Dimf`}∞`=1 is Cauchy in L2(Pn) for every
i1, . . . , im ∈ {1 , . . . , n}.
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(b) Now find an expression for Di1 · · ·Dimf` in terms of Hermite polynomials.
[Hint: Examine the proof of Proposition 2.4.]

13. Show that if we are working in L2(Pn) then the jth Wiener chaos Pj has di-
mension

(
j+n−1
n−1

)
.

〈que:quadratic_form_Wick〉 14. Suppose we are working in L2(Pn), so that Z1, . . . , Zn are iid standard normals.
As usual write Z = (Z1, . . . , Zn)′ for the random column vector consisting of
these normals (recall ′ means transpose). Let A be an n × n matrix of real
numbers.

(a) Show that the quadratic form Z′AZ is unchanged if A is replaced by its
symmetrized version (A+A′)/2.

(b) Thus assume from now on that A = A′; i.e., A is symmetric. Show that
π2(Z′AZ) = Z′AZ − tr(A), where tr(A) is the trace of the matrix A.

(c) More generally, show that if we are working under L2(Qn) where Qn is the
measure of the Nn(0 ,Σ) distribution, then π2(Z′AZ) = Z′AZ − tr(AΣ).

(d) Finally, show the following higher degree version. For an integer k > 2 let
K be a k-tensor, meaning that K : [n]k → R, and for the polynomial of
degree k given by

f =
∑
q∈[n]k

KqZq1 . . . Zqk

show that under L2(Pn)

πk(f) =
∑
q∈[n]k

Kqπk(Zq1 . . . Zqk ) =
∑
q∈[n]k

KqHc(q)(Z)

where c(q) = (c1(q), . . . , cn(q)) and ci(q) is the number of times that i
appears in the k-tuple q, for i ∈ [n] = {1, . . . , n}. Further simplify this for-
mula by showing that every such f can be represented by the symmetrized
version K̃ of the k-tensor as

f =
∑
q∈[n]k

K̃qZq1 . . . Zqk

where K̃ is defined by

K̃q =
c(q)!

k!

∑
σ

Kq.

Here σ is a permutation of {1, . . . , k} and σ(q) = (qσ(1), . . . , qσ(k)), and the
coefficient of the sum is the inverse of a multinomial coefficient. Conclude
that

πk(f) =
∑
q∈[n]k

K̃qHc(q)(Z) =
∑

q∈[n]�k

k!

c(q)!
K̃qHc(q)(Z),

where [n]�k = [n]k/ ∼, and ∼ is the equivalence relation q ∼ q′ iff c(q) =
c(q′); i.e., each element of [n] appears the same number of times in both q
and q′ and therefore one is just a permutation of the other.

15. Prove that the Poincaré inequality on Rn [Proposition 2.4] follows directly from
the one-dimensional case [Corollary 1.6] and induction on the value of n > 1.
This method is sometimes called “tensorization.”

16. Let f(x) := max16i6n xi for all x ∈ Rn, and prove that Proposition 2.9 improves
Proposition 2.8. That is, prove that λ∗ E(‖Df‖2) > max16i6n Var(Xi) for the
present choice of f .
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The following Problems 17–22 depend sequentially on one another. Through-
out these problems, let us choose and fix some λ > 0, and let X have a Poisson
distribution with E(X) = λ. Also, let µ denote the distribution of X; that
is, µ{k} = e−λλk/k! for k ∈ Z+ and µ{k} = 0 otherwise. Finally, define
C0, C1, C2, . . . canonically as the real-valued functions on Z+ that satisfy the
following for all x = 0, 1, 2, . . . and w > −1:

e−wλ(1 + w)x =

∞∑
k=0

wk

k!
Ck(x).

Many authors usually write C
(λ)
k instead of Ck, and refers to Ck as the kth

monic Charlier polynomial with parameter λ.

〈ex:Poisson:1〉 17. Prove that C0(x) = 1 and Ck(0) = (−λ)k for all x, k ∈ Z+.
18. Verify that E[exp{−wλ}(1 +w)X ] = 1 for all w > −1. Conclude from this that

E[Ck(X)] = 0 for all k > 1.
19. Verify that

Ck(x) =

k∧x∑
m=0

(
k

m

)(
x

m

)
m!(−λ)k−m for all x, k ∈ Z+,

and conclude that every Ck is a polynomial of degree at most k on the semigroup
Z+.

20. Prove that the sequence
{√

n!/λn Ck
}∞
k=0

is a complete orthonormal basis for

L2(µ). Conclude that for all f, g ∈ L2(µ),

Cov[f(X) , g(X)] =

∞∑
k=1

λk

k!
〈f , Ck〉L2(µ)〈g , Ck〉L2(µ).

[Hint: Consider the second moment of exp{−wλ}(1 + w)X .]
〈ex:Poisson:n-1〉 21. Define a linear operator A via the following:

(A f)(x) := xf(x− 1)− λf(x) for every f : Z+ → R and x ∈ Z+,

where f(−1) := 0. Show that A is a linear mapping from L2(µ) to L2(µ) and
whose adjoint is D , where (Df)(x) := λ{f(x + 1) − f(x)} . Then proceed to
verify the following, steps which essentially show that the role of the pair (D ,A )
is the “Poisson space” analogue of the role of the pair (D ,A) in the Gauss space:

(a) Prove that Ck+1 = A Ck for all k > 0. [Hint: Start with the derivative of
w 7→ e−wλ(1 + w)x.]

(b) Prove that DCk+1 = (k + 1)Ck for all k ∈ Z+.
(c) Prove that Var[f(X)] 6 λE(|Df)(X)|2) for every f ∈ L2(µ).

〈ex:Poisson:n〉 22. Use Problem 21 and the central limit theorem in order to find another proof of
the Poincaré inequality for P1 [Corollary 1.6].



Chapter 4

Heat Flow

1 The Ornstein–Uhlenbeck Operator

The Laplacian ∆ := D ·D :=
∑n
i=1 ∂

2
i,i is one of the central differential operators in

the analysis of Lebesgue spaces. In a purely analytic sense this is because ∆ is the
dot product of D with the negative of its adjoint. The analogue of the Laplacian in
Gauss space is the generalized differential operator

L := −A ·D := −
n∑
j=1

AjDj (4.1) L

which is called the Ornstein–Uhlenbeck operator on the Gauss space. We can think of
L in the form, (L g)(x) =

∑n
i=1(D2

i,ig)(x)−
∑n
i=1 xi(Dig)(x), or as random variables

as

(L g)(Z) =

n∑
i=1

(D2
i,ig)(Z)− Z · (Dg)(Z).

The preceding makes sense as an identity in L2(Pn) whenever g ∈ D2,2(Pn) and
Zi(Dig)(Z) is in L2(Pn) for every 1 6 i 6 n. And when g ∈ C2(Rn), then

(L g)(x) = (∆g)(x)− x · (∇g)(x),

for every x ∈ Rn.

Definition 1.1. The domain of the definition of L is

Dom[L] :=
{
g ∈ D2,2(Pn) : L g ∈ L2(Pn)

}
=
{
g ∈ D2,2(Pn) : Z · (Dg)(Z) ∈ L2(Pn)

}
.

Since A is the adjoint of D in L2(Pn), it follows immediately that the linear
operator L is self adjoint; that is,

E[f L(g)] = E[L(f)g] for every f, g ∈ Dom[L].

Thus, it is helpful to know more about the domain of the operator L. We will shortly
identify the domain of L in a slightly different way than the definition above shows;
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see (4.3) below. In the mean time, let us identify large, natural, subsets of Dom[L] as
follows: If g ∈ D1,2q(Pn) for some q > 1, then by Hölder’s inequality,

E
(
|Z · (Dg)(Z)|2

)
6
{

E
(
‖Z‖2p

)}1/p {
E
(
‖Dg‖2q

)}1/q
6 Cp‖g‖2/q1,2q,

where Cpp := E(‖Z‖2p) <∞ and p−1 + q−1 = 1. Set α = 2q in order to see that

D
2,α(Pn) ⊂ D2,2(Pn) ∩D1,α(Pn) ⊂ Dom[L] for all α > 2.

It is not difficult to see how L acts on Hermite polynomials. The following hashes
out the details of that computation.

〈lem:L:H〉Lemma 1.2. LHk = −|k|Hk for every k ∈ Zn+, where |k| :=
∑n
i=1 ki.

Proof. We apply (3.5) [p. 40] to see that AjDjHk = kjHk for all k ∈ Zn+ and 1 6 j 6 n.
Sum over j to finish.

In other words, for every k ∈ Zn+, the Hermite polynomial Hk is an eigenfunction
of L, with eigenvalue −|k|. Since

f =
∑
k∈Zn+

E(fHk)

k!
Hk in L2(Pn),

it follows readily from Lemma 1.2, and the fact that L is self adjoint on L2(Pn), that
for every f ∈ D2,2(Pn),

L f = −
∑
k∈Zn+

|k|
k!

E(fHk)Hk in L2(Pn). (4.2) L

Therefore, Theorem 2.1 ensures that

Dom[L] =

f ∈ D2,2(Pn) :
∑
k∈Zn+

|k|2

k!
|E(fHk)|2 <∞

 . (4.3) Dom:L

We now define the heat flow operator Pt on L2(Pn) that corresponds to the
Ornstein-Uhlenbeck operator L. There are many reasons for studying this opera-
tor, but as we shall soon see one particularly nice reason is that, as a family indexed
by time, it “smoothly” interpolates between the random variable and its average. This
allows one to produce non-trivial bounds on the variance of the random variable or on
the covariance between different random variables. This produces, for example, a new
proof of the Poincaré Inequality.

Definition 1.3. The family of heat flow operators is defined, for every t > 0, as

Ptf := P (t)f :=
∑
k∈Zn+

e−|k|t

k!
E(fHk)Hk, (4.4) P(t)

where the identity holds in L2(Pn).

We will now explore some of its properties. But first recall that a sequence
{Xn}∞n=1 of elements of L2(Pn) is said to converge weakly in L2(Pn) to X ∈ L2(Pn)
if limn→∞ E(XnY ) = E(XY ) for every Y ∈ L2(Pn).
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〈pr:heat〉Proposition 1.4. If f ∈ Dom[L], then Ptf ∈ Dom[L] for all t > 0. Moreover,
u(t) := Ptf is the unique L2(Pn)-valued solution to the generalized partial differential
equation,  ∂

∂t
u(t) = L[u(t)], for all t > 0, subject to

u(0) = f,
(4.5) heat

where (∂/∂t)u(t) := limε↓0[u(t+ ε)− u(t)]/ε exists weakly in L2(Pn).

Definition 1.5. The family {Pt}t>0 is called the Ornstein–Uhlenbeck semigroup, and
the linear partial differential equation (4.5) is the heat equation for the Ornstein–
Uhlenbeck operator L.

Proof of Proposition 1.4. For every g ∈ L2(Pn), t > 0, and ε > 0,

E

[
g · u(t+ ε)− u(t)

ε

]
=
∑
k∈Zn+

e−(t+ε)|k| − e−t|k|

k!
E(fHk) E(gHk)

→ −
∑
k∈Zn+

|k|
k!

E(fHk) E(gHk) as ε ↓ 0,

thanks to (4.3) and the dominated convergence theorem. In particular, the approxi-
mate derivative {u(t+ ε)− u(t)}/ε converges weakly in L2(Pn) to

∂

∂t
u(t) =

∑
k∈Zn+

|k|
k!

E(fHk)Hk as ε ↓ 0,

since f ∈ Dom[L]. Next we derive the [generalized] PDE (4.5).
By (4.4),

E [Pt(f)Hk] = e−|k|t E [fHk] for all t > 0 and k ∈ Zn+.

Therefore,∑
k∈Zn+

|k|
k!
|E [Pt(f)Hk]|2 =

∑
k∈Zn+

|k|e−2|k|t

k!
|E [fHk]|2 6

∑
k∈Zn+

|k|
k!
|E [fHk]|2 <∞.

It is possible to show that Ptf ∈ D2,2(Pn) whenever t > 0. In fact, Ptf ∈ D∞,2(Pn)
when t > 0; see Problem 12, page 52. This, the preceding display, and (4.3) together
imply that Ptf ∈ Dom[L] for all t > 0.

It is intuitively clear from (4.2) and (4.4) that ∂Ptf/∂t = LPtf , when u solves
(4.5). But since Ptf and L f are not numbers, rather elements of L2(Pn), let us write
the details to be sure: We know that u(t) ∈ L2(Pn) for every t > 0, and that

E[gu(t)] =
∑
k∈Zn+

e−|k|t

k!
E [fHk] E [gHk] ,

for all t > 0 and g ∈ L2(Pn). It is not hard to see that the time derivative operator
commutes with the sum to yield

d

dt
E[gu(t)] = −

∑
k∈Zn+

|k|e−|k|t

k!
E [fHk] E [gHk]

= E [gL[u(t)]] for all t > 0,
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since E(Hk L[u(t)]) = −|k|(k!)−1 E[u(t)Hk] for all k > 0, by (4.2). Thus, u solves the
PDE (4.5).

If v is another L2(Pn)-valued solution to (4.5), then φ := u− v solves ∂

∂t
φ(t) = L[φ(t)], subject to

φ(0) = 0.

Project φ onto Hk, where k ∈ Zn+ is fixed, in order to find that

d

dt
E [φ(t)Hk] = −|k|E [φ(t)Hk] ,

by (4.2). Since E[φ(0)Hk] = 0, it follows that E[φ(t)Hk] = 0 for all t > 0 and k ∈ Zn+.
The completeness of the Hermite polynomials [Theorem 2.1] ensures that φ(t) = 0 for
all t > 0. This implies the remaining uniqueness portion of the proposition.

〈OU:Semigrp〉Proposition 1.6. The family {Pt}t>0 is a symmetric Markov semigroup on L2(Pn).
That is:

1. Each Pt is a linear operator from L2(Pn) to L2(Pn), and Pt1 = 1;
2. P0 := the identity map. That is, P0f = f for all f ∈ L2(Pn);
3. Each Pt is self-adjoint on L2(Pn). That is,

E[gPt(f)] = E[Pt(g)f ] for all f, g ∈ L2(Pn) and t > 0;

4. Each Pt : L2(Pn)→ L2(Pn) is non expansive with constant one. That is,

E(|Ptf |2) 6 E(|f |2) for all f ∈ L2(Pn) and t > 0;

5. {Pt}>0 is a semigroup of linear operators. That is,

Pt+s = PtPs = PsPt for all s, t > 0.

Finally, Pn is invariant for {Pt}t>0. That is,

E [Ptf ] =

∫
Ptf dPn =

∫
f dPn = E(f) = lim

s↑∞
Psf a.s. and in L2(Pn).

Proof. Parts (1) and (2) are immediate consequences of the definition (4.4) of Pt. [For
example, Pt1 = 1 because H0 = 1.]

Part (3) follows since

E [gPtf ] =
∑
k∈Zn+

e−|k|t

k!
E [fHk] E [gHk] ,

which is clearly a symmetric form in (f , g). Part (4) is a consequence of the following
calculation.

E
(
|Ptf |2

)
=
∑
k∈Zn+

e−2|k|t

k!
|E [fHk]|2 6

∑
k∈Zn+

1

k!
|E [fHk]|2 = E

(
|f |2

)
.

For part (5) we observe that E[PsfHk] = e−|k|s E[fHk] for all real numbers s > 0 and
integral vectors k ∈ Zn+. Therefore,

Pt [Psf ] =
∑
k∈Zn+

e−|k|t

k!
E [Ps(f)Hk]Hk = Pt+sf.
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Since Pt+s = Ps+t, this shows also that PsPt = PtPs, and verifies (5).
In order to finish the proof we need to verify the invariance of Pn. First of all

note that 1(x) := 1 is in L2(Pn). Therefore, E(Ptf) = E[Pt(1)f ] = E(f) since f is self
adjoint on L2(Pn). Now we need to prove the convergence of Psf as s→∞. By (4.4),

Ptf =
∑
k∈Zn+

e−|k|t

k!
E [fHk]Hk a.s., (4.6) P(t)f:H

where the convergence holds in L2(Pn) (for each fixed t).
The Cauchy–Schwarz inequality yields |〈f ,Hk〉L2(Pn)| 6 ‖f‖L2(Pn), valid for all

k ∈ Zn+. Therefore, the identity ‖Hk‖L2(Pn) =
√
k! and the Minkowski inequality

together imply that∥∥∥∥∥∥sup
t>0

∑
k∈Zn+

e−|k|t

k!
|E [fHk]Hk|

∥∥∥∥∥∥
L2(Pn)

6 ‖f‖L2(Pn)

∑
k∈Zn+

1√
k!
<∞.

In particular, the sum in (4.6) also converges absolutely, uniformly in t > 0, with
Pn-probability one. Consequently,

lim
t↑∞

Ptf =
∑
k∈Zn+

lim
t→∞

e−|k|t

k!
E [fHk]Hk = E [fH0] ,

almost surely. The final quantity is equal to E(f), as desired.

2 Mehler’s Formula

The heat equation (4.5) for the OU operator L is just the initial-value problem, ∂

∂t
u(t , x) = (∆u)(t , x)− x · (∇u)(t , x) [t > 0, x ∈ Rn],

u(0 , x) = f(x) [x ∈ Rn],

but written out in an infinite-dimensional manner. As such, it can be solved by other,
more elementary, methods as well. We have taken this route in order to introduce
the OU semigroup {Pt}t>0 and the associated OU operator L. These objects will
play a central role in Gaussian analysis, more so than does the heat equation for the
Laplacian. Still, it might be good to know that every L2(Pn)-valued solution is also a
classical solution when, for example, f is in C2

0 (Pn). Among many other things, this
fact follows immediately from the following interesting formula and the dominated
convergence theorem.

〈Mehler〉Theorem 2.1 (Mehler’s Formula). If f ∈ L2(Pn) and t > 0, then

(Ptf)(x) = E
[
f
(

e−tx+
√

1− e−2t Z
)]
,

for almost every x ∈ Rn.

?〈rem:Mehler〉?Remark 2.2. One of the many by-products of Mehler’s formula is the fact that each
mapping f 7→ Ptf is a Bochner integral; in particular, every Pt satisfies the “Cauchy–
Schwarz inequality,” which is stronger than the non-expansiveness of Pt:

|Ptf |2 6 Pt(f
2) a.s. for all t > 0 and f ∈ L2(Pn).
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Proof of Mehler’s Formula. We prove the result for n = 1 since the notation is simpler
in that case. The general case is proved by extending the argument directly to higher
dimensions.

By density it suffices to prove the result for all f ∈ C∞0 (P1). Define for such
functions f and t > 0,

(Ttf)(x) := E
[
f
(

e−tx+
√

1− e−2t Z
)]
,

for every x ∈ R. Both sides are C∞ functions in either variable t and x [dominated
convergence]. Our goal is to prove that Ttf = Ptf for all t > 0. This will complete
the proof. Note that

(Ttf)(x) =

∫ ∞
−∞

f
(

e−tx+
√

1− e−2t z
)
γ1(z) dz

=

∫ ∞
−∞

f(y)γ1

(
y − e−tx√
1− e−2t

)
dy.

(4.7) T_tf

Since f ∈ C∞0 (P1), we can differentiate under the integral any number of times we
want in order to see that ∂(Ttf)/∂t = L(Ttf), after a few lines of calculus applied to
the function γ1. Since T0f = f , the uniqueness portion of Proposition 1.4 implies that
Ttf = Ptf for all t > 0.

3 A Covariance Formula

One of the highlights of our analysis so far is that it leads to an explicit formula for
Cov(f , g) for a large number of nice functions f and g. That formula will take a quite
different form than the one in Corollary 2.3 (p. 43), and will have novel uses as a
result. Before we discuss that formula, let us observe the following.

〈lem:DP:PD〉Lemma 3.1. For all t > 0 and 1 6 j 6 n,

DjPt = e−tPtDj and AjPt = etPtAj .

Consequently, L(Ptf) = Pt(L f), also.

Proof. First consider the case that n = 1. In that case,

Ptf =

∞∑
k=0

e−kt

k!
E(fHk)Hk,

for all f ∈ L2(P1). Therefore, whenever f ∈ D1,2(P1),

DPtf =

∞∑
k=0

e−kt

k!
E(fHk)DHk =

∞∑
k=0

ke−kt

k!
E(fHk)Hk−1

= e−t
∞∑
k=0

e−kt

k!
E [fHk+1]Hk,

(4.8) lala1

by (3.5) [page 40]. Similarly, E[D(f)Hk] = E[fA(Hk)] = E[fHk+1] for all k > 0.
Therefore,

PtDf =

∞∑
k=0

e−kt

k!
E [fHk+1]Hk.
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Match this expression with (4.8) in order to see that DPt = exp(−t)PtD when n = 1.
A similar argument shows that APt = exp(t)PtA in this case as well.

When n > 1 and f = f1 ⊗ · · · ⊗ fn for f1, . . . , fn ∈ D1,2(P1) (i.e. f(x1, . . . , xn) =
f1(x1) . . . fn(xn)), we can check using obvious notation that

(DjPtf) (x) =
∏

16q6n
q 6=j

(
P

(q)
t fq

)
(xq)× (DjP

(j)
t fj)(xj) = e−t(PtDjf)(x),

by the one-dimensional part of the proof that we just developed. Since every f ∈
D1,2(Pn) can be approximated arbitrarily well by functions of the form f1 ⊗ · · · ⊗ fn,
where fj ∈ D1,2(P1), it follows that DjPt = exp(−t)PtDj on D1,2(Pn).

Similarly, one proves that AjPt = exp(t)PtAj in general.
To finish note that

LPt = −
n∑
j=1

AjDjPt = −e−t
n∑
j=1

AjPtDj =

n∑
j=1

PtAjDj = LPt.

This completes the proof.

Lemma 3.1 has the following important corollary.

〈pr:Cov〉Proposition 3.2. For every f, g ∈ D1,2(Pn),

Cov(f , g) =

∫ ∞
0

e−t E [(Df) · (PtDg)] dt,

where PtDg = (PtD1g , . . . , PtDng).

Proof. Recall from Proposition 1.6 that Ptg → E[g] in L2(Pn) as t→∞, and P0g = g.
Therefore,

g(x)− E[g] = −
∫ ∞

0

∂

∂t
(Ptg)(x) dt,

where the identity is understood to hold in L2(Pn), and the integral converges in

L2(Pn) as well. That is,
∫∞

0
(∂/∂t)(Ptg) dx = limN→∞

∫ N
0

(∂/∂t)(Ptg) dx in L2(Pn).
Therefore, by Fubini’s theorem,

Cov(f , g) = E [f(Z)(g(Z)− E[g])] = −
∫ ∞

0

E

[
f(Z)

∂

∂t
(Ptg)(Z)

]
dt

= −
∫ ∞

0

E [f(Z)(LPtg)(Z)] dt,

since Ptg solves the heat equation for the operator L. Next we may observe that, since
L = −A ·D and Aj is the adjoint to Dj ,

E [f(Z)(LPtg)(Z)] = −
n∑
j=1

E [(Djf)(Z)(DjPtg)(Z)]

= −e−t
n∑
j=1

E [(Djf)(Z)(PtDjg)(Z)] .

We have appealed to Lemma 3.1 in the second line. This concludes the proof.
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Let us conclude with a quick application of Proposition 3.2.

A Second Proof of the Poincaré Inequality. For every f ∈ D1,2(Pn) and t > 0, the
Cauchy-Schwarz inequality implies that

|E [(Df) · (PtDf)]| 6
∣∣E (‖Df‖2)E

(
‖PtDf‖2

)]1/2
,

and the right-hand side is at most E(‖Df‖2) since Pt is non-expanding on L2(Pn)
[Proposition 1.6]. The Poincaré inequality now follows from Proposition 3.2.

4 The Resolvent of the OU Semigroup

The classical theory of linear semigroups tells us that it is frequently better to study
a semigroup of linear operators via its “resolvent.” In the present context, this leads
us to the following.

Definition 4.1. The resolvent of the Ornstein–Uhlenbeck [or OU] semigroup {Pt}t>0

is the family {Rλ}λ>0 of linear operators defined via

(Rλf)(x) :=

∫ ∞
0

e−λt(Ptf)(x) dt, (4.9) R

for all bounded and measurable functions f : Rn → R and all λ > 0.

Informally speaking, R(λ) :=
∫∞

0
exp(−λt)P (t) dt defines the Laplace transform of

the semigroup {P (t)}t>0, and knowing R should in principle be the same as knowing
P . We will see soon that this is the case. But first let us define the resolvent not
pointwise, as we just did, but as an element of the Hilbert space L2(Pn).

According to Mehler’s formula [Theorem 2.1], if f is bounded and measurable, then
Ptf is also; in fact, supx |(Ptf)(x)| 6 supx |f(x)|, whence the integral in (4.9) converges
absolutely, uniformly in x ∈ Rn. One can extend the domain of the definition of Rλ
further by standard means. In fact, because Pt is non expensive on L2(Pn) [Proposition
1.6],

E
(
|Ptf |2

)
6 E(f2), whence E

(
|Rλf |2

)
6 λ−2 E(f2),

for all bounded functions f ∈ L2(Pn) and every t, λ > 0. If f ∈ L2(Pn) then we can
find bounded functions f1, f2, . . . ∈ L2(Pn) such that E(|f` − f |2) 6 2−` for all ` > 1,
and hence the preceding inequality shows that

E
(
|Rλfm −Rλf`|2

)
6 λ−2 E

(
|fm − f`|2

)
6

2−` + 2−m

λ2
,

for all m, ` > 1. Therefore, ` 7→ Rλf` is a Cauchy sequence in L2(Pn) and hence
Rλf := lim`→∞Rλf` is a well-defined limit in L2(Pn). Since every Pt is non expansive
on L2(Pn), it follows similarly that (4.9) holds a.s. for all f ∈ L2(Pn) and λ > 0. Let
us pause and record these observations before we go further.

?〈pr:R〉?Proposition 4.2. For every λ > 0, Rλ is a bounded continuous linear map from
L2(Pn) to L2(Pn), with operator norm 6 λ−2. Finally, (4.9) holds a.s. for all f ∈
L2(Pn) and λ > 0, and

Rλf =
∑
k∈Zn+

E(fHk)

k!(λ+ |k|) Hk a.s., (4.10) R:H

where the sum converges in L2(Pn).
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Proof. The only unproved part of the assertion is the representation (4.10) of Rλf in
terms of Hermite polynomials.

If f ∈ L2(Pn), then Rλf ∈ L2(Pn) for all λ > 0, and Theorem 2.1 ensures that

Rλf =
∑
k∈Zn+

1

k!
E [(Rλf)Hk]Hk.

By Fubini’s theorem, (4.9), and (4.4),

E [(Rλf)Hk] =

∫ ∞
0

e−λt E [(Ptf)Hk] dt =

∫ ∞
0

e−(|k|+λ)t E(fHk)dt =
E(fHk)

λ+ |k| ,

for all k ∈ Zn+, t > 0, and λ > 0. Multiply the preceding by Hk/k! and sum over
k ∈ Zn+ to finish.

?〈pr:RE〉?Proposition 4.3 (The Resolvent Equation). For all f ∈ L2(Pn), and for every dis-
tinct pair α, λ > 0,

RλRαf = RαRλf = −Rλf −Rαf
λ− α a.s. (4.11) RE

Proof. We apply the Fubini theorem and (4.9) a few times back-to-back as follows:
Almost surely,

RλRαf =

∫ ∞
0

e−λtPt(Rαf) dt =

∫ ∞
0

e−λtPt

(∫ ∞
0

e−αs Psf ds

)
dt

=

∫ ∞
0

e−λt dt

∫ ∞
0

e−αs ds Pt+sf =

∫ ∞
0

e−(λ−α)t dt

∫ ∞
t

e−αrdr Prf

=

∫ ∞
0

e−αrPrf dr

∫ r

0

e−(λ−α)t dt =

∫ ∞
0

e−αrPr(f)

(
1− e−(λ−α)r

λ− α

)
dr.

Reorganize the integral to finish.

Eq. (4.11) is called the resolvent equation, and readily implies the following.

〈co:RE〉Corollary 4.4. For every λ > 0, Rλ maps L2(Pn) bijectively onto its range

Rλ
(
L2(Pn)

)
:=
{
Rλf : f ∈ L2(Pn)

}
.

The preceding range does not depend on λ > 0. Moreover, the range is dense in
L2(Pn); in fact, limλ→∞ λRλf = f in L2(Pn) for every f ∈ L2(Pn).

Proof. First, we observe that x 7→ (Rλf)(x) is a.s. equal to a continuous function for
all f ∈ L2(Pn) and λ > 0. This follows from Mehler’s formula [Proposition 2.1, page
59] and the dominated convergence theorem. Therefore, we can always redefine it so
that Rλf is continuous. In particular, if Rλf = 0 a.s. for some λ > 0, then Rλf ≡ 0
and hence Rαf ≡ 0 for all α > 0 thanks to the resolvent equation. The uniqueness
theorem for Laplace transforms now shows that if Rλf = 0 a.s. for some λ > 0 then
f = 0 a.s. By linearity we find that if Rλf = Rλg a.s. for some f, g ∈ L2(Pn) and
λ > 0, then f = g a.s. Consequently, Rλ is a one-to-one and onto map from L2(Pn)
to its range Rλ(L2(Pn)).
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Next, let us suppose that g is in the range of Rα; that is, g = Rαf for some
f ∈ L2(Pn). By the resolvent equation,

Rλg = −Rλf − g
λ− α ⇒ g = (λ− α)Rλg −Rλf = Rλh,

for h = (λ− α)g − f . This shows that g is in the range of Rλ, whence Rα(L2(Pn)) ⊂
Rλ(L2(Pn)). Reverse the roles of α and λ to see that Rλ(L2(Pn)) does not depend on
λ > 0.

Finally, we verify the density assertion. Let f ∈ L2(Pn), and recall [Proposition
1.6, page 58] that Ptf → f in L2(Pn) as t ↓ 0. By this and the dominated convergence
theorem,

λRλf = λ

∫ ∞
0

e−λtPtf dt =

∫ ∞
0

e−sPs/λf ds→ f in L2(Pn) as λ ↑ ∞.

This implies that the range of the resolvent in dense in L2(Pn) because it proves that
for all ε > 0 there exists an elements of the range

R1(L2(Pn)) =
⋃
α>0

Rα(L2(Pn)),

namely λRλf = Rλ(λf) for a sufficiently large λ, that is close to within ε of f in the
L2(Pn) norm.

Corollary 4.4 tells us that we can in principle compute the entire semigroup {Pt}t>0

from the operator Rλ for a given λ > 0. And of course the converse is also true by
(4.9). From now on we will consider λ = 1 only.

Definition 4.5. If f ∈ L2(Pn) then R1f is called the one-potential of f . The linear
operator R1 is also known as the [one-] potential operator.

〈lem:R〉Lemma 4.6. R1 is a non-expansive, self-adjoint linear operator on L2(Pn).

Proof. Linearity is obvious. We need to prove that for all f, g ∈ L2(Pn):
1. E(|R1f |2) 6 E(f2); and
2. E[g(R1f)] = E[(R1g)f ].

Both of these properties follow from the corresponding properties of the semigroup
{Pt}t>0, and from (4.9).

The potential operator arises naturally in a number of ways. For example, Propo-
sition 3.2 can be recast in terms of the potential operator as follows:

〈th:Cov:1〉Theorem 4.7 (Houdré, Pérez-Abreu, and Surgailis, XXX). For every f, g ∈ D1,2(Pn),

Cov(f , g) = E [〈Df ,Dg〉R1 ] ,

where
〈p , q〉R1 := p · (R1q) for all p, q ∈ L2(Pn × χn), (4.12) energy

and R1q = (R1q1 , . . . , R1qn) =
∫∞

0
exp(−t)(Ptq) dt.

The bilinear symmetric form (f , g) 7→ E[〈Df ,Dg〉R1 ] is known as a Dirichlet form,
and the integral E[〈Df ,Dg〉R1 ] is called the Dirichlet energy between f and g. Thus,
Theorem 4.7 is another way to state that the covariance between the random variables
f(Z) and g(Z) is the Dirichlet energy between the functions f and g.

Let us mention another property of the potential operator.
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〈pr:R1:L〉Proposition 4.8 (Hille, XXX and Yoshida, XXX). Dom[L] = R1(L2(Pn))∩D2,2(Pn)
and

L f = f −R−1
1 f a.s. for all f ∈ Dom[L].

Let I denote the identity operator on L2(Pn); that is, I(f) := f for all f ∈ L2(Pn).
Then, Proposition 4.8 essentially says that L = I−R−1

1 and hence also R1 = (I−L)−1.

Proof. First, choose and fix an arbitrary f ∈ R1(L2(Pn)). Corollary 4.4 ensures
that there exists a unique g ∈ L2(Pn) such that f = R1g, equivalently g = R−1

1 f .
Therefore, by (4.10) and the orthogonality of Hermite polynomials,

E[fHk] = E [(R1g)Hk] =
E(gHk)

1 + |k| for all k ∈ Zn.

It follows that

R−1
1 f = g =

∑
k∈Zn+

E[gHk]

k!
Hk =

∑
k∈Zn+

1 + |k|
k!

E[fHk]Hk. (4.13) R11

Conversely, the preceding infinite sum defines an element of L2(Pn) as long as it
converges in L2(Pn), which can happen if and only if

∑
k∈Zn+

|k|2|E(fHk)|2/k! < ∞.

We can summarize these remarks as follows:

R1

(
L2(Pn)

)
=

f ∈ L2(Pn) :
∑
k∈Zn+

|k|2

k!
|E(fHk)|2 <∞

 .

Therefore, (4.3) implies the first assertion of the theorem. Namely, that R1(L2(Pn))∩
D2,2(Pn) = Dom[L].

The identity L f = f −R−1
1 f is a consequence of (4.2) and (4.13).
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Problems

1. For every a ∈ Rn consider the function fa ∈ L2(Pn) defined by

fa(x) = exp

(
a · x− ‖a‖

2

2

)
for all x ∈ Rn.

Verify that Ptfa = fa exp(−t), and conclude from this property that Pt is non-
expansive on fa and that Ptfa converges to E[fa] as t→∞ both almost surely
and in L2(Pn).

2. Do the calculations to complete the proof of Theorem 2.1.
〈ex:p〉 3. For all x, y ∈ Rn and t, λ > 0 define

p(t , x , y) := γn

(
y − e−tx√
1− e−2t

)
and rλ(x , y) :=

∫ 1

0

r1−λγn

(
y − rx√
1− r2

)
dr.

Prove that

(Ptf)(x) =

∫
Rn
p(t , x , y)f(y) dy and (Rλf)(x) =

∫
Rn
rλ(x , y)f(y) dy,

for all t, λ > 0, x ∈ Rn, and measurable f : Rn → R+. [Hint: Consult
(4.7) on page 60.] Prove also that p is the fundamental solution to the heat
operator H := (∂/∂t) − L. That is, prove that for every x ∈ Rn, the function
(t , y) 7→ p(t , x , y) satisfies the linear partial differential equation,

∂p(t , x , y)

∂t
=

n∑
i=1

∂2p(t , x , y)

∂y2
i

−
n∑
i=1

yi
∂p(t , x , y)

∂yi

on (0 ,∞) × Rn × Rn, subject to the following initial condition: As t ↓ 0,∫
Rn
p(t , x , y)f(y) dy → f(x) for all smooth, bounded functions f : Rn → R.

4. Establish the following properties of the Ornstein–Uhlenbeck semigroup:
(a) If Psf is bounded and continuous for some s > 0, then so is Pt+sf for

every t > 0.
(b) If f : Rn → R is bounded and measurable, then Ptf is bounded and

continuous for every t > 0. [Hint: Consult Problem 3.]
(c) If f : Rn → R is bounded and measurable, then (Pt+sf)(x) = [Pt(Psf)](x)

for every s, t > 0 and x ∈ Rn.
5. Prove that if f ∈ C∞0 (Pn), then

(R−1
1 f)(x) = f(x) + x · (∇f)(x)− (∆f)(x) for all x ∈ Rn.

6. Extend Lemma 4.6 by showing that, for every λ > 0, the linear operator λRλ is
non-expansive, and self-adjoint on L2(Pn).

7. Suppose f : Rn → R+ is measurable and bounded.
(a) Prove that Rλf is bounded and continuous for every λ > 0.
(b) A function h : Rn → R+ is said to be λ-excessive for some λ > 0 if

exp{−λt}(Pth)(x) ↑ h(x) as t ↓ 0 for every x ∈ Rn. Prove that Rλf is
λ-excessive for every λ > 0.

(c) Verify that non-negative, bounded elements of Dom[L] are λ-excessive for
every λ > 0.

(d) Suppose f, g ∈ Dom[L] satisfy f > g almost everywhere on Rn. Prove that
f > g pointwise.
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8. Suppose g ∈ D1,2(Pn).
(a) Prove that E[Zjg(Z)] = E[Djg] for every g ∈ D1,2(Pn) and i = 1, . . . , n.
(b) Use the above in order to prove that E[Xig(X)] =

∑n
j=1 Γi,j E[Djg] when-

ever X is distributed as Nn(0 ,Γ) for a positive-definite matrix Γ.
(c) Extend the preceding to the case that Γ is an arbitrary covariance matrix.
(d) Use the preceding parts, together with induction, in order to give an al-

ternative proof of the Isserlis formula (page 20).
9. (This problem requires some background in Itô calculus.)

Here is a way of proving Mehler’s formula [Proposition 2.1, page 59] using sto-
chastic calculus: Let Xt be an Itô diffusion in Rn which satisfies the stochastic
differential equation,

dXt = −Xt dt+
√

2 dBt subject to X0 = x,

where {Bt}t>0 denotes a standard, n-dimensional Brownian motion. The pro-
cess {Xt}t>0 is called an Ornstein–Uhlenbeck process on Rn.

(a) Use Itô’s formula to compute d(etXt). Derive an integral equation for Xt,
and then show that at each time t, the random vector Xt has a normal
distribution with mean e−tx and covariance matrix

√
1− e−2t times the

n× n identity matrix. Conclude from this that

E
[
f
(
xe−t +

√
1− e−2t Z

)]
= Ex [f(Xt)] ,

where the subscript x, under the second expectation Ex, is added there to
remind us that X0 = x.

(b) Use Itô’s formula and Lemma 1.2 to show that Ex[H(Xt)] = H(x)e−|k|t.

(c) Use the Hermite expansion of f [Corollary 2.2, p. 43] and part (b) in order
to conclude that

Ex [f(Xt)] =
∑
k∈Zn+

E[fHk]

k!
e−|k|tHk(x) = (Ptf)(x).

Deduce Mehler’s formula from this and part (a).
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Chapter 5

Integration by Parts and Its
Applications

The following is an immediate consequence of Theorem 4.7 [page 64] and the chain
rule [Lemma 1.7, p. 31].

〈th:IbP〉Theorem 0.1. For every f ∈ D1,2(Pn) and ϕ ∈ D1,2(P1),

Cov(f , ϕ(f)) = E [(Dϕ)(f)× 〈Df ,Df〉R1 ] ,

where 〈 · , ·〉R1 was defined in (4.12), page 64.

Theorems 4.7 and its corollary Theorem 0.1 are integration by parts formula on
Gauss space. In order to see this claim more clearly, suppose for example that ϕ ∈
D1,2(P1) and X := f(Z) where f ∈ C1

0 (Pn). Then Theorem 0.1 reduces to the
assertion that

E [Xϕ(X)] = E(X) E[ϕ(X)] + E
[
ϕ′(X)〈DX ,DX〉R1

]
, (5.1) eq:IbP

where we are writing ϕ′(X) in place of the more appropriate notation, (Dϕ)(X) for the
sake of clarity.1 Thus, for example, we find that the “Dirichlet form,” E[〈DX ,DX〉R1 ]
is simply equal to the variance of X ∈ D1,2(Pn). In this chapter we explore some of
the deeper consequences of these integration by parts results.

1 Concentration of Measure

Concentration of measure is an important and well-studied phenomenon that has broad
applications in measure theory, combinatorics, probability., theoretical computer sci-
ence, etc. In this book we only study a small but important subclass of the theory:
The concentration phenomenon for Gaussian measures. The results of this section are
stated in a finite-dimensional setting, although they are typically applied in very high
– occasionally infinite – dimensions.

1To be sure, the “D” in DX refers to the Malliavin derivative with respect to Pn, where
ϕ′ = Dϕ refers to the Malliavin derivative with respect to P1.
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As a first application of Theorem 0.1 we deduce the concentration of measure
property of Pn that was alluded to in the first chapter. The claim is simply that with
very high probability every Lipschitz-continuous function is very close to its mean,
regardless of the value of the ambient dimension n. One can obtain a crude version of
this assertion by appealing to the Poincaré inequality of Nash [Corollary 2.5, page 44]
and Chebyshev’s inequality:

P {|f − E(f)| > t} 6 [Lip(f)]2

t2
for all t > 0.

This bound is sometimes good enough. But the following is a much more precise
estimate that has wider utility as well.

〈th:CoM〉Theorem 1.1. For every Lipschitz-continuous function f : Rn → R,

Pn {|f − E f | > t} 6 2 exp

(
− t2

2[Lip(f)]2

)
for all t > 0.

Proof (Houdé et al XXX). Without loss of generality, we may assume that E(f) = 0
and Lip(f) = 1; else, we replace f by [f − E(f)]/Lip(f) everywhere below.

According to Example 1.6 [page 30], f ∈ D1,2(Pn) and ‖Df‖ 6 1 a.s. Also,
Mehler’s formula implies that ‖PtDf‖ 6 1 for all t > 0, and hence ‖R1Df‖ 6 1 a.s.
[Theorem 2.1, page 59]. Consequently,

〈Df ,Df〉R1 6 ‖Df‖ ‖R1Df‖ 6 1 a.s.

Choose and fix some number λ > 0. We apply Theorem 0.1 with ϕ(x) := exp(λx) to
see that

E
[
feλf

]
= λE

[
eλf 〈Df ,Df〉R1

]
6 λE

[
eλf
]
.

In other words, the function M(λ) := E[exp(λf)] [λ > 0] satisfies the differential
inequality M ′(λ) 6 λM(λ) for all λ > 0. It is easy to solve this differential inequality:
Divide both sides by M(λ) and integrate. Since M(0) = 1 it follows that

E eλf 6 eλ
2/2 for all λ > 0.

By Chebyshev’s inequality, if t > 0 then

Pn{f > t} = P
{

eλf > eλt
}
6 exp

(
−λt+

λ2

2

)
.

Optimize this [λ := t] to find that Pn{f > t} 6 e−t
2/2 for every t > 0. Finally, apply

the same inequality to the function −f in place of f to deduce the theorem.

2 The Borell, Sudakov–Tsirelson Inequality

Theorem 1.1 itself has a number of noteworthy consequences. The next result is a
particularly useful consequence, as well as a central example of a broader theorem
that is generally known as Borell’s inequality, and was discovered independently and
around the same time by Borell XXX, and Sudakov and Tsirelson XXX.
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〈th:Borell〉Theorem 2.1. Suppose X := (X1 , . . . , Xn) has a Nn(0 , Q) distribution, where Q is
positive semidefinite, and let Mn denote either max16i6nXi or max16i6n |Xi|. Then
for all t > 0,

P {|Mn − E(Mn)| > t} 6 2 exp

(
− t2

2σ2

)
,

provided that σ2 := max16i6n Var(Xi) > 0.

Remark 2.2. Frequently, σ2 � E(Mn) when n is large. When this happens, Theorem
2.1 tells us that Mn ≈ E(Mn) with probability very close to one. One way to see this
is to integrate by parts:

Var(Mn) = 2

∫ ∞
0

tP {|Mn − E(Mn)| > t} dt 6 4

∫ ∞
0

te−t
2/(2σ2) dt = 4σ2.

[The constant 4 can be removed; see Proposition 2.9 on page 45.] For a more concrete
illustration, consider the case that X1, . . . , Xn are i.i.d. standard normal random vari-
ables. In this case, σ2 = 1, whereas E(Mn) =

√
2 logn + o(1) as n → ∞ thanks to

Proposition 1.3, page 7. Thus, Borell’s inequality yields that

P
{
|Mn − E(Mn)| >

√
2ε logn

}
6 2n−ε,

for all n > 1 and ε > 0. We first pass to a subsequence [n ↔ 2n] and then use
monotonicity and the Borel–Cantelli lemma, in a standard way, in order to deduce
that, in the i.i.d. case,

lim
n→∞

Mn

E(Mn)
= lim
n→∞

Mn√
2 logn

= 1 a.s., (5.2) limsup

provided that we construct all of the Xi’s on the same probability space. This is of
course an elementary statement. It is included here to highlight the fact that, once
we know E(Mn), we frequently need to know very little else in order to analyze the
behavior of Mn.

Proof of Theorem 2.1. We can write Q = S2 where S is a symmetric n × n matrix.
Consider the functions

f(x) := max
16i6n

(Sx)i and g(x) := max
16i6n

|(Sx)i| [x ∈ Rn].

The proof of [Proposition 2.9, p. 45] shows that f and g are both Lipschitz continuous
with Lip(f),Lip(g) 6 σ2 (since, for example, ‖(Df)(x)‖2 6 σ2 a.s.). Thus, Theorem
1.1 implies that

Pn {|f(Z)− E[f(Z)]| > t} 6 2 exp

(
− t2

2σ2

)
[t > 0],

and the very same holds also with g(Z)−E[g(Z)] in place of f(Z)−E[f(Z)]. This proves
the result since SZ has the same distribution as X, whence f(Z) = max16i6n[SZ]i
has the same distribution as max16i6nXi, and likewise g(Z) has the same distribution
as max16i6n |Xi|.
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3 The S-K Model of Spin Glass

Let us pause and discuss an elegant use of these concentration inequalities, due to
Talagrand XXX, to earlier physical predictions of a model in statistical mechanics
XXX. In order to see how the following fits into the general scheme of science, we
briefly mention the model that we are about to study.

Before we start let me state, once and for all, that we temporarily suspend the
notation Pn, En, etc. that was used to denote the various objects that act on the
Gauss space. In this section we work with the standard notation of probability theory,
and on a suitable abstract probability space (Ω ,F ,P).

Imagine n particles charged with unit charges. If the charge of particle i is σi ∈
{−1 , 1}, then a simplest model for the total [magnetization] energy of the system is
given by the so-called Hamiltonian,

Hn(σ ;x) :=
1√
n

∑
16i<j6n

σiσjxi,j ,

for every n > 2, x ∈ Rn ×Rn, and σ ∈ {−1 , 1}n. Since σi ∈ {−1 , 1}, people refer to
σi as the spin of particle i. Moreover, xi,j is a real number that gauges the strength of
the interaction between particle i and particle j; this is an input into the model that
we control. And 1/

√
n is just a normalization factor.2

A standard model of statistical mechanics for the probability distribution of the
spins is the following: For every possible set of spins (σ1, . . . , σn) ∈ {−1 , 1}n, the

probability P
(x)
n (σ1 , . . . , σn) that the respective particle spins are (σ1 , . . . , σn) is pro-

portional to exp{βHn(σ ;x)}. That is,

P(x)
n (σ1 , . . . , σn) :=

eβHn(σ;x)

Πn(x)
,

where β ∈ R is a parameter that is called inverse temperature, and Πn(x) is there to
make sure that the probabilities add up to one. That is,

Πn(x) :=
∑

σ∈{−1,1}n
eβHn(σ;x). (5.3) Pi_n(Z)

We may, and will, think of Πn as a function of the interactions {xi,j}, in which case Πn

is called the partition function of the particle system. One can think of the partition
function combinatorially—as above—or probabilistically as

Πn(x) = 2n E
[
eβHn(S;x)

]
,

where S := (S1 , . . . , Sn) for a system of i.i.d. random variables S1, . . . , Sn with P{S1 =
1} = P{S1 = −1} = 1/2.

Intuitively speaking, a given set {σ1 , . . . , σn) of possible spins has a good chance of
being realized iff Hn(σ ;x) is positive and large. And that ought to happen iff σi and σj
have the same sign for most pairs (i , j) of particles that have positive interactions (i.e.
xi,j > 0), and opposite sign for most pairs with negative interactions (i.e. xi,j < 0).
The parameter β ensures the effect of the interaction on this probability: If |β| is very
small [high temperature], then the interactions matter less; and when |β| is very large

2In physical terms, we are assuming that there is no external field, and that particles only
have pairwise interactions; all higher-order interactions are negligible and hence suppressed.



3. THE S-K MODEL 73

[low temperature], then the interactions play an extremely important role. In all cases,
the spins are highly correlated, except when β = 0. In the case that β = 0 [infinite
temperature], the spins are i.i.d. [no interaction] and distributed as S1, . . . , Sn.

Suppose that the partition function behaves as exp{zβn(1+o(1))}, when n is large,
where zβ is a number in (0 ,∞). Then the number zβ is called the free energy of the
system. A general rule of thumb is that if the free energy exists then its value describes
the amount of energy in the system that can be converted to work at temperature 1/β.
In such a case, the system is called “extensive.” In any case, if the free energy exists
then its value is

zβ := lim
n→∞

1

n
log Πn(x).

It is possible to prove a carefully-stated version of the ansatz that “free energy
exists for almost all choices of interaction terms {xi,j}”; see Guerra XXX. This re-
quires a relatively-simply, standard “subadditivity argument,” though the details of
the problem escaped many attempts for a long time until Guerra’s work was published.
And there are many conjectures about the value of free energy in various cases where
|β| > 1.

A remarkable theorem of Talagrand XXX implies that if β ∈ (−1 , 1), then

zβ = log(2) +
β2

4
,

“for almost all interaction choices.” One way to make this precise is to consider
the case that the xi,j ’s are replaced by Z := (Zi,j)16i<j6n, a system of n(n − 1)/2
i.i.d. standard normal random variables. We can relabel the Zi,j ’s, so that they are
labeled as a random 2n-vector rather than the superdiagonal elements of a random
n×n symmetric matrix. In this way we can apply the theory of Gauss space, and the
following is a way to state Talagrand’s theorem. The resulting spin glass model behind
this is due to Sherrington and Kirkpatrick XXX. The following discussion follows the
exposition of Ledoux XXX.

〈th:SP〉Theorem 3.1 (Talagrand, XXX). For every β ∈ (−1 , 1) there exists a finite constant
Lβ such that for all ε > 0 and n > 1 + (2Lβ/ε)

2,

Pn

{∣∣∣∣ log Πn(Z)

n− 1
−
(

log 2 +
β2

4

)∣∣∣∣ 6 ε

}
> 1− 2 exp

(
−ε

2(n− 1)

4β2

)
.

This theorem addresses the high-temperature case where |β| is small. The case
that |β| > 1 is still relatively poorly understood. The difference between the two
cases is mainly that when |β| is small the interactions are relatively weak; whereas
they are strong when |β| is large. Mathematically, this manifests itself as follows:
When |β| is small, log Πn(Z) ≈ E[log Πn(Z)] ≈ log E[Πn(Z)] with high probability.
Whereas it is believed that E[log Πn(Z)] is a great deal smaller than log E[Πn(Z)]
when |β| � 1.3 These approximations are useful for small values of β since E[Πn(Z)]
is easy to compute exactly. In fact, E[Πn(Z)] satisfies the following elegant identity,
whose proof is deferred to the Problems.

〈lem:SP1〉Lemma 3.2. For all β ∈ R and n > 2,

E [Πn(Z)] = 2n exp

(
β2(n− 1)

4

)
.

3Of course, we always have E[log Πn(Z)] 6 log E[Πn(Z)], by Jensen’s inequality.
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Taking logarithms of the first moment of Πn(Z) partially explains the statement
of Theorem 3.1. Other moments of Πn(Z) can be harder to compute exactly, in a
way that is useful. The following yields a useful bound for the second moment in the
high-temperature regime.

〈lem:SP2〉Lemma 3.3. If −1 < β < 1, then for all n > 2,

E
(
|Πn(Z)|2

)
6

4n√
1− β2

exp

(
β2(n− 2)

2

)
.

Proof. Let us write

E
(
|Πn(Z)|2

)
=

∑
σ,σ′∈{−1,1}n

E

exp

 β√
n

∑
16i<j6n

(σiσj + σ′iσ
′
j)Zi,j


=

∑
σ,σ′∈{−1,1}n

exp

β2

2n

∑
16i<j6n

[σiσj + σ′iσ
′
j ]

2

 .

If σ, σ′ ∈ {−1 , 1}n, then

∑
16i<j6n

[σiσj + σ′iσ
′
j ]

2 = 2
∑

16i<j6n

[
1 + σiσjσ

′
iσ
′
j

]
= n(n− 1) + 2

n−1∑
i=1

σiσ
′
i

n∑
j=i+1

σjσ
′
j

= n(n− 2) +

[
n∑
i=1

σiσ
′
i

]2

.

Therefore,

E
(
|Πn(Z)|2

)
= eβ

2(n−2)/2
∑

σ,σ′∈{−1,1}n
exp

(
β2

2n

[
n∑
i=1

σiσ
′
i

]2)
. (5.4) LTLT

Since |σiσ′i| 6 1, this immediately yields E(|Πn(Z)|2) 6 4n exp{β2(n − 1)}, which is
less precise than the inequality of the lemma when n � 1. In order to deduce the
better inequality, we proceed with a little more care.

Let S1, S
′
1, . . . , Sn, S

′
n be i.i.d., with P{S1 = ±1} = P{S′1 = ±1} = 1/2, all inde-

pendent of the Z’s. We may rewrite (5.4) as follows:

E
(
|Πn(Z)|2

)
= 4neβ

2(n−2)/2 E

[
exp

(
β2

2n

[
n∑
i=1

SiS
′
i

]2)]

= 4neβ
2(n−2)/2 E

[
exp

(
β2

2n

[
n∑
i=1

Si

]2)]
,

because S1S
′
1, . . . , SnS

′
n are i.i.d. with the same common distribution as S1. Note that

the last two expectations are over the S and S′ variables, the Z variables have already
been integrated out. By independence,

E

[
exp

(
β2

2n

[
n∑
i=1

Si

]2)]
= E

[
exp

(
Z1,1β√

n

n∑
i=1

Si

)]
. (5.5) star
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This Khintchine-type trick of reintroducing the Gaussian variable Z1,1 bypasses messy
combinatorial arguments. Indeed, for all z ∈ R,

E

[
exp

(
zβ√
n

n∑
i=1

Si

)]
=

{
E

[
exp

(
zβ√
n
S1

)]}n
=

{
cosh

(
zβ√
n

)}n
6 ez

2β2/2.

Therefore, we condition on Z1,1 first in order to see that the last term in (5.5) is at
most E[exp(β2Z2

1,1/2)] = (1− β2)−1/2, as long as β ∈ (−1 , 1).

Lemmas 3.2 and 3.3 teach us that, if |β| < 1, then

E
(
|Πn(Z)|2

)
= O

(
|E[Πn(Z)]|2

)
as n→∞.

This property fails to hold when |β| > 1. See Problem 5 below.

And now we come to the next, very important, step of the proof: Concentration
of measure!

〈lem:SP3〉
Lemma 3.4. If |β| < 1, then

P

{∣∣∣∣ log Πn(Z)

n− 1
− E

[
log Πn(Z)

n− 1

]∣∣∣∣ > t

}
6 2 exp

(
− t

2(n− 1)

β2

)
,

for all t > 0 and n > 2.

Proof. Consider the function f(x) := log Πn(x) [x ∈ Rn×Rn]. We can easily compute
the derivative of f and show that it is uniformly bounded, which immediately implies
Lipschitz continuity. Indeed, for the derivative we have

∂

∂xi,j
Πn(x) = 2n

∂

∂xi,j
E
[
eβHn(S;x)

]
= 2nβ E

[
eβHn(S;x) · ∂

∂xi,j
Hn(S ;x)

]
=

2nβ√
n

E
[
eβHn(S;x)SiSj

]
.

Since |SiSj | = 1, this gives the bound∣∣∣∣ ∂

∂xi,j
log Πn(x)

∣∣∣∣ 6 β√
n
.

Therefore, ‖(Df)(x)‖2 6 β2n−1∑
16i<j6n σ

2
i σ

2
j = 1

2
β2(n−1). This shows that Lip(f) 6

β
√

(n− 1)/2, and Theorem 1.1 implies the result.

Now we use the preceding concentration of measure estimate in order to estimate
E[log Πn(Z)] accurately for large n. As was mentioned earlier, the key idea is that
when |β| is small the model is mean field ; in this case, this means that E[log Πn(Z)] ≈
log E[Πn(Z)].

〈lem:SP4〉Lemma 3.5. For all β ∈ (−1 , 1) there exists Kβ <∞ such that

n log 2

n− 1
+
β2

4
− Kβ√

n− 1
6 E

[
log Πn(Z)

n− 1

]
6
n log 2

n− 1
+
β2

4
,

for all n > 2.
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Proof. Recall the Paley–Zygmund inequality XXX: If W > 0 has two finite moments,
then

P
{
W > 1

2
E(W )

}
>

(E[W ])2

4 E(W 2)
, (5.6) PZ

provided that E(W 2) > 0.
The Paley–Zygmund inequality and Lemmas 3.2 and 3.3 together show us that

P
{

log Πn(Z) > log
(

1
2

E [Πn(Z)]
)}

> 1
4

√
1− β2 eβ

2/2.

Now define t := log( 1
2

E(Πn(Z))) − E[log Πn(Z)] > 0, and note that by Jensen’s
inequality t > − log 2. If t > 0 then

1
4

√
1− β2 eβ

2/2 6 P {|log Πn(Z)− E [log Πn(Z)]| > t}

6 2 exp

(
− t2

β2(n− 1)

)
,

thanks to concentration of measure (Lemma 3.4). Thus,

t 6
√
n− 1

[
β4

2
+
β2

2

∣∣log
(
64(1− β2)

)∣∣]1/2

:= Cβ
√
n− 1.

And if t 6 0 then certainly the preceding holds also. This proves that in any case,

E [log Πn(Z)] = log( 1
2

E(Πn(Z)))− t

> log E [Πn(Z)]− Cβ
√
n− 1− log 2

> log E [Πn(Z)]− [Cβ + log 2]
√
n− 1,

since n > 2. Apply Lemma 3.2 to obtain the asserted lower bound with Kβ :=
Cβ + log 2.

The upper bound is much simpler to prove, since E[log Πn(Z)] 6 log E[Πn(Z)],
owing to Jensen’s inequality.

Proof of Theorem 3.1. Lemma 3.5 ensures that∣∣∣∣E [ log Πn(Z)

n− 1

]
−
(

log 2 +
β2

4

)∣∣∣∣ 6 Kβ√
n− 1

+
log 2

n− 1
6

Lβ

2
√
n− 1

,

where Lβ := 2(Kβ + log 2). Therefore, Lemma 3.4 implies that

P

{∣∣∣∣ log Πn(Z)

n− 1
−
(

log 2 +
β2

4

)∣∣∣∣ > t+
Lβ

2
√
n− 1

}
6 2e−t

2(n−1)/β2

.

The above probability decreases further if we replace Lβ/2
√
n− 1 by t, provided that

t > Lβ/2
√
n− 1. Let ε := 2t to deduce the theorem.

4 Absolute Continuity of the Law

Now we turn to a quite delicate consequence of integration by parts. Recall that the
distribution, or law, of a random variable f : Rn → R is the Borel probability measure
µf := Pn ◦ f−1, defined via

µf (A) := Pn {f ∈ A} = Pn {x ∈ Rn : f(x) ∈ A} for all A ∈ B(Rn).
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In the remainder of this chapter we address the question of when µf is absolutely
continuous with respect to the Lebesgue measure on Rn. Moreover, we will say a few
things about the structure of the density,

pf (x) :=
dµf (x)

dx
[x ∈ Rn],

if and when it exists.
The existence of a density is not a trivial issue. For example, the random variable

f(x) ≡ 1 does not have a density with respect to Lebesgue’s measure; yet f(x) = x1

does and its probability density is exactly γ1 [sort this out!].

§4.1 A Simple Condition for Absolute Continuity

Recently, Nourdin and Viens XXX have found a necessary and sufficient condition
for the law of a one-dimensional random variable f ∈ D1,2(P1) to have a density with
respect to the Lebesgue measure onR, together with a formula for the density pf if and
when it exists. Before we discuss this beautiful topic, let us present an easy-to-verify,
quite elegant, sufficient condition for the existence of a density.

?〈th:NZ〉?Theorem 4.1 (Nualart and Zakai, XXX). If ‖Df‖ > 0 a.s., then µf is absolutely
continuous with respect to the Lebegue measure on R.

It is clear that we need some sort of non-degeneracy condition on Df . For instance,
if Df = 0 a.s., then f = E(f) a.s. thanks to the Poincaré inequality [Proposition 2.4,
page 43], and µf = δE(f) is not absolutely continuous.

Proof. Choose and fix an arbitrary bounded Borel set B ⊆ R, and define

ϕ(t) :=

∫ t

−∞
1B(r) dr [t ∈ R].

Then, ϕ is Lipschitz continuous with Lip(ϕ) 6 1, and hence ϕ ∈ D1,2(P1) [Example
1.6, page 30]. We can approximate 1B with a smooth function in order to see also
that Dϕ = 1B a.s. Therefore, the chain rule of Malliavin calculus [Lemma 1.7, page
31] implies the almost-sure identity,

D(ϕ ◦ f) = 1B(f)D(f).

If, in addition, B were Lebesgue-null, then ϕ ≡ 0 and hence D(ϕ ◦ f) = 0 a.s. Since
‖Df‖ > 0 a.s., it would then follow that 1B(f) = 0 a.s., which is to say that Pn{f ∈
B} = 0. The Radon–Nikodỳm theorem does the rest.

§4.2 The Support of the Law

The Nourdin–Viens theory relies on a few well-known, earlier, facts about the support
of the law of f XXX. Recall that the support of the measure µf is the smallest closed
set supp(µf ) such that

µf (A) = 0 for all Borel sets A that do not intersect supp(µf ).

Of course, supp(µf ) is a closed subset of R.
The main goal of this subsection is to verify the following XXX.
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〈th:supp〉Theorem 4.2 (Fang, XXX). If f ∈ D1,2(Pn), then supp(µf ) is an interval.

Proof. We plan to prove that supp(µf ) is connected. Suppose to the contrary that
there exist −∞ < a < b < ∞ such that [a , b] 6⊆ supp(µf ), yet supp(µf ) intersects
both (−∞ , a] and [b ,∞).

For every ε ∈ (0 , (b− a)/2) define

ϕε(w) :=


1 if w < a+ ε,

ε−1[−w + a+ 2ε] if a+ ε 6 w 6 a+ 2ε,

0 if w > a+ 2ε.

w

ϕε(w)

a a+ ε a+ 2ε b

1

Figure 5.1. An approximation ϕε to 1(−∞,a].

Clearly, ϕε is a Lipschitz-continuous function for every ε > 0, in fact piecewise
linear, and Lip(ϕε) = ε−1. The chain rule [Lemma 1.7, page 31] implies that ϕε(f) ∈
D1,2(Pn) and

D(ϕε ◦ f) = ϕ′ε(f)D(f) a.s.,

where we write ϕ′ε in place of the more precise Dϕε for typographical convenience.
By construction, [a , b] 6⊆ supp(µf ) and ϕ′ε vanishes [a.s.] off the closed interval

[a+ ε , a+ 2ε] ⊂ (a , b). Therefore, ϕ′ε(f) = 0 a.s., whence D(ϕε ◦ f) = 0 a.s. This and
the Poincaré inequality together imply that

ϕε ◦ f = E[ϕε(f)] a.s.

Send ε → 0 and appeal to the bounded convergence theorem in order to see that
1{f6a} = Pn{f 6 a} a.s. In particular, Pn{f 6 a} = 0 or 1 which implies in turn
that supp(µf ) cannot intersect both (−∞ , a] and [b ,∞). This establishes the desired
contradiction.

§4.3 The Nourdin–Viens Formula

We now begin work toward developing the Nourdin–Viens formula.
Let us first recall a fact about conditional expectations. Let X : Rn → R denote

an arbitrary random variable and Y ∈ L1(Pn). Then there exists a Borel-measurable
function G

Y |X : Rn → R such that

E(Y | X) = G
Y |X (X) a.s.,; (5.7) eq:E(Y|X)

see Problem 3. Note that the preceding depends only on the restriction of G
Y |X to the

support of the law of X. Thus, we can always define, without affecting the validity of
the identity (5.7),

G
Y |X =∞ off the support of the law of X.
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In particular, it follows that for every random variable f ∈ D1,2(Pn) we can find a
Borel–measurable function Sf : Rn → R ∪ {∞} such that4

E
[
〈Df ,Df〉R1

∣∣ f] = Sf ◦ f a.s. (5.8) S_f

The recipe is Sf (x) := G〈Df ,Df〉R1
|f (x) for all x in the support of the law µf of f ,

and Sf (x) =∞ otherwise.
We may apply the integration-by-parts Theorem 0.1 with ϕ(w) := w in order to

that
Var(f) = E[Sf ◦ f ] for all f ∈ D1,2(Pn).

In other words, Sf ◦ f = Sf (f(Z)) is an “unbiased estimate” of the variance of f .
The following suggests further that Sf (f(Z)) might be a good “variance estimator.”

?〈lem:S>0〉?Lemma 4.3. If f ∈ D1,2(Pn) has mean zero, then Sf ◦ f > 0 a.s.

Proof. Let ψ : R→ R+ be an arbitrary non-negative, bounded and measurable func-
tion. Define

ϕ(x) :=

∫ x

0

ψ(y) dy [x ∈ R].

It is possible to check directly that ϕ ∈ D1,2(P1) and Dϕ = ψ a.s. Since E(f) = 0,
these facts and Theorem 0.1 together imply that

E [fϕ(f)] = E [ψ(f)〈Df ,Df〉R1 ] = E [ψ(f)(Sf ◦ f)] , (5.9) eq:Cov:2

thanks to integration by parts formula (5.1), the tower property of conditional ex-
pectations, and (5.8). Since xϕ(x) > 0 for all x ∈ R, the left-most term in (5.9) is
non-negative, and hence E[ψ(f)× (Sf ◦ f)] > 0 for all bounded and measurable scalar
function ψ > 0. Choose and fix η > 0 and appeal to the preceding with

ψ(x) := 1(−∞,−η)(Sf (x)) [x ∈ Rn],

in order to see that P{Sf ◦ f 6 −η} = 0 for all η > 0. This proves the remainder of
the proposition.

Thus we see that Sf ◦ f is always non-negative when E(f) = 0. A remarkable
theorem of Nourdin and Viens XXX asserts that strict inequality holds—that is Sf ◦
f > 0 a.s.—if and only if µf is absolutely continuous. Moreoever, one can obtain a
formula for the probability density of f when Sf ◦ f > 0 a.s. The precise statement
follows.

〈th:NP:density〉
Theorem 4.4 (Nourdin and Viens, XXX). Suppose f ∈ D1,2(Pn) satisfies E(f) = 0.
Then µf (dx)� dx if and only if Sf ◦ f > 0 a.s. Moreover, when Sf ◦ f > 0 a.s., the
following defines a version of the probability density function of f :

pf (x) =
E(|f |)

2Sf (x)
exp

(
−
∫ x

0

z dz

Sf (z)

)
, (5.10) eq:NP:density

where 1/∞ := 0.

Remark 4.5. Observe that Pn{Sf ◦ f > 0} = 1 iff µf {Sf > 0} = 1.

4The space R∪{∞} is viewed as the usual one-point compactification of R, endowed with
the corresponding topology and Borel σ-algebra.
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The proof of Theorem 4.4 is naturally broken into three separate parts, which we
record as Propositions 4.6 through 4.8 below.

〈pr:NP:1〉Proposition 4.6. Let f be a mean-zero random variable in D1,2(Pn). If Sf ◦ f > 0
a.s., then µf (dx)� dx.

Proof. Let B ⊂ R be an arbitrary Borel-measurable set, and define

ϕ(x) :=

∫ x

0

1B(y) dy [x ∈ R].

Then ϕ ∈ D1,2(Pn) and Dϕ = 1B a.s. The integration-by-parts Theorem 0.1 implies
that

E

[
f

∫ f

0

1B(y) dy

]
= E [1B(f)× (Sf ◦ f)] .

If B were Lebesgue null, then
∫ f

0
1B(y) dy = 0 a.s., and hence E[1B(f)× (Sf ◦ f)] =

0. Because we have assumed that Sf ◦ f > 0 a.s., it follows that 1B(f) = 0 a.s.,
equivalently, Pn{f ∈ B} = 0. The Radon–Nikodỳm theorem does the rest.

?〈pr:NP:2〉?Proposition 4.7. If f ∈ D1,2(Pn) has mean zero and satisfies µf (dx) � dx, then
Sf ◦ f > 0 a.s.

Proof. Let pf denote the probability density of f ; that is, pf satisfies
∫
B
pf (x) dx =

Pn{f ∈ B} for all Borel sets B ⊂ R.
If ψ ∈ Cc(R) (that is, if ψ is continuous with compact support), then ϕ(x) :=∫ x

−∞ ψ(y) dy [x ∈ R] is bounded and ϕ′(x) = ψ(x) for every x ∈ R. We may integrate
by parts in Gauss space [see (5.9)] in order to see that

E [ψ(f)× (Sf ◦ f)] = E [f × ϕ(f)] =

∫ ∞
−∞

yϕ(y)pf (y) dy.

Since
∫∞
−∞ ypf (y) dy = 0 and ϕ is bounded, we can integrate by parts—in Lebesgue

space—in order to see that

E [ψ(f)× (Sf ◦ f)] =

∫ ∞
−∞

ψ(y)

(∫ ∞
y

zpf (z) dz

)
dy. (5.11) eq:NP1

Now Pn{pf (f) = 0} = µf {pf = 0} =
∫
{p
f

=0} pf (a) da = 0. Therefore, we can rewrite

(5.11) as

E [ψ(f)× (Sf ◦ f)] = E

[
ψ(f)×

∫∞
f
zpf (z) dz

pf (f)

]
,

for all continuous ψ ∈ Cc(R). The preceding holds for all bounded and measurable
functions ψ : R→ R by density. Consequently,

Sf ◦ f =

∫∞
f
zpf (z) dz

pf (f)
a.s. (5.12) S=Phi/f

It remains to prove that ∫ ∞
f

zpf (z) dz > 0 a.s. (5.13) goal:NP

Thanks to Theorem 4.2, the law of f is supported in some closed interval [α , β]
where −∞ 6 α 6 β 6∞. And since f has mean zero, it follows that α < 0 < β.
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Define

Φ(x) :=

∫ ∞
x

zpf (z) dz [x ∈ R]. (5.14) eq:NP:Phi

Since pf is supported in [α , β], Φ is constant off [α , β]; and the mean-zero property
of f implies that Φ(α+) = Φ(β−) = 0. Furthermore, Φ is a.e. differentiable and
Φ′(x) = −xpf (x) a.e., thanks to the Lebesgue differentiation theorem. Since pf > 0
a.e. on [α , β], it follows that Φ is strictly increasing on (α , 0] and strictly decreasing
on [0 , β). As Φ vanishes at α and β, this proves that Φ(x) > 0 for all x ∈ (α , β)
whence Φ(f) > 0 a.s. This implies (5.13) and completes the proof.

〈pr:NP:3〉Proposition 4.8. If f ∈ D1,2(Pn) has mean zero and Sf ◦f > 0 a.s., then the density
function of f is given by (5.10).

Proof. Recall the function Φ from (5.14). Then Φ is almost-everywhere differentiable
[Lebesgue’s theorem] with derivative Φ′(x) = −xpf (x) a.e. At the same time, (5.12)
implies that

Φ(x) = Sf (x)pf (x) for almost all x ∈ supp(µf ). (5.15) Phi=Sp

It follows that

Φ′(x)

Φ(x)
= − x

Sf (x)
for almost all x ∈ supp(µf ).

The preceding in fact holds also for every x 6∈ supp(µf ) since Φ′ = 0 and Sf =∞ off
µf , provided that 1/∞ = 0. We integrate the preceding to obtain

Φ(x) = Φ(0) exp

(
−
∫ x

0

z dz

Sf (z)

)
for all x ∈ Rn. (5.16) eq:Phi

But Φ(0) =
∫∞

0
zpf (z) dz = E(f ; f > 0) = 1

2
E(|f |), because E(f) = 0. Therefore,

(5.15) implies the result.

5 Aspects of the Nourdin–Peccati Theory

Recently, Ivan Nourdin and Giovanni Peccati XXX recognized a number of remarkable
consequences of integration by parts [Theorem 4.7, page 64] that lie at the very heart
of Gaussian analysis. Theorem 4.4 is only one such example. We will next decscribe
a few other examples. Their monograph XXX contains a host of others.

§5.1 A Characterization of Normality

One of the remarkable consequences of the Nourdin–Peccati theory is that it charac-
terizes when a non-degenerate random variable f ∈ D1,2(Pn) has a mean-zero normal
distribution.

〈th:NP:Normality〉
Theorem 5.1 (Nourdin and Peccati, XXX). Suppose f ∈ D1,2(Pn) satisfies E(f) = 0.
Then, the random variable f has a normal distribution iff Sf ◦ f is a constant a.s.

Remark 5.2. The constancy condition on Sf ◦ f is equivalent to the condition that

Sf ◦ f = E[Sf ◦ f ] = E [〈Df ,Df〉R1 ] = Var(f) a.s.,

thanks to Theorem 0.1. Therefore, Theorem 5.1 is saying that f is a normally dis-
tributed if and only if its variance estimator Sf ◦ f is exact. For a stronger result see
Example 5.9 below.
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The proof of Theorem 5.1 rests on the following “heat kernel estimate,” which is
interesting in its own right.

〈th:Heat:Kernel〉Theorem 5.3. Suppose f ∈ D1,2(Pn) has mean zero, and there exists a constant
σ > 0 such that Sf ◦ f > σ2 a.s. Then supp(µf ) = R, and

pf (x) >
E(|f |)

2Sf (x)
exp

(
− x2

2σ2

)
, (5.17) eq:Sf(f):Sigma

for almost every x ∈ R. Suppose, in addition, that there exists a constant Σ <∞ such
that

Sf ◦ f 6 Σ2 a.s. (5.18) eq:Sf(f):Sigma:1

Then, for almost every x ∈ R,

E(|f |)
2σ2

exp

(
− x2

2Σ2

)
> pf (x) >

E(|f |)
2Σ2

exp

(
− x2

2σ2

)
. (5.19) eq:Sf(f):Sigma:2

Remark 5.4. If f is Lipschitz continuous, then we have seen that f ∈ D1,2(Pn) [Ex-
ample 1.6, p. 30]. Furthermore, ‖Df‖ 6 Lip(f) a.s., whence ‖R1Df‖ 6 Lip(f) a.s., by
the Mehler formula [Theorem 2.1, page 59]. Thus, whenever f is Lipschitz continuous,
condition (5.18) holds with Σ := Lip(f).

Proof. Recall Φ from (5.14). According to (5.16),

Φ(x) >
1

2
E(|f |) exp

(
− x2

2σ2

)
for almost all x ∈ supp(µf ). (5.20) eq:Phi>Gauss

It follows from the fact that E(f) = 0 that Φ(x) → 0 as x tends to the boundary
of supp(µf ). Since supp(µf ) is an interval [Theorem 4.2, page 78], (5.20) shows that
supp(µf ) must be unbounded. This proves that supp(µf ) = R. The inequality (5.17)
follows from (5.20), and (5.19) follows readily from (5.17) and (5.18).

Now we can verify Theorem 5.1.

Proof of Theorem 5.1. Suppose f has a normal distribution with mean zero and σ2 :=
Var(f) > 0. Since µf and the Lebesgue measure are mutually absolutely continuous
with respect to one another, (5.12) ensures that

Sf (x) =

∫∞
x
zpf (z) dz

pf (x)
=

∫∞
x
z exp(−z2/(2σ2)) dz

exp(−x2/(2σ2))
= σ2,

for µf -a.e.—whence almost every—x ∈ R. The converse follows from Theorems 4.4
and 5.3.

We highlight some of the scope, as well as some of the limitations, of Theorem
4.4 by studying two elementary special cases. Problem 1 contains a third illustrative
example of this kind.

Example 5.5 (A Linear Example). Consider the random variable f(x) := a·x [x ∈ Rn],
where a is a non-zero constant n-vector. Equivalently, f = a · Z, where Z is the
standard-normal n-vector from (1.2) [page 3]. Then f ∈ D1,2(Pn) and Df = a a.s.
Moreover, E(f) = a ·E(Z) = 0 and Var(f) = ‖a‖2 > 0. Furthermore, Mehler’s formula
[Theorem 2.1, page 59] ensures that PtDf = a a.s., whence R1Df =

∫∞
0

e−tadt = a
a.s. It follows that Sf ◦ f = ‖a‖2 a.s. Therefore, in the linear case, Theorem 5.1
reduces to the obvious statement that linear combinations of Z1, . . . , Zn are normally
distributed.
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Example 5.6 (A Quadratic Example). Consider the random variable f(x) := ‖x‖2−n
[x ∈ Rn]. Equivalently, f = ‖Z‖2 − E(‖Z‖2). Clearly, f ∈ D1,2(Pn)—in fact, f ∈
C∞0 (Pn)—and E(f) = 0 and (Df)(x) = 2x. Mehler’s formula [Theorem 2.1, page 59]
yields (PtDf)(x) = 2e−tx for almost all x ∈ Rn. In particular,

(R1Df)(x) =

∫ ∞
0

e−t(PtDf)(x) dt = x for almost all x ∈ Rn.

Since (Df)(x) · (R1Df)(x) = 2‖x‖2 = 2f(x) + 2n a.s., it follows that Sf ◦ f =
E(2f + 2n | f) = 2f + 2n a.s. Equivalently, Sf (z) = 2(z+n) a.s. for all z ∈ supp(µf ).
Because P{Sf = 0} = P{Z = 0} = 0, Theorem 4.4 reduces to the statement that
‖Z‖2 − n has a probability density p‖Z‖2−n, and

p
‖Z‖2−n

(x) =
E
(∣∣‖Z‖2 − n∣∣)
4(x+ n)

exp

(
− 1

2

∫ x

0

z

z + n
dz

)
=

E
(∣∣‖Z‖2 − n∣∣) e−x/2

4nn/2(x+ n)1−(n/2)
,

for a.e. x ∈ the support of the law of ‖Z‖2 − n. Equivalently,

p
‖Z‖2

(x) ∝ e−x/2

x1−(n/2)
for a.e. x ∈ the support of the law of ‖Z‖2.

From this we can see that Theorem 4.4 is consistent with the well-known fact that
‖Z‖2 has a χ2

n distribution.

§5.2 Distance to Normality

Suppose f ∈ D1,2(Pn). Theorem 5.1 suggests that if 〈Df ,Df〉R1 ≈ τ2 we can then
expect the distribution of f to be approximately N(0 , τ2). We might expect even more.
Namely, suppose that X = (X1 , . . . , Xn) is a random vector such that Xi ∈ D1,2(Pn)
has mean zero and Cov(Xi , Xj) = Qi,j , with 〈DXi , DXj〉R1 ≈ Qi,j for all 1 6 i, j 6 n.
Then we might expect the distribution of X might be approximately Nn(0, Q). This
is indeed the case, as is shown by the theory of Nourdin, Peccati, and Reinert, XXX.
We will work out the details first in the case that Q = I is the n× n identity matrix.

〈th:NPR:I〉Theorem 5.7 (Nourdin, Peccati, and Reinert, XXX). Consider a random vector X =
(X1, . . . , Xn), where Xi ∈ D1,2(Pn), and E(Xi) = 0. Then, for every Φ ∈ D2,2(Pn),

E [Φ(X)]− E [Φ(Z)] = E

[
n∑

i,j=1

(
R2D

2
i,jΦ

)
(X)× (〈DXi , DXj〉R1 − Ii,j)

]
,

where R2 denotes the 2-potential of the OU semigroup. In particular,

|E[Φ(X)]− E[Φ(Z)]| 6 K(Φ)

n∑
i,j=1

E (|〈DXi , DXj〉R1 − Ii,j |) ,

for all Φ : Rn → R that are bounded and have continuous and bounded mixed partial
derivatives of order 6 2, where K(Φ) := 1

2
supx∈Rn max16i,j6n |(D2

i,jΦ)(x)|.

Proof. We need only prove the first assertion of the theorem; the second assertion
follows readily from the first because of the elementary fact that whenever |g(x)| 6 c
for all x ∈ Rn, |(Ptg)(x)| 6 c for all t and hence |(R2g)(x)| 6 c

∫∞
0

exp(−2t) dt = c/2.
The theorem is a fact about the distribution of X, as compared with the distri-

bution of Z. In the proof we wish to construct X and Z—on the same Gaussian
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probability space—so that they have the correct marginal distributions, but also are
independent.

A natural way to achieve our coupling is to define, on R2n = Rn × Rn, two
functions X̄ and Z̄, as follows: For all ω = (ω1 , . . . , ω2n) ∈ R2n,

Z̄(ω) := Z(ω1 , . . . , ωn), and X̄(ω) := X(ωn+1 , . . . , ω2n).

Then:

1. X̄ and Z̄ are n-dimensional random vectors on the 2n-dimensional Gauss space
(R2n,B(R2n) ,P2n);

2. The P2n-distribution of X̄ is the same as the Pn-distribution of X; and
3. The P2n-distribution of Z̄ is the same as the Pn-distribution of Z.

In this way, Theorem 5.7 can be restated as follows:

E2n

[
Φ(X̄)

]
− E2n

[
Φ(Z̄)

]
= E2n

[
n∑

i,j=1

(
R2D

2
i,jΦ

)
(X̄)×

(
〈DX̄i , DX̄j〉R1 − Ii,j

)]
,

(5.21) coupled0

where, we recall, R2f :=
∫∞

0
e−2tPtf dt. We will prove this version of the theorem

next.

We will use the same “Gaussian interpolation” trick that has been used a few
times already; see, for example, the last statement of Proposition 1.6, p. 58. Note that
with P2n-probability one: (P0Φ)(X̄) = Φ(X̄); and (PtΦ)(X̄)→ E2n[Φ(Z̄)] as t→∞.
Therefore, P2n-a.s.,

Φ(X̄)− E2n[Φ(Z̄)] = −
∫ ∞

0

d

dt
(PtΦ)(X̄) dt (5.22) ?pre:Q?

= −
∫ ∞

0

d

dt
E2n

[
Φ
(

e−tX̄ +
√

1− e−2t Z̄
) ∣∣∣ X̄] dt,

owing to Mehler’s formula [Theorem 2.1, page 59]. We take expectations of both sides
and apply the dominated convergence theorem, to interchange the derivative with the
expectation, in order to find that

E2n[Φ(X̄)]− E2n[Φ(Z̄)]

= −
∫ ∞

0

E2n

[
d

dt
Φ
(

e−tX̄ +
√

1− e−2t Z̄
)]

dt (5.23) coupled1

=

n∑
i=1

∫ ∞
0

E2n

{
(DiΦ)

(
e−tX̄ +

√
1− e−2t Z̄

)[
e−tX̄i −

e−2t

√
1− e−2t

Z̄i

]}
dt.

Since E2n(Z̄i) = 0 Theorem 4.7 on page 64 implies that for all G ∈ D1,2(Pn) and
1 6 i 6 n,5

E2n

[
G(Z̄)Z̄i

]
= E2n

[
〈D(G ◦ Z̄) , DZ̄i〉R1

]
= E2n

[
Di(G ◦ Z̄)

]
.

5An alternative way to see this is to recall that Z̄i = H1(Z̄i) = Ai(H0) = Ai(1).
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Therefore, for every x ∈ Rn and 1 6 i 6 n,

E2n

{
(DiΦ)

(
e−tx+

√
1− e−2t Z̄

) e−2t

√
1− e−2t

Z̄i

}
=

e−2t

√
1− e−2t

En
{
Di
[
(DiΦ)

(
e−tx+

√
1− e−2t •

)]
(Z̄)
}

= e−2t E2n

[
(D2

i,iΦ)
(

e−tx+
√

1− e−2t Z̄
)]

= e−2t (PtD2
i,iΦ

)
(x),

thanks first to the chain rule [Lemma 1.7, page 31], and then Mehler’s formula [The-
orem 2.1, page 59]. Since X̄ and Z̄ are independent, we can first condition on X̄ = x
and then integrate [d(P2n ◦ X̄−1)] to deduce from the preceding that

E2n

{
(DiΦ)

(
e−tX̄ +

√
1− e−2t Z̄

) e−2t

√
1− e−2t

Z̄i

}
= e−2t E2n

[(
PtD

2
i,iΦ

)
(X̄)

]
= e−2t

n∑
j=1

E2n

[(
PtD

2
i,jΦ

)
(X̄)Ii,j

]
.

(5.24) coupled2

Similarly, because E2n(X̄i) = 0 for all 1 6 i 6 n, we can write

E2n

[
G(X̄)X̄i

]
= E2n

[〈
D(G ◦ X̄) , DX̄i

〉
R1

]
=

2n∑
k=1

E2n

[
Dk(G ◦ X̄)×

(
R1DkX̄i

)]
=

n∑
j=1

2n∑
k=1

E2n

[
(DjG)(X̄)×Dk(X̄j)×

(
R1DkX̄i

)]
=

n∑
j=1

E2n

[
(DjG)(X̄)×

〈
DX̄j , DX̄i

〉
R1

]
,

by the chain rule, and hence

E2n

{
(DiΦ)

(
e−tX̄ +

√
1− e−2t Z̄

)
e−2tX̄i

}
= e−2t

n∑
j=1

E2n

[
(D2

i,jΦ)
(

e−tX̄ +
√

1− e−2t Z̄
) 〈
DX̄j , DX̄i

〉
R1

]
= e−2t

n∑
j=1

E2n

[(
PtD

2
i,jΦ

)
(X̄)

〈
DX̄j , DX̄i

〉
R1

]
.

(5.25) coupled3

We now merely combine (5.23), (5.24), and (5.25) in order to deduce (5.21) and hence
the theorem.

Theorem 5.7 has a useful extension in which one compares the distribution of
a smooth mean-zero random variable X to that of an arbitrary mean-zero normal
random variable. That is, we consider E[Φ(X)]−E[Φ(Q1/2Z)], where Q is a symmetric,
positive definite matrix that is not necessarily the identity matrix. Consider the linear
operators {PQt }t>0 defined as

(PQt f)(x) := E
[
f
(

e−tx+
√

1− e−2tQ1/2Z
)]
.
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It is not hard to check that the preceding defines a semigroup {PQt }t>0 of linear
operators that solve a heat equation of the form

d

dt
PQt = LQ PQt for t > 0, (5.26) LQ

subject to PQ0 = the identity operator. Here LQ is a differential operator, much like
L, but with coefficients that come from Q. Also there is a corresponding resolvent
RQλ :=

∫∞
0

exp(−λt)PQt dt, etc. Now we begin with the following variation on (5.23):
Define

Ψ(t) := E2n

[
Φ
(

e−tX̄ +
√

1− e−2tQ1/2Z̄
)]

= E
[(
PQt Φ

)
(X)

]
,

and notice that Ψ ∈ D1,2(P1), Ψ(0) = E2n[Φ(X̄)], and limt→∞Ψ(t) = E2n[Φ(Q1/2Z̄)].
Therefore,

E2n[Φ(X̄)]− E2n[Φ(Q1/2Z̄)]

= Ψ(0)− lim
t→∞

Ψ(t) = −
∫ ∞

0

Ψ′(t) dt

=

n∑
i=1

∫ ∞
0

E2n

{
(DiΦ)

(
e−tX̄ +

√
1− e−2t Z̄

)[
e−tX̄i −

e−2t

√
1− e−2t

Q1/2Z̄i

]}
dt.

Now we translate the proof of Theorem 5.7 in order to obtain the following important
generalization.

〈th:NPR〉Theorem 5.8 (Nourdin, Peccati, and Reinert, XXX). Consider a random vector X =
(X1, . . . , Xn), where Xi ∈ D1,2(Pn), and E(Xi) = 0. Then, for every Φ ∈ D2,2(Pn)
and for all n× n covariance matrices Q,

E [Φ(X)]− E
[
Φ(Q1/2Z)

]
= E

[
n∑

i,j=1

(
RQ2 D

2
i,jΦ

)
(X)×

(
〈DXi , DXj〉RQ1 −Qi,j

)]
,

where RQ2 denotes the 2-potential of the semigroup {PQt }t>0 and

〈Df ,Dg〉
R
Q
1

(x) := (Df)(x) · (RQ1 Dg)(x) a.s.

In particular,∣∣∣E[Φ(X)]− E[Φ(Q1/2Z)]
∣∣∣ 6 K(Φ)

n∑
i,j=1

E
(∣∣∣〈DXi , DXj〉RQ1 −Qi,j∣∣∣) ,

for all Φ : Rn → R that are bounded and have continuous and bounded mixed partial
derivatives of order 6 2.

〈ex:GTS〉Example 5.9. If 〈DXi , DXj〉RQ1 = Qi,j a.s. for all 1 6 i, j 6 n, then Theorem 5.8 en-

sures that X has a Nn(0 , Q) distribution. Conversely, suppose that X has a Nn(0 , Q)
distribution. Recall that X has the same distribution as W := SZ, where S is the
[symmetric] square root of Q. Of course,

(DkWi)(x) =
∂

∂xk

(
[SZ]i (x)

)
=

∂

∂xk

n∑
l=1

Sl,ixl = Sk,i,
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for all x ∈ Rn. Therefore, the fact that RQ1 1 = 1 implies that for all 1 6 i, j 6 n,

〈DWi , DWj〉RQ1 =

n∑
k=1

Si,kSk,j = Qi,j a.s.

Consequently, every centered random vector X such that Xi ∈ D1,2(Pn) for all i has
a Nn(0 , Q) distribution iff 〈DXi , DXj〉RQ1 = Qi,j a.s.

The following is an immediate consequence of Theorem 5.8, and provides an impor-
tant starting point for proving convergence in distribution to normality in the analysis
of Nourdin and Peccati (?, Theorem 5.3.1, p. 102).

?〈ex:NPR〉?Example 5.10. Suppose X(1), X(2), . . . ∈ D1,2(Pn), all have mean vector 0 ∈ Rn, and
for all 1 6 i, j 6 n,

lim
L→∞

〈
DX

(L)
i , DX

(L)
j

〉
R
Q
1

= Qi,j in L1(Pn).

Then, X(L) converges in distribution to Nn(0 , Q) as L→∞.

Theorem 5.8 has other connections to results about asymptotic normality as well.
The following shows how Theorem 5.8 is related to the classical CLT, for instance.

?〈ex:NPR:1〉?Example 5.11. Let n > 2, and suppose φ ∈ D1,2(P1) satisfies E1(φ) = 0 and Var1(φ) =
σ2 <∞. Define

X1 :=
1√
n

n∑
k=1

φ(Zk) and X` := 0 for 2 6 ` 6 n.

By the chain rule [Lemma 1.7, page 31],

(DkX1)(x) =
φ′(xk)√

n
and (DkX`)(x) = 0 for 2 6 ` 6 n,

almost surely for every 1 6 k 6 n. We are writing φ′ in place of the more cumbersome
Dφ, as we have done before. In any case, we can see that, with probability one:
〈DXi , DXj〉RQ1 = 0 unless i = j = 1; and

〈DX1 , DX1〉RQ1 =
1

n

n∑
k=1

φ′(Zk)(RQ1 φ
′)(Zk).

Define Yk := φ′(Zk)(RQ1 φ
′)(Zk), and observe that Y1, · · · , Yn are i.i.d. with

En(Y1) = E1

[
〈Dφ ,Dφ〉

R
Q
1

]
= Var(φ) = σ2,

thanks to integration by parts [see the proof of Theorem 4.7, page 64]. Therefore,
Khintchine’s form of the weak law of large numbers implies that limn→∞〈DX1 , DX1〉RQ1 =

σ2 in L1(Pn). In particular, we can deduce from Theorem 5.8 that for every Φ ∈
C2
c (R),∣∣∣∣∣E

[
Φ

(
1√
n

n∑
k=1

φ(Zk)

)]
− E[Φ(σZ1)]

∣∣∣∣∣ 6 C E
(∣∣∣σ2 − 〈DX1 , DX1〉RQ1

∣∣∣)
→ 0 as n→∞,
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where C := 1
2

supx∈Rn max16i,j6n |(D2
i,jΦ)(x)|. That is, Theorem 5.8 and Khintchine’s

weak law of large numbers together imply the classical central limit theorem for sums
of the form n−1/2∑n

k=1 φ(Zk), where φ ∈ D1,2(P1) has mean zero and finite variance.6

Moreover, we can see from the preceding how to estimate the rate of convergence of
the distribution of n−1/2∑n

k=1 φ(Zk) to N(0 , σ2) in terms of the rate of convergence
in Khintchine’s weak law of large numbers. The latter is a very well-studied topic; see,
for example XXX.

§5.3 Slepian’s Inequality

Slepian’s inequality is a useful comparison principle that can sometimes be used to
estimate probabilities, or expectations, that are difficult to compute exactly. There
are many variations of this inequality. Here is the original one that is actually due to
D. Slepian.

〈th:Slepian〉Theorem 5.12 (Slepian, XXX). Let X and Y be two mean-zero Gaussian random
vectors on Rn. Suppose that for every 1 6 i, j 6 n:

1. Var(Xi) = Var(Yi); and
2. Cov(Xi , Xj) 6 Cov(Yi , Yj).

Then for all a1, . . . , an ∈ R,

P {Xi 6 ai ∀ 1 6 i 6 n} 6 P {Yi 6 ai ∀ 1 6 i 6 n} .

In particular, P {max16i6nXi > a} > P {max16i6n Yi > a} for all a ∈ R.

The following is an immediate consequence of Theorem 5.12 and integration by
parts. It states that less correlated Gaussian vectors tend to take on larger values.

〈co:Slepian〉Corollary 5.13. Under the assumptions of Theorem 5.12,

E

[
max

16i6n
Xi

]
> E

[
max

16i6n
Yi

]
.

Proof. By integration by parts,

E(W ) =

∫ ∞
0

P{W > a} da−
∫ 0

−∞
(1− P{W > a}) da,

for all W ∈ L1(P). We apply this once with W := maxi6nXi and once with W :=
maxi6n Yi, and then appeal to Theorem 5.12 to compare the two formulas.

One can frequently use Corollary 5.13 in order to estimate the size of the expec-
tation of the maximum of a Gaussian sequence. The following example highlights a
simple example of the technique that is typically used.

6One can recast the classical CLT as the statement that the distribution of
n−1/2

∑n
k=1 φ(Zk) is asymptotically normal for all φ ∈ L2(P1) with E1(φ) = 0. The

present formulation is slightly weaker since we need the additional smoothness condition
that φ ∈ D1,2(P1). It is possible to obtain the general form from the weaker one by an
approximation argument.



5. THE NOURDIN–PECCATI THEORY 89

〈ex:Slepian〉Example 5.14. Suppose X = (X1 , . . . , Xn) is a Gaussian random vector with E(Xi) =
0, Var(Xi) = 1, and Cov(Xi , Xj) 6 1 − ε for some ε ∈ (0 , 1]. Let Z0 be a standard
normal random variable, independent of Z, and define

Yi :=
√

1− εZ0 +
√
εZi.

Then clearly, E(Yi) = 0, Var(Yi) = 1, and Cov(Yi , Yj) = 1 − ε when i 6= j. Slepian’s
inequality implies that E[maxi6nXi] > E[maxi6n Yi]. Since maxi6n Yi =

√
1− εZ0 +√

ε maxi6n Zi, we find from Proposition 1.3 [page 7] that

E

[
max

16i6n
Xi

]
> E

[
max

16i6n
Yi

]
=
√
ε E

[
max

16i6n
Zi

]
= (1 + o(1))

√
2ε logn,

as n → ∞. This is sharp, up to a constant. In fact, the same proof as in the i.i.d.
case shows us the following: For any sequence X1, . . . , Xn of mean-zero, variance-one
Gaussian random variables,

E

[
max

16i6n
Xi

]
6 (1 + o(1))

√
2 logn as n→∞.

[For this, one does not even need to know that (X1 , . . . , Xn) has a multivariate normal
distribution.]

Example 5.15. We proceed as we did in the previous example and note that if W :=
(W1, . . . ,Wn) is a Gaussian random vector with E(Wi) = 0, Var(Wi) = 1, and
Cov(Wi ,Wj) > −1 + δ for some δ ∈ (0 , 1], then

E

[
max

16i6n
Wi

]
6 (1 + o(1))

√
2δ logn as n→∞.

Proof of Theorem 5.12. Let QX and QY denote the respective covariance matrices of
X and Y and let SX and SY denote the respective square roots of QX and QY .

Without loss of generality, we assume that X and Y are defined on the same
Gauss space (Rn,B(Rn) ,Pn), and defined as X = SXZ and Y = SY Z. Since
〈DXi , DXj〉R1 = QXi,j , Theorem 5.8 shows that for all Φ ∈ D1,2(Pn)

E [Φ(X)]− E [Φ(Y )] =

n∑
i,j=1

E
[(
RQ

Y

2 D2
i,jΦ

)
(X)

]
×
(
QXi,j −QYi,j

)
.

Suppose, in addition, that D2
i,jΦ > 0 a.s. when i 6= j. Because QXi,j 6 QYi,j and

QXi,i = QYi,i, it follows that E[Φ(X)] 6 E[Φ(Y )]. In particular,

E

[
n∏
i=1

ϕi(Xi)

]
6 E

[
n∏
i=1

ϕi(Yi)

]
,

whenever ϕ1, . . . , ϕn ∈ C2
0 (P1) are non increasing and non negative. Approximate

every 1(−∞,ai] by a non-increasing function ϕi ∈ C2
0 (Pn) to finish.

The following inequality of Fernique XXX refines Slepian’s inequality in a certain
direction.
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〈th:Fernique〉
Theorem 5.16 (Fernique, XXX). Let X and Y be two mean-zero Gaussian random
vectors on Rn. Suppose that for every 1 6 i, j 6 n:

E
(
|Xi −Xj |2

)
> E

(
|Yi − Yj |2

)
. (5.27) cond:Fernique

Then, P{max16i6nXi > a} > P{max16i6n Yi > a} for all a ∈ R. In particular,
E[max16i6nXi] > E[max16i6n Yi].

If, in addition, Var(Xi) = Var(Yi) for all 1 6 i 6 n, then condition (5.27) reduces
to the covariance condition of Slepian’s inequality. Therefore, we can view Fernique’s
inequality as an improvement of Slepian’s inequality to the setting of non-stationary
Gaussian random vectors. The proof itself is a variation on the proof of Theorem
5.12, but the variation is non trivial and involves many computations. The idea is, as
before, to show that, for Φ(x) := max16i6n xi,

d

dt
E
[
Φ
(

e−tX +
√

1− e−2t Y
)]

> 0,

whence E[Φ(X)] 6 E[Φ(Y )]. You can find the numerous details, for example, in
Ledoux and Talagrand XXX and Marcus and Rosen XXX.
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Problems
〈ex:log-normal〉

1. Consider the case n = 1, and use the Nourdin–Peccati formula (Theorem 4.4)
to derive the lognormal density ; that is, the probability density function of the
random variable f = exp(Z). In your computation of R1(Df), you will have to
use the error function,

Φ(x) =

∫ x

−∞

e−u
2/2

√
2π

du [x ∈ R],

and recall that you have to center f before you can apply the formula.
2. Verify the Paley–Zygmund inequality (5.6), p. 76.

〈pbm:E(Y|X)〉 3. Let X and Y be two random variables, defined both on the same abstract
probability space (Ω ,F ,P). Suppose X takes values in Rn and Y is real-valued
and integrable [P]. Then prove that there exists a Borel-measurable function
GY |X : Rn → R such that E(Y | X) = G

Y |X (X) a.s.
4. Prove Lemma 3.2, p. 73.

〈ex:SK〉 5. Let Πn(Z) be defined via (5.3). Prove that if |β| > 1, then

lim
n→∞

E
(
|Πn(Z)|2

)
|E [Πn(Z)]|2

=∞.

6. Prove that 1A ∈ D1,2(Pn) iff Pn(A) = 0 or 1 for every Borel set A ⊆ Rn. This
is due to Sekiguchi and Shiota XXX. (Hint: Start by checking that D(1A) =
21AD(1A) a.s. because 1A = 12

A.)
7. Compute explicitly the linear operator LQ in (5.26).
8. Suppose that (X ,Y ) is distributed as N2(0 ,Σ), where Σ1,1 = Σ2,2 = 1 and

Σ1,2 = Σ2,1 = ρ, where −1 6 ρ 6 1 is a fixed number.
(a) Verify that one can construct a version of (X ,Y ) on the Gauss space

(R2 ,B(R2) ,P2) as follows: X := Z1 and Y := ρZ1 +
√

1− ρ2 Z2.
(b) Use the preceding to compute E exp{wX+vY } for all w, v ∈ R. Conclude

from your calculation that

E [Hk(X)Hm(Y )] =

ρk

k!
if k = m,

0 if k 6= m.

〈pbm:CLT:stat〉 9. Let X := {Xi}∞i=1 be a stochastic process, defined on a probability space
(Ω ,F ,Q). Suppose that, for every integer N > 1, (X1 , . . . , XN ) has a multi-
variate normal distribution with mean vector zero and Cov(Xi , Xj) = ρ(|i− j|)
for all i, j = 1, . . . , N , for a function ρ : Z+ → [−1 , 1] that satisfies ρ(0) = 1.
Then, X is said to be a centered, stationary Gaussian process with correlation
function ρ. It is known that such a stochastic process exists if and only if ρ
is positive semi-definite; see XXX. Choose and fix a function φ ∈ L2(P1), and
suppose X exists. For simplicity also assume that ρ(i) > 0 for all i > 1.

(a) Prove that if
∑∞
i=1 ρ(i) <∞, then the following CLT-type variance condi-

tion holds:

σ2 = lim
N→∞

1

N
Var

(
N∑
i=1

φ(Xi)

)
exists and is finite.

Compute σ2.
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[Hint: Since each Xi has the same law as Z1, we can expand φ(Xi) in
terms of Hermite polynomials.]

(b) Prove that limN→∞ ρ(N) = 0 if and only if the following law of large
numbers holds:

1

N

N∑
i=1

φ(Xi)→ E[φ(X1)] in L2(Q) as N →∞.

10. Let X = {Xi}∞i=1 be a centered, stationary Gaussian process, as defined in
Problem 9. Suppose in addition that Cov(X0 , Xi) > 0 for every i ∈ N.

(a) Prove that µn+m(a) > µn(a)µm(a) for all n,m ∈ Z+ and a ∈ R, where

µn(a) := P

{
max

16i6n
Xi 6 a

}
for all n > 1 and a ∈ R.

(b) A sequence {yi}∞i=1 is said to be subadditive if yn+m 6 yn + ym for every
n,m ∈ N. Prove that if {yi}∞i=1 is subadditive then limn→∞(yn/n) exists
and is finite. Do this by showing that

lim
n→∞

yn
n

= inf
n>1

yn
n
.

This is due to M. Fekete XXX.
(c) Conclude that for every a ∈ R there exists an extended real number θ(a) ∈

(0 ,∞] such that µn(a) = exp{−θ(a)n+ o(n)} as n→∞.



Chapter 6

Four Moment Theorems
?〈ch:Discrete_Stochastic_Integrals〉?

Consider the following simple question: suppose that A is a symmetric n × n matrix
with tr(A) = 0. Then, by Wick’s formula, the quadratic form Z′AZ is in the second
Wiener chaos (see Exercise 14, Chapter 3). Moreover, tr(A) = 0 means that A has
both positive and negative eigenvalues and so the quadratic form Z′AZ takes on all
possible values of R (excluding the trivial case A = 0). Is it possible that the random
variable Z′AZ is normally distributed?

The intuitive answer is likely “no”, since normality is preserved by linear transfor-
mations but typically not quadratic or higher order ones. This intuition turns out to
be correct, but it is actually more difficult to prove than one might expect. After all,
how can one rule out that there is no such matrix A with this property?

In this chapter we will answer this question for random variables in L2(Pn) that
live within a fixed Wiener chaos. Such random variables often appear naturally in
statistics, for example the sample standard deviation

S2 =
1

n− 1

n∑
i=1

(Zi − Z̄)2,

where Z̄ = (Z1 + . . . + Zn)/n is the sample mean, has mean one and S2 − 1 is in
the second Wiener chaos. It turns out that the squared norm of the gradient of such
random variables has a nice expression, which can be used to give a simple test for
normality of the original variable in terms of its fourth moment. In short, a random
variable living inside a fixed chaos is normal iff its fourth moment is equal to three
times the square of its second moment, and if the latter holds then it in fact lives
inside the first chaos. Such results are called four moment theorems.

1 Random Variables Living in a Fixed Chaos

We begin working in L2(Pn) so that the Hermite polynomials Hk/
√
k!, k ∈ Zn+ form

an orthonormal basis of the space. Random variables within the pth Wiener chaos
are exactly the linear combinations of Hk with |k| = k1 + . . . + kn = p. We define

93
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Snp = {k ∈ Zn+ : |k| = p} and a map Ip : RS
n
p → R by

Ip(a) =
∑
k∈Snp

(
p

k

)
akHk. (6.1) eq:Ip_defn

Then Ip is a linear map whose range is precisely the pth Wiener chaos of L2(Pn), and
as a map onto this range it is invertible. Recall that the multinomial coefficients are
given by (

p

k

)
=

p!

k1!k2! . . . kn!

and count the number of ways that p distinct objects can be put into n groups with k1

objects in the first group, k2 in the second group, etc. These multinomial factors turn
out to be a convenient normalization, and we will later see that they are quite natural.
By the orthogonality of the Hermite polynomials it is straightforward to compute that
for a, b ∈ RS

n
p

E[Ip(a)Ip(b)] = p!
∑
k∈Snp

(
p

k

)
akbk =: p!〈a, b〉Snp , (6.2) eq:HS_isometry

where latter equality defines the inner product. Similarly, if a ∈ RS
n
p , b ∈ RS

n
q with

p 6= q then E[Ip(a)Iq(b)] = 0. By the differentiation properties of Hermite polynomials
it follows that the gradient of Ip(a) is

DIp(a) =
∑
k∈Snp

(
p

k

)
ak

n∑
i=1

kiHk−eiei

= p

n∑
i=1

∑
k∈Snp

(
p− 1

k − ei

)
akHk−eiei

= p

n∑
i=1

∑
l∈Snp−1

(
p− 1

l

)
al+eiHlei = p

n∑
i=1

Ip−1(a·+ei)ei, (6.3) eqn:DIp_formula

where ei is the ith standard basis vector in Rn. Note that we are adopting the
convention that Hk = 0 for k < 0, and therefore Hk = 0 if any ki < 0. The notation
a·+ei refers to the function on Snp−1 defined by adding ei to each index to obtain a
value from a. Note that the last expression clearly shows that each component of the
gradient is an element of the (p − 1)st chaos, as one would expect. Now from this
formula for the gradient we can compute its squared norm as

||DIp(a)||2Rn = p2
n∑
i=1

Ip−1(a·+ei)
2. (6.4) eqn:DIp_squared_norm_formula

This real-valued random variable is a polynomial in the Zi of degree no more than
2p−2. Hence it is in L2(Pn) and so has a Wiener chaos decomposition that allows for
it to be uniquely written as an orthogonal sum of polynomials of degree 2p − 2, 2p −
3, 2p − 4, etc. The claim is that the structure of Ip(a) allows for the decomposition
to be computed explicitly. Essentially it requires nothing more than computing the
Wiener chaos decomposition of Hk(x)Hl(x) for arbitrary k, l ∈ N. We do this in the



1. RANDOM VARIABLES LIVING IN A FIXED CHAOS 95

next section and then use it to expand out the squared norm of the gradient in terms
of Hermite polynomials. This leads to a nice expression for Var(||DIp(a)||2Rn), which
turns out to be related to the excess kurtosis E[Ip(a)4]− 3 E[Ip(a)2]2 in the following
way:

〈thm:chaos_variance_bound〉Theorem 1.1. For p > 2 and a ∈ RS
n
p we have

Var

(
1

p
||DIp(a)||2Rn

)
6
p− 1

3p

(
E[Ip(a)4]− 3 E[Ip(a)2]2

)
6 (p−1) Var

(
1

p
||DIp(a)||2Rn

)
.

This statement quite elegantly shows the equivalence of the excess kurtosis with
the variance of the squared norm of the gradient. The fact that Ip(a) is in a fixed
chaos turns out to play a key role in deriving these bounds, but note that they hold
for arbitrarily large p. It is worth observing that they also trivially hold for p = 1
(all three terms are zero) since in that case DI1(a) is almost surely a constant and
the normality of I1(a) implies that the excess kurtosis is zero. In the p > 2 case these
bounds immediately lead to the following non-trivial conclusion.

〈cor:non_fixed_chaos_normality〉Corollary 1.2. For p > 2 and a ∈ RS
n
p different from zero, E[Ip(a)4] > 3 E[Ip(a)2]2

and hence Ip(a) is not normally distributed.

Proof. By Theorem 1.1, E[Ip(a)4] = 3 E[Ip(a)2]2 iff ||DIp(a)||2Rn || is constant almost
surely. By equation (6.3) every component of DIp(a) is a polynomial of degree p−1 in
the Zi, from which it follows that ||DIp(a)||2Rn is a polynomial of degree 2p− 2. Since
2p − 2 > 2 this polynomial cannot be almost surely constant, and since E[Ip(a)4] <
3 E[Ip(a)2]2 is impossible by Theorem 1.1 the only option is E[Ip(a)4] > 3 E[Ip(a)2]2.
Since the fourth moment of a mean zero Gaussian is three times the square of its
second moment, this rules out that Ip(a) is normally distributed.

The next few sections will be geared towards proving Theorem 1.1. The idea
is to compute the variance of ||DIp(a)||2Rn by expanding it into its Wiener chaos
decomposition and then using the orthogonality of the Hermite polynomials. Similar
ideas help us to compute E[Ip(a)4]. We first perform the computations in a very hands
on, combinatorial way, and then in later parts we show how they can be repeated quite
elegantly using the language of tensors. Tensor language is more useful in the infinite-
dimensional setting with the isonormal representation of the Gaussian space, but in
the finite-dimensional case it involves nothing more than standard multi-linear algebra.
The tensor language also explains how the Ip operators can be thought of as discrete
stochastic integrals and are the natural adjoints to the higher order differentiation
operators Dk on Gauss space. Before going into the lengthy calculations we point out
that there is one term in the Wiener chaos expansion of ||DIp(a)||2 that can be easily
computed: the mean.

〈lem:mean_of_DIp〉Lemma 1.3. For a ∈ Snp

E
[
||DIp(a)||2Rn

]
= pE[Ip(a)2].

Proof. By formulas (6.4) and (6.2) we have

E[||DIp(a)||2Rn ] = p2
n∑
i=1

E[Ip(a·+ei)
2] = p2

n∑
i=1

(p− 1)!
∑

l∈Snp−1

(
p− 1

l

)
a2
l+ei .
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We also apply (6.2) to E[Ip(a)2] to obtain

E[Ip(a)2] = p!
∑
k∈Snp

(
p

k

)
a2
k.

Now use the multinomial identity(
p

k

)
=

n∑
i=1

(
p− 1

k − ei

)
, (6.5) eq:multinom_id

to rewrite the above as

E[Ip(a)2] = p!

n∑
i=1

∑
k∈Snp

(
p− 1

k − ei

)
a2
k

= p

n∑
i=1

(p− 1)!
∑

l∈Snp−1

(
p− 1

l

)
a2
l+ei = p

n∑
i=1

E[Ip−1(a·+ei)
2].

This completes the proof.

2 Product Formula for Hermite Polynomials
〈prop:Hermite_product〉Proposition 2.1. Fix k, l ∈ Zn+. Then

Hk(x)Hl(x) =
∑

j∈[0,k∧l]

j!

n∏
i=1

(
ki
ji

)(
li
ji

)
Hk+l−2j(x),

where k∧l = (k1∧l1, . . . , kn∧ln) and [0, k∧l] = {j ∈ Zn+ : 0 6 ji 6 ki∧li, i = 1, . . . , n}.

Proof. Since the multi-dimensional Hermite polynomials are products of the one-
dimensional Hermite polynomials it is enough to study the n = 1 case. Recall that
Hk(Z) = πk(Zk), and therefore it is equivalent to show that

πk(Zk)πl(Z
l) =

k∧l∑
j=0

j!

(
k

j

)(
l

j

)
πk+l−2j(Z

k+l−2j).

Wick’s formula explains this nicely. We have one group consisting of Z repeated k
times and a second group consisting of Z repeated l times. Then we can have any
number of matchings j where 0 6 j 6 k ∧ l, and to have precisely j matchings we
choose j elements from the first group, j from the second, and then can match within
those two groups exactly j! ways. This explains the combinatorial terms in the sum,
and when there is exactly j matchings there are k − j + l − j unmatched Z’s whose
product we then project into the corresponding chaos. This completes the proof for
the n = 1 case, and now for the n > 1 case simply expand out the identity

HkHl =

n∏
i=1

HkiHli .
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Proof. Since the multi-dimensional Hermite polynomials are products of the one-
dimensional ones it is enough to study the n = 1 case. First note that Hk(x)Hl(x) is
a polynomial of degree k + l, thus it can be uniquely decomposed into a sum

Hk(x)Hl(x) =

k+l∑
m=0

amHm(x)

for some constants am that we will now compute. Of course we already know ak+l = 1
since Hk and Hl are both monic, but the following argument will take care of that
case as well. Differentiate i times and use the differentiation formula for Hermite
polynomials to obtain

Di(HkHl) =

k+l∑
m=0

am
m!

(m− i)!Hm−i

with the convention that H−p = 0 for p > 0. Since all Hermite polynomials but H0 = 1
are mean zero with respect to the Gaussian measure P1, it follows that

am =
1

m!
E[Dm(HkHl)(Z)]

By the Leibniz rule we have

Dm(HkHl) =

m∑
i=0

(
m

i

)
DiHkD

m−iHl =

m∑
i=0

(
m

i

)
k!

(k − i)!Hk−i
l!

(l −m+ i)!
Hl−m+i.

Now by the orthogonality of the Hermite polynomials it follows that the expected
value of the above is zero unless k − i = l−m+ i, or 2i = k − l+m. Thus k − l+m
must be even, which is equivalent to k− l and m having the same parity and is in turn
equivalent to k + l and m having the same parity. Thus we can write m = k + l − 2j
for j > 0. Since 0 6 i 6 m and 2i = k − l + m this also requires −m 6 k − l 6 m,
which in terms of j requires j 6 k and j 6 l. Thus for 0 6 j 6 k∧ l we have i = k− j,
k − i = j, and l −m+ i = j, so that

E[Dk+l−2j(HkHl)(Z)] =

(
k + l − 2j

k − j

)
k!

j!

l!

j!
j!,

with the last j! term in the product following from E[H2
p ] = p! for p > 0. Therefore

we obtain

ak+l−2j =
k!l!

j!(k − j)!(l − j)! = j!

(
k

j

)(
l

j

)
,

with 0 6 j 6 k ∧ l. This leads to the n = 1 identity

Hk(x)Hl(x) =

k∧l∑
j=0

j!

(
k

l

)(
j

l

)
Hk+l−2j(x).

Now for n > 1 use this identity and expand out the defining relation

HkHl =

n∏
i=1

HkiHli .
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Note that the restriction on j in the summation formula ensures that the inputs
to the binomial coefficients are valid. If we adopt the convention that all binomial
or multinomial coefficients are zero if the inputs are not valid then we can drop the
restriction on j entirely, which turns out to be useful in later computations. This
allows us to write

HkHl =
∑
j∈Zn+

j!

n∏
i=1

(
ki
ji

)(
li
ji

)
Hk+l−2j =

|k|∧|l|∑
r=0

∑
j∈Snr

j!

n∏
i=1

(
ki
ji

)(
li
ji

)
Hk+l−2j .

The second equality groups the terms according to the order of the Wiener chaos
they appear in. Using these formulas we come to the following more general product
formula.

〈defn:contraction_one〉
Definition 2.2. Let a ∈ RS

n
p and b ∈ RS

n
q and 0 6 r 6 p∧ q. Define a?r b ∈ Sp+q−2r

by (
p+ q − 2r

k

)
(a ?r b)k =

∑
m∈Snr
l∈Snp−r

(
r

m

)(
p− r
l

)(
q − r
k − l

)
al+mbk−l+m,

for k ∈ Snp+q−2r. In the case p = q = r the operation produces the number

(a ?p b) =
∑
m∈Snp

(
p

m

)
ambm = 〈a, b〉Snp ,

the latter by (6.2).

This definition produces the following compact formula for the product of discrete
stochastic integrals.

〈prop:discrete_stoch_integral_product_orig〉Proposition 2.3. Let a ∈ RS
n
p and b ∈ RS

n
q . Then

Ip(a)Iq(b) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(a ?r b).

Proof. We simply use the product formula of Proposition 2.1 to expand out the sto-
chastic integrals. This gives

Ip(a)Iq(b) =
∑
k∈Snp

∑
l∈Snq

(
p

k

)(
q

l

)
akblHkHl

=
∑
k,l

p∧q∑
r=0

∑
j∈Snr

akbl

(
p

k

)(
q

l

)
j!

n∏
i=1

(
ki
ji

)(
li
ji

)
Hk+l−2j

=

p∧q∑
r=0

∑
j∈Snr

∑
u∈Snp−r
v∈Snq−r

au+jbv+j

(
p

u+ j

)(
q

v + j

)
j!

n∏
i=1

(
ui + ji
ji

)(
vi + ji
ji

)
Hu+v,

where in the last equality we used the substitution u = k− j, v = l− j. The definition
of the multinomial coefficients implies that(

p

u+ j

)
n∏
i=1

(
ui + ji
ji

)
=

p!

(p− r)!
1

j!

(
p− r
u

)
,
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with a similar expression with q and v replacing p and u, respectively, leading to

j!

(
p

u+ j

)(
q

v + j

)
n∏
i=1

(
ui + ji
ji

)(
vi + ji
ji

)
= r!

(
p

r

)(
q

r

)(
r

m

)(
p− r
u

)(
q − r
v

)
.

Substituting this into the above produces the identity

Ip(a)Iq(b) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

) ∑
j∈Snr

(
r

m

) ∑
u∈Snp−r
v∈Snq−r

au+jbv+j

(
p

u+ j

)(
q

v + j

)
Hu+v.

Now simply redefine k and l by k = u + v, l = u, so that k ∈ Sp+q−2r and l ∈ Snp−r,
and change variables in the last sum to obtain

Ip(a)Iq(b) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

) ∑
k∈Snp+q−2r

 ∑
m∈Snr
l∈Snp−r

(
r

m

)(
p− r
l

)(
q − r
k − l

)
al+mbk−l+m

Hk.
To complete the proof simply compare this last equality with Definition 2.2 and the
definition (6.1) of the discrete stochastic integral.

An immediate corollary of the product formula is an expression for the variance of
||DIp(a)||2Rn .

〈prop:DIp_variance〉Proposition 2.4. For p > 1 and a ∈ RS
n
p

Var

(
1

p
||DIp(a)||2Rn

)
=

1

p2

p−1∑
r=1

r2(r!)2

(
p

r

)4

(2p− 2r)! ||a ?r a||2Sn2p−2r
,

where the latter norm is defined by (6.2).

Proof. By formula (6.4) and Proposition 2.3 we have

||DIp(a)||2Rn = p2
n∑
i=1

Ip−1(a·+ei)
2 = p2

n∑
i=1

p−1∑
r=0

r!

(
p− 1

r

)2

I2p−2−2r(a·+ei ?r a·+ei)

= p2
p−1∑
r=0

r!

(
p− 1

r

)2

I2p−2−2r

(
n∑
i=1

a·+ei ?r a·+ei

)
.

The last equality is by linearity of the stochastic integral. The r = p− 1 term is

p2
n∑
i=1

(p− 1)!
∑

l∈Snp−1

(
p− 1

l

)
a2
l+ei = E[||DIp(a)||2Rn ],

which follows from (6.2) (and was already proved in Lemma 1.3). Thus the r = p− 1
term is a constant and hence irrelevant for the variance, and since the remaining terms
are mean zero and uncorrelated for different r we obtain

Var(||DIp(a)||2Rn) = p4
p−2∑
r=0

(r!)2

(
p− 1

r

)4

(2p− 2− 2r)!

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

a·+ei ?r a·+ei

∣∣∣∣∣
∣∣∣∣∣
2

Sn2p−2−2r

,
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the latter following by (6.2). Now shift the indexing of r by one and combine the p4

term with the binomial coefficient to obtain

Var(||DIp(a)||2Rn) =

p−1∑
r=1

r2(r!)2

(
p

r

)4

(2p− 2r)!

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

a·+ei ?r−1 a·+ei

∣∣∣∣∣
∣∣∣∣∣
2

Sn2p−2r

.

Finally, we only need to show that

n∑
i=1

a·+ei ?r−1 a·+ei = a ?r a.

This is a straightforward consequence of Definition 2.2 for the ? operation and the
multinomial identity (6.5).

Using the product formula for Hermite polynomials we also get a similar expression
for the excess kurtosis of a discrete stochastic integral.

〈prop:Ip_kurtosis〉Proposition 2.5. For p > 1 and a ∈ RS
n
p

E[Ip(a)4]− 3 E[Ip(a)2]2 =
3

p

p−1∑
r=1

r(r!)2

(
p

r

)4

(2p− 2r)! ||a ?r a||2Sn2p−2r

Proof. Expand out Ip(a)4 using the defining formula (6.3) for Ip(a) and observe that
because of the orthogonality of the Hermite polynomials the only terms that are not
mean zero are those in which there are two pairs of distinct indices or all four indices
are the same. Thus

E[Ip(a)4] = 3
∑

k,l∈Snp
k 6=l

(
p

k

)2(
p

l

)2

a2
ka

2
l E[H2

kH2
l ] +

∑
k∈Snp

(
p

k

)4

a4
k E[H4

k].

On the first term the factor of 3 is because there are three distinct ways to choose
which of the four indices forms the matching. !!!NEED TO FINISH!!!

The proof of Theorem 1.1 is now a straightforward consequence of the last two
propositions.

Proof of Theorem 1.1. Theorem 1.1 follows by direct comparison of the formulas in
Propositions 2.4 and 2.5. Since the ratio of each term in the variance to the corre-
sponding term in the excess kurtosis is r/3q, the left hand inequality follows from
r 6 p − 1. Similarly, since the ratio of each term in κ4(Ip(a))(q − 1)/3q (κ4(Ip(a))
being the excess kurtosis) to the corresponding term in the variance is (q − 1)/r, the
right hand inequality follows from r > 1.

3 Tensorization

In this section we redefine and reprove the four moment theorem using the language
of tensors. This is a more natural formulation in the infinite-dimensional setting and
also highlights the role that discrete stochastic integrals play as adjoints to the higher
order Malliavan derivatives. The proof is also less combinatorial than in the previous
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section and is of interest for that reason alone. Recall that we use the shorthand
notation [n] = {1, . . . , n}, and for integers p > 1 we define the space of p-tensors by

(Rn)⊗p = {K : [n]p → R}.

We redefine Ip as an operator Ip : (Rn)⊗p → L2(Pn) on p-tensors by

Ip(K) :=
∑
q∈[n]p

Kqπp(Zq1 . . . Zqp) (6.6) eq:Ip_tensors

and we will show how it is consistent with definition (6.1). By definition (6.6) Ip(K)
is also an element of the pth Wiener chaos, but the sum has redundancy because the
terms πp(Zq1 . . . Zqp) only depend on the number of times that each i ∈ [n] appears
within q. To deal with this we make the following definition.

?〈def:counts_vector〉?Definition 3.1. For q ∈ [n]p and i ∈ [n], let ci(q) = |{l : ql = i}| be the number of
times that i appears in q, and c(q) = (c1(q), . . . , cn(q)) ∈ Zn+ be the counts vector of
q.

Note that q ∈ [n]p implies c(q) ∈ Snp , but the mapping c : [n]p → Snp is not
invertible. However c(q) = c(q′) iff q and q′ are permutations of one another, i.e. there
exists a permutation σ of [p] such that σ(q) := (qσ(1), . . . , qσ(p)) = q′. In particular, the
number of elements q′ ∈ [n]p with c(q) = c(q′) is given by the multinomial coefficient(

p

c(q)

)
.

Now in L2(Pn) we have the identity

πp(Zq1 . . . Zqp) = Hc(q)(Z),

therefore (6.6) reduces to

Ip(K) =
∑
q∈[n]p

KqHc(q)(Z) =
∑
k∈Snp

Hk(Z)
∑

q∈[n]p:
c(q)=k

Kq. (6.7) eq:Ip_other_formulation

Hence by defining a(K) ∈ Snp by(
p

k

)
a(K)k :=

∑
q∈[n]p:
c(q)=k

Kq

we see that Ip(a(K)) = Ip(K). Conversely, an a ∈ Snp can be associated with several
p-tensors that produce the same stochastic integral, but the most natural one is the
symmetric p-tensor K(a) given by

K(a)q = ac(q).

By defining K(a) in this way we see that (6.7) implies Ip(K(a)) = Ip(a), thus proving
the equivalence of definitions (6.6) and (6.1). This also explains why we defined (6.1)
with the multinomial coefficients embedded into the summation. Equation (6.7) also
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shows that it is enough to restrict the definition of Ip as an operator on p-tensors to
the symmetric p-tensors. The space of symmetric p-tensors is denoted by

(Rn)�p = {K : [n]p → R such that Kq = Kσ(q) for all permutations σ of [p]}.

All p-tensors K ∈ (Rn)⊗p can be naturally symmeterized into an element K̃ ∈ (Rn)�p

by the map

K̃q =

(
p

c(q)

)−1 ∑
q′:c(q′)=c(q)

Kq,

and thus from (6.7) we see that Ip(K) = Ip(K̃) for all p-tensors K. As an operator
on symmetric p-tensors a natural way to write it is

Ip(K) =
∑

q∈[n]�p

(
p

c(q)

)
KqHc(q)(Z) (6.8) eq:Ip_symmetric

where [n]�p is the ordered subset of [n]p given by

[n]�p = {q ∈ [n]p : q1 6 q2 6 . . . 6 qp}.

Equation (6.8) holds by representing all elements in [n]p by their unique ordered ver-
sion, which is sufficient for symmetric p-tensors. From this representation it is also
straightforward to prove the isometry formula

E[Ip(K)Iq(L)] =

{
p!(K · L), p = q

0, p 6= q
(6.9) eq:Ip_tensor_isometry

Equation (6.6) and the first equality of (6.7) partially explain why we regard Ip(K)
as a stochastic integral of order p. The tensor K is a function on [n]p and the terms
Hc(q)(Z) are random weights on [n]p that are orthogonal in the L2(Pn) space, and we
can regard the sum as an integral of the function against these weights. The second
equality of (6.7) is the general fact that integration of functions on product spaces is
equivalent to the integration of their symmeterizations.

Furthermore, just as when we have a function of several variables on a product
space we can choose not to integrate out some of the variables, we can do the same
with these summations. That is, for 1 6 m 6 p we can also define the operator Ip−m
acting on (Rn)�p as the summation over the last p−m variables of K. What remains
is a function of m variables, so that Ip−m : (Rn)�p → (Rn)�m. For r ∈ [n]m the
formal definition is

Ip−m(K)r :=
∑

s∈[n]p−m

Kr⊕sHc(s)(Z), (6.10) eq:Ip_partial

where r ⊕ s is the obvious concatenation of r and s into an element of [n]p. Note
that Ip−m(K) is a random element of (Rn)�m and that each component is an element
of the (p − m)th Wiener chaos, just as Ip(K) is a random element of R that is in
the pth Wiener chaos. Also note that this definition relies on K being symmetric
so that the result is independent of which p − m components of [n]p are summed
over. If K ∈ (Rn)⊗p then Ip−m(K) is defined only after symmeterization, i.e. by
Ip−m(K) := Ip−m(K̃). An alternative way to write (6.10) coordinatewise is

Ip−m(K)r = Ip−m(Kr⊕•) (6.11) eq:Ip_partial_coordinatewise
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where Kr⊕• is the (p − m)-tensor s 7→ Kr⊕s. Alternatively, instead of writing the
formula coordinatewise we can write the tensor formula

Ip−m(K) =
∑

r∈[n]m

∑
s∈[n]p−m

Kr⊕sHc(s) er1 ⊗ . . .⊗ erm

=
∑

r∈[n]m

Ip−m(Kr⊕•)er1 ⊗ . . .⊗ erm , (6.12) ?eq:Ip_partial_as_tensor?

The latter equality makes it clear that Ip−m(K) is a random m-tensor. Using the
symmetry of K we can reduce the inner sum to its ordered version, meaning we can
also write Ip−m(K) as

Ip−m(K) =
∑

r∈[n]m

∑
s∈[n]�(p−m)

(
p−m
c(s)

)
Kr⊕sHc(s)er1 ⊗ . . .⊗ erm . (6.13) eq:Ip_partial_inner_ordered

With the definitions set we now prove some useful properties of stochastic integrals.

〈prop:Ip_properties〉Proposition 3.2. The following hold:
〈prop:Ip_properties:1〉 (a) for K ∈ (Rn)�p and 0 6 m 6 p

DmIp(K) =
p!

(p−m)!
Ip−m(K),

〈prop:Ip_properties:2〉 (b) for v = (v1, . . . , vn) ∈ Rn and v⊗p defined by v⊗pq = vq1 . . . vqp = v
c1(q)
1 . . . v

cn(q)
n

Ip(v
⊗p) = Hp(v

′Z),

〈prop:Ip_properties:3〉 (c) for every random variable f ∈ L2(Pn) there exists a sequence of p-tensors Kp(f) ∈
(Rn)�p such that

f = E[f ] +

∞∑
p=1

1

p!
Ip(K

p(f)),

〈prop:Ip_properties:4〉 (d) for every f ∈ Dp,2 and K ∈ (Rn)⊗p

E[Dpf ·K] = E[fIp(K)]

where on the left hand side · refers to the Hilbert-Schmidt inner product.
〈prop:Ip_properties:5〉 (e) Stroock’s formula: if f ∈ D∞,2 then

f = E[f ] +

∞∑
p=1

1

p!
Ip(E[Dpf ]).

Part (d) says that the stochastic integral Ip(K) is the adjoint to the Malliavin
derivative Dpf . This is yet another natural reason for regarding Ip(K) as a multiple
stochastic integral.

Proof. For part (a) we first prove the m = 1 case. This follows from the differentiation
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formulas for the Hermite polynomials, which give

DIp(K) =
∑
q∈[n]p

Kq

n∑
i=1

ci(q)Hc(q)−eiei

=

n∑
i=1

∑
q∈[n]�p

(
p

c(q)

)
ci(q)KqHc(q)−eiei

=

n∑
i=1

∑
q∈[n]�p

1 {ci(q) > 0} p

(
p− 1

c(q)− ei

)
KqHc(q)−eiei

= p

n∑
i=1

∑
q∈[n]�(p−1)

(
p− 1

c(q)

)
Ki⊕qHc(q)ei

= pIp−1(K).

The second equality uses the symmetry of K to reduce the sum to the ordered chamber
[n]�p. The third equality is straightforward algebra for the multinomial coefficients,
while the fourth uses that every element of [n]�p that contains an i can be uniquely
written as i ⊕ q, where q is an ordered element of [n]�(p−1). The last equality uses
(6.13). This completes the proof for m = 1, and the proof for m > 1 follows by
induction.

For part (b) first expand out the term (v′Z)p as

(v′Z)p = (v1Z1 + . . .+ vnZn)p =
∑
q∈[n]p

vq1 . . . vqpZq1 . . . Zqp .

Now recall (3.13) which says that for centered Gaussians X we have Hp(X) = πp(X
p).

Apply πp to both sides to obtain

Hp(v
′Z) =

∑
q∈[n]p

vq1 . . . vqpπp(Zq1 . . . Zqp) = Ip(v
⊗p).

Part (c) is simply a restatement of the Wiener chaos decomposition of Chapter 3,
Corollary 2.2 that

f =
∑
k∈Zn+

E[fHk]

k!
Hk.

For p > 1 and q ∈ [n]p set Kp(f)q = E[fHc(q)]. Then each Kp(f) is a symmetric
p-tensor and

1

p!
Ip(K

p) =
1

p!

∑
q∈[n]p

E[fHc(q)]Hc(q) =
1

p!

∑
k∈Snp

(
p

k

)
E[fHk]Hk =

∑
k∈Snp

E[fHk]

k!
Hk.

For part (d), note that the recursion formula Hk+1(x) = xHk(x) − kHk−1(x) =
xHk(x)−H ′k(x) = (x− ∂)Hk(x) for the Hermite polynomials implies that

Aq1Aq2 . . . Aqp1 = Hc(q),

where Ai = Zi −Di for i ∈ [n]. Therefore by linearity we can rewrite Ip(K) as

Ip(K) =
∑
q∈[n]p

Aq1 . . . AqpKq = Ap ·K,
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where Ap is the formal p-tensor whose q-th coordinate is Aq1 . . . Aqp and · is the
Hilbert-Schmidt inner product. Consequently, by applying the integration-by-parts
formula (2.3) multiple times we obtain

E[fIp(K)] =
∑
q∈[n]p

E[fAq1 . . . AqpKq] =
∑
q∈[n]p

E[(Dqp . . . Dq1f)Kq] = E[Dpf ·K].

Note that the last equality uses equality of mixed partials to reverse the order of the
derivatives.

Stroock’s formula of part (e) is now a consequence of parts (c) and (d). Define
Kp(f)q = E[fHc(q)] as in the proof of part (c). As in part (d), write this as Kp(f)q =
E[fAq1 . . . Aqp1] = E[f(Ap1)q], or more succintly Kp(f) = E[fAp1]. Thus integration-
by-parts gives Kp(f) = E[fAp1] = E[Dpf1] = E[Dpf ], so the statement of part (c)
completes the proof.

It is worth making note of the notation used in the proof of part (d). It says that
Ip(K) can be rewritten as the tensor inner product,

Ip(K) = Ap ·K

and then the statement of part (d) can be rephrased as

E[Dpf ·K] = E[fAp ·K],

This formulation very explicitly shows that Ip is an adjoint operator to Dp. The formal
p-tensor Ap can also be used to represent the tensor of Hermite polynomials, namely

(Ap1)q = Hc(q) = πp(Zq1 . . . Zqp).

In tensor notation this identity can be rephrased as Ap1 = πp(Z
⊗p). Using this

notation we also have the following relation.

〈cor:Ip_anti_derivative〉Corollary 3.3. Let K be a symmetric p-tensor and 0 6 m 6 p. Then Am ·Ip−m(K) =
Ip(K), and in particular Am ·DmIp(K) = p!/(p−m)!Ip(K).

Proof. By definition of Am and Ip−m(K) we have

Am · Ip−m(K) =
∑

q∈[n]m

Amq Ip−m(K)q =
∑

q∈[n]m

∑
s∈[n]p−m

Kq⊕sA
m
q Hc(s)(Z)

=
∑

q∈[n]m

∑
s∈[n]p−m

Kq⊕sAq1 . . . AqmAs1 . . . Asp−m1

=
∑

q∈[n]m

∑
s∈[n]p−m

Kq⊕sA
p
q⊕s1

=
∑

q∈[n]m

∑
s∈[n]p−m

Kq⊕sHq⊕s(Z)

= Ip(K).

The second property follows from Proposition 3.2, part (a).



106 CHAPTER 6. FOUR MOMENT THEOREMS

Stroock’s formula can be used to give a straightforward, calculus based proof of
Proposition 2.3 for the product of stochastic integrals that does not rely on Wick’s
formula. Indeed, for a p-tensor K and a q-tensor L it is clear that Ip(K) and Iq(L)
each being polynomials implies that Ip(K)Iq(L) is in D∞,2. Computing higher order
derivatives of Ip(K)Iq(L) is done with a Leibniz rule, although some care must be
taken since it is a tensor version of the rule that is needed. We derive this alternate
proof of the product formula below in Proposition 3.6, but first we review the necessary
tensor operations, including the natural contraction operator ⊗r that replaces the ?r
operation of Definition 2.2.

Definition 3.4. Given a p-tensor L and a q-tensor K and 0 6 r 6 p ∧ q, their r
contraction is the p− r + q − r = p+ q − 2r tensor defined coordinate-wise by

(K ⊗r L)a⊕b =
∑
l∈[n]r

Kl⊕aLl⊕b,

where a ∈ [n]p−r and b ∈ [n]q−r and ⊕ is the concatenation operator on integer vectors.
As a tensor we can also write the contraction as

K ⊗r L =
∑

a∈[n]p−r

b∈[n]q−r

((K•⊕a) · (L•⊕b)) (ea1 ⊗ . . .⊗ eap−r ⊗ eb1 ⊗ . . .⊗ ebq−r ),

and for K and L symmetric we may rewrite this equality by using the identity (K•⊕a) ·
(L•⊕b) = (Ka⊕•) · (Lb⊕•).

In the case r = 0 we usually write ⊗0 = ⊗ for shorthand. Note that K ⊗ L is an
“outer product” of the two tensors with entries

(K ⊗ L)a⊕b = KaLb

for a ∈ [n]p, b ∈ [n]q. Clearly then ⊗ is not a commutative operator, and in general
⊗r is not either. If K and L are both p-tensors then

K ⊗p L =
∑
a∈[n]p

KaLa = K · L,

where · is the Hilbert-Schmidt inner product. With this notation Z⊗p is the random
p-tensor with entires Z⊗pq = Zq1 . . . Zqp , and if we apply πp coordinate-wise we get
πp(Z

⊗p
q ) = Hc(q)(Z). This leads to the suggestive notation

Ip(K) =
∑
q∈[n]p

Kqπp(Z
⊗p
q ) = πp(K · Z⊗p) = πp(K ⊗p Z⊗p).

Now if we think of D as a 1-tensor with entries Di and random variables F as 0-tensors,
then its gradient DF = D⊗F is a 1-tensor. More generally, if K is a random p-tensor
then DK = D⊗K is the (p+ 1)-tensor whose entries are the partial derivatives of the
entries of K. More generally, thinking of Dq as a q-tensor and K as a random p-tensor
then DqK = Dq ⊗K is the random (p+ q)-tensor whose entries are the mixed partial
derivatives of the entries of K.

Note that even if K and L are symmetric tensors then their contraction K ⊗r L
may not be. In fact, K ⊗r K may not even be symmetric. Therefore after computing
the contraction one may symmeterize it, for which we use the notation

K⊗̃rL := K̃ ⊗r L.



3. TENSORIZATION 107

When K and L are symmetric tensors the contraction can be defined with some extra
freedom. If σ is a permutation of [p] and η is a permutation of [q], then by symmetry
we have

(K ⊗r L)a⊕b =
∑
l∈[n]r

Kl⊕aLl⊕b =
∑
l∈[n]r

Kσ(l⊕a)Lη(l⊕b).

That is to say, the symmetry of K and L allows us to arbitrarily choose which indices
we sum over and which we keep fixed, and the choice can be made separately for both
K and L.

From these definitions follows an isometry formula for discrete stochastic integrals.

〈prop:stoch_integral_isometry〉Proposition 3.5. Let K be a symmetric p-tensor and L be a symmetric q-tensor
and 0 6 m 6 p, 0 6 l 6 q. Then for 0 6 r 6 p ∧ q, E[Ip−m(K) ⊗r Iq−l(K)] is a
(m+ l − 2r)-tensor equal to

E[Ip−m(K)⊗r Iq−l(L)] =

{
(p−m)!(K ⊗p−m+r L), p−m = q − l
0, p−m 6= q − l

.

Proof. Using formula (6.11) gives, for a ∈ [n]m−r and b ∈ [n]l−r,

(Ip−m(K)⊗r Iq−l(L))a⊕b =
∑
s∈[n]r

Ip−m(K)s⊕aIq−l(L)s⊕b

=
∑
s∈[n]r

Ip−m(Ks⊕a⊕•)Iq−l(Ls⊕b⊕•).

Now using the isometry (6.9), since p−m = q − l we have

E[(Ip−m(K)⊗r Iq−l(L))a⊕b] = (p−m)!
∑
s∈[n]r

(Ks⊕a⊕•) · (Ls⊕b⊕•)

= (p−m)! (K ⊗p−m+r L)a⊕b .

The last equality follows simply by unravelling the definition of the tensor product
and the contraction.

With these definitions in hand we now turn our attention to the following formula
for the product of stochastic integrals.

〈prop:discrete_stoch_integral_product〉Proposition 3.6. Let K be a symmetric p-tensor and L be a symmetric q-tensor and
0 6 m 6 p, 0 6 l 6 q. Then for 0 6 s 6 p ∧ q

Ip−m(K)⊗s Iq−l(L) =

(p−m)∧(q−l)∑
r=0

r!

(
p−m
r

)(
q − l
r

)
Ip+q−m−l−2r(K ⊗r+s L).

Note that the case m = l = s = 0 is an identity of random variables and is the
exact analogue of the earlier Proposition 2.3. The case m = l = s = 1 is also an
identity of random variables and will be used shortly to compute the Wiener chaos
expansion of the squared norm of the gradient DIp(K). In general, Proposition 3.6 is
a statement of the equality of two random m+ l − 2s tensors.
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Proof. We first prove the statement in the case m = l = s = 0 and then build from
there. We use Stroock’s formula, part (e) of Proposition 3.2. Since Ip(K)Iq(L) is a
polynomial of degree p+ q Stroock’s formula implies that

Ip(K)Iq(L) = E[Ip(K)Iq(L)] +

p+q∑
k=1

1

k!
Ik(E[Dk(Ip(K)Iq(L))]), (6.14) eqn:Stroock_for_Ip

although we will soon see that for many k these terms are zero. The higher order
derivative of a product is calculated by the Leibniz rule: if f(Z) and g(Z) are in Dk,2

then

Dk(fg) =

k∑
j=0

(
k

j

)
Djf ⊗Dk−jg.

Note that each term in the sum is a k-tensor, as one would expect. Specializing
Leibniz’s rule to the product of Ip(K) and Iq(L) and using the differentiation formula
of Proposition 3.2, part (a), we obtain

Dk(Ip(K)Iq(L)) =

k∧p∧q∑
j=0

(
k

j

)
p!

(p− j)!
q!

(q − k + j)!
Ip−j(K)⊗ Iq−k+j(L).

Now we take expected values. By Proposition 3.5 the only term that is not mean zero
is for j such that p− j = q − k + j. If this happens then Proposition 3.5 implies

E[Dk(Ip(K)Iq(L))] =

(
k

j

)
p!

(p− j)!
q!

(p− j)! (p− j)!(K ⊗p−j L). (6.15) eqn:expectation_Dk

Now p − j = q − k + j is equivalent to 2j = p − q + k, which in turn implies that
p− q and k must have the same parity and thus p+ q and k must also have the same
parity. Thus there is (exactly) one term in Dk(Ip(K)Iq(L)) with non-zero expectation
if and only if k = p + q − 2r for some 0 6 r 6 p + q. But since also 0 6 j 6 k, by
inserting j = 0 and j = k into 2j = p− q + k we conclude −k 6 p− q 6 k. Inserting
k = p + q − 2r into both sides yields r 6 p and r 6 q. Thus there is a non-zero
expectation only when k = p+ q − 2r with 0 6 r 6 p ∧ q. We use this to rewrite the
product formula (6.14) as

Ip(K)Iq(L) =

p∧q∑
r=0

1

(p+ q − 2r)!
Ip+q−2r(E[Dp+q−2r(Ip(K)Iq(L))]).

Note that we were able to remove the expectation term because it only entered in if
p = q in the first place, and if p = q then the r = p ∧ q = p = q case handles the
expectation. Now k = p+q−2r and 2j = p−q+k imply that j = p−r, and inserting
these expressions into (6.15) this is equivalent to

Ip(K)Iq(L) =

p∧q∑
r=0

1

(p+ q − 2r)!

(
p+ q − 2r

p− r

)
p!

r!

q!

r!
r!Ip+q−2r(K ⊗r L)

=

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(K ⊗r L).
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This completes the proof of the m = l = s = 0 case. The proof of the general case
is now built upon this one. Indeed, since Ip−m(K) is an m-tensor and Iq−l(K) is an
l-tensor, for a ∈ [n]m−s and b ∈ [n]l−s we have

(Ip−m(K)⊕s Iq−l(L))a⊕b =
∑
u∈[n]s

Ip−m(K)u⊕aIq−l(L)u⊕b

=
∑
u∈[n]s

Ip−m(Ku⊕a⊕•)Iq−l(Lu⊕b⊕•).

The second equality is by equation 6.11 that defines the multiple stochastic integrals
coordinatewise. Now Ku⊕a⊕• is a (p−m)-tensor for each fixed u and a, while Lu⊕b⊕•
is a (q− l)-tensor for each fixed u and b. Therefore the previous “m = l = s = 0” case
of the proposition can be applied, giving

Ip−m(Ku⊕a⊕•)Iq−l(Lu⊕b⊕•)

=

(p−m)∧(q−l)∑
r=0

r!

(
p−m
r

)(
q − l
r

)
Ip+q−m−l−2r(Ku⊕a⊕• ⊕r Lu⊕b⊕•).

Now by linearity of the stochastic integral, in order to complete the proof it is enough
to show that ∑

u∈[n]s

Ku⊕a⊕• ⊕r Lu⊕b⊕• = (K ⊗r+s L)a⊕b.

This is a straightforward consequence of the definition of the contraction of tensors,
which completes the proof.

With the product formula in hand we can now reprove Propositions 2.4 and 2.5
using the language of tensors. Although the statements are virtually unchanged we
include them for the sake of completeness. The proofs, however, are less combinatorial
and more straightforward from an analytic point of view.

Proposition 3.7. For p > 1 and a p-tensor K we have

Var

(
1

p
||DIp(K)||2Rn

)
=

1

p2

p−1∑
r=1

r2(r!)2

(
p

r

)4

(2p− 2r)!||(K ⊗r K)||2,

and for the kurtosis

E[Ip(K)4]− 3 E[Ip(K)2]2 =
3

p

p−1∑
r=1

r(r!)2

(
p

r

)4

(2p− 2r)!||(K ⊗r K)||2.

Proof. For the variance formula begin with DIp(K) = pIp−1(K), which is a 1-tensor.
Its squared norm is therefore equal to its 1-contraction with itself, leading to the
identity

||DIp(K)||2Rn = p2(Ip−1(K)⊗1 Ip−1(K))

= p2
p−1∑
r=0

r!

(
p− 1

r

)2

I2p−2−2r(K ⊗r+1 K)

=

p∑
r=1

r(r!)

(
p

r

)2

I2p−2r(K ⊗r K), (6.16) eq:DIp_expansion
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with the second equality following by Proposition 3.6. The r = p term is simply

p(p!)(K ⊗p K) = p(p!)(K ·K) = p2 E[Ip−1(K)⊗1 Ip−1(K)] = E
[
||DIp(K)||2Rn

]
.

The second equality is from Proposition 3.5, while the third is from DIp(K) =
pIp−1(K). Thus the r = p term is constant and hence irrelevant for the variance,
while the remaining terms are all mean zero since they are stochastic integrals. Now
since the terms for different r are uncorrelated, and by the isometry (6.9), we obtain

Var

(
1

p
||DIp(K)||2Rn

)
=

1

p2

p−1∑
r=1

r2(r!)2

(
p

r

)4

(2p− 2r)!||K ⊗r K||2,

which completes the proof for the variance formula. For the kurtosis formula use the
relation A ·DIp(k) = pIp(K) from Corollary 3.3 and the integration by parts formula
from Chapter 2, (2.3) to compute

E[Ip(K)4] =
1

p
E[(A ·DIp(K))Ip(K)3] =

1

p

n∑
i=1

E[DiIp(K)3DiIp(K)]

=
3

p

n∑
i=1

E[3Ip(K)2(DiIp(K))2]

=
3

p
E[Ip(K)2||DIp(K)||2Rn ].

Now use Proposition 3.6 to expand Ip(K)2 and (6.16) to expand ||DIp(K)||2Rn , and
use the isometry (6.9) to compute that the expectation of their product is

E[Ip(K)4] =
3

p

p∑
r=1

r(r!)2

(
p

r

)4

(2p− 2r)!||K ⊗r K||2.

Similarly, using Proposition 3.6 to compute E[Ip(K)2]2 (equivalently use (6.9)) gives

E[Ip(K)2]2 = (p!)2(K ·K)2 = (p!)2||K ⊗p K||2.

Combining these two equations we obtain

E[Ip(K)4]− 3E[Ip(K)2]2 =
3

p

p−1∑
r=1

(r!)2

(
p

r

)4

(2p− 2r)!||K ⊗r K||2,

as claimed.

From here the proofs of Theorem 1.1 and Corollary 1.2 are exactly the same, lead-
ing to the conclusion that if p > 1 then no element of the pth Wiener chaos is normally
distributed. However, as we will see in the next section, this does not proclude that
there is a sequence of elements in the pth Wiener chaos whose distribution converges to
the normal one. This is in fact possible, and the ideas of the fourth moment theorem
can be extended to give a sufficient condition for when it is true.

4 Convergence to Normality

5 Extensions to Correlated Gaussians
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Problems

1. Show that S2 − 1 is in the second Wiener chaos, where

S2 =
1

n− 1

n∑
i=1

(Zi − Z̄)2.

Since it is already a quadratic you only need to show that it is orthogonal to all
linear functions of the Zi. Alternatively you can use Exercise 14 of Chapter 3
by observing that

S2 =
1

n− 1
Z′(I − n−111′)Z

where 1 = (1, . . . , 1) ∈ Rn is the vector of all ones.
2. Prove that for arbitrary k ∈ Zn+ and i ∈ {1, . . . , n} the Wiener chaos decom-

position of HkHei is HkHei = Hk+ei + kiHk−ei . Check that this agrees with
Proposition 2.1.

3. Derive the combinatorial proof of the multinomial identity(
p

k

)
=

n∑
i=1

(
p− 1

k − ei

)

for k ∈ Snp . You might want to start off by recalling the combinatorial proof of
the binomial identity (

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

4. Verify that the statement of either Proposition 2.3 or Proposition 3.6 implies
the statement of Proposition 2.1.

5. Use equation (6.8) to prove the isometry formula (6.9).
6. Verify that 2-tensors are just n × n matrices, and that if K is a 2-tensor then

its symmeterization K̃ is just K̃ = (K+K′)/2, where ′ denotes transpose. Also
check that if K and L are both 2-tensors then ⊗1 is just matrix multiplication
with K ⊗1 L = KL′.

7. To be finished still: find a sequence of n× n matrices Ak with tr(Ak) = 0 such
that Z′AkZ converges in law to a normal distribution as k →∞. Try the n = 2
case first and see if you can deduce a pattern.
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Chapter 7

Gaussian Processes

1 Basic Notions

Let T be a set, andX := {Xt}t∈T a stochastic process, defined on a suitable probability
space (Ω,F ,P), that is indexed by T .

Definition 1.1. We say thatX is a Gaussian process indexed by T when (Xt1 , . . . , Xtn)
is a Gaussian random vector for every t1, . . . , tn ∈ T and n > 1. The distribution of
X—that is the Borel measure RT 3 A 7→ µ(A) := P{X ∈ A}—is called a Gaussian
measure.

Lemma 1.2. Suppose X := (X1, . . . , Xn) is a Gaussian random vector. If we set T :=
{1, . . . , n}, then the stochastic process {Xt}t∈T is a Gaussian process. Conversely, if
{Xt}t∈T is a Gaussian process, then (X1, . . . , Xn) is a Gaussian random vector.

The proof is left as exercise.

Definition 1.3. If X is a Gaussian process indexed by T , then we define µ(t) := E(Xt)
[t ∈ T ] and C(s , t) := Cov(Xs , Xt) for all s, t ∈ T . The functions µ and C are called
the mean and covariance functions of X respectively.

〈lem:pos:def〉Lemma 1.4. A symmetric n × n real matrix C is the covariance of some Gaussian
random vector if and only if C is positive semidefinite. The latter property means that

z′Cz =

n∑
i=1

n∑
j=1

zizjCi,j > 0 for all z1, . . . , zn ∈ R.

Proof. Consult any textbook on multivariate normal distributions.

Corollary 1.5. A function C : T × T → R is the covariance function of some T -
indexed Gaussian process if and only if (C(ti , tj))16i,j6n is a positive semidefinite
matrix for all t1, . . . , tn ∈ T .

Definition 1.6. From now on we will say that a function C : T × T → R is positive
semidefinite when (C(ti , tj))16i,j6n is a positive semidefinite matrix for all t1, . . . , tn ∈
T .

115
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Note that we understand the structure of every Gaussian process by looking only at
finitely-many Gaussian random variables at a time. As a result, the theory of Gaussian
processes does not depend a priori on the topological structure of the indexing set T .
In this sense, the theory of Gaussian processes is quite different from Markov processes,
martingales, etc. In those theories, it is essential that T is a totally-ordered set [such
as R or R+], for example. Here, T can in principle be any set. Still, it can happen
that X has particularly-nice structure when T is Euclidean, or more generally, has
some nice group structure. We anticipate this possibility and introduce the following.

?〈def:stationary〉?Definition 1.7. Suppose T is an abelian group and {Xt}t∈T a Gaussian process
indexed by T . Then we use the additive notation for T , and say that X is stationary
when (Xt1 , . . . , Xtk ) and (Xs+t1 , . . . , Xs+tk ) have the same law for all s, t1, . . . , tk ∈ T .

The following is a simple result but still worth recording.

〈lem:stationary〉Lemma 1.8. Let T be an abelian group and let X := {Xt}t∈T denote a T -indexed
Gaussian process with mean function m and covariance function C. Then X is sta-
tionary if and only if m and C are “translation invariant.” That means that

m(s+ t) = m(t) and C(t1 , t2) = C(s+ t1 , s+ t2) for all s, t, t1, t2 ∈ T ,

using additive notation for the group operations on T .

?〈rem:stationary〉?Remark 1.9. In other words, Lemma 1.8 says that if X is stationary, then its mean
function is a constant and its covariance function is a function of the difference of its
variables; i.e.,

m(t) = m(0) and C(t1 , t2) = C(t1 − t2 , 0) for all s, t, t1, t2 ∈ T ,

still using additive notation for the group operations on T .

2 Examples of Gaussian Processes

§2.1 Gaussian Random Polynomials
〈subsec:Gauss:Poly〉Let Z0, . . . , Zn denote q + 1 i.i.d. standard normal random variables, where q > 0 is

an integer, and consider the Gaussian random polynomial X := {Xt}t∈R defined by

Xt := Z0 + Z1t+ Z2t
2 + · · ·+ Zqt

q for all t ∈ R.

Then, X is manifestly a mean-zero Gaussian process with covariance function

C(s , t) = 1 + st+ s2t2 + · · ·+ sqtq for all s, t ∈ R.

Clearly, t 7→ Xt is a.s. C∞ and all of its derivatives are themselves Gaussian random
polynomials. For example,

X ′t :=
dXt
dt

= Z1 + 2Z2t+ 3Z3t
2 + · · ·+ qZqt

q−1,

X ′′t :=
d2Xt
dt2

= 2Z2 + 6Z3t+ · · ·+ q(q − 1)Zqt
q−2,

etc. for all t ∈ R.



2. EXAMPLES OF GAUSSIAN PROCESSES 117

§2.2 Brownian Motion

By Brownian motion X, we mean a Gaussian process, indexed by R+ := [0 ,∞), with
mean function 0 and covariance function

C(s , t) := min(s , t) [s, t > 0].

In order to justify this definition, it suffices to prove that C is a positive semidefinite
function on T × T = R2

+. Suppose z1, . . . , zn ∈ R and t1, . . . , tn > 0. Then,

n∑
i=1

n∑
j=1

zizjC(ti , tj) =

n∑
i=1

n∑
j=1

zizj

∫ ∞
0

1[0,ti](s)1[0,tj ](s) ds

=

∫ ∞
0

∣∣∣∣∣
n∑
i=1

zi1[0,ti](s) ds

∣∣∣∣∣
2

> 0.

Therefore, Brownian motion exists.

§2.3 The Brownian Bridge

A Brownian bridge is a mean-zero Gaussian process, indexed by [0 , 1], and with co-
variance

C(s , t) = min(s , t)− st [0 6 s, t 6 1]. (7.1) Cov:BB

The most elegant proof of existence, that I am aware of, is due to J. L. Doob: Let B
be a Brownian motion, and define

Xt := Bt − tB1 [0 6 t 6 1].

Then, X := {Xt}06t61 is a mean-zero Gaussian process that is indexed by [0 , 1] and
has the covariance function of (7.1).

§2.4 The Ornstein–Uhlenbeck Process
〈subsec:OU〉An Ornstein–Uhlenbeck process is a stationary Gaussian process X indexed by R with

mean function 0 and covariance

C(s , t) = e−|t−s| [s, t ∈ R]. (7.2) Cov:OU

This is our first example of a stationary Gaussian process; stationarity itself is justified
by Lemma 1.8. It remains to prove that C is a positive semidefinite function. The
proof rests on the following well-known formula:1

e−|x| =
1

π

∫ ∞
−∞

eixa

1 + a2
da [x ∈ R]. (7.3) FT:Cauchy

Thanks to (7.3),

n∑
j=1

n∑
k=1

zjzkC(tj , tk) =
1

π

∫ ∞
−∞

da

1 + a2

n∑
j=1

n∑
k=1

zjzkeia(tj−tk)

=
1

π

∫ ∞
−∞

da

1 + a2

∣∣∣∣∣
n∑
j=1

zje
iatj

∣∣∣∣∣
2

> 0,

for every t1, . . . , tn ∈ R and z1, . . . , zn ∈ R.

1In other words, if Y has a standard Cauchy distribution on the line, then its characteristic
function is E exp(ixY ) = exp(−|x|).
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§2.5 Brownian Sheet

An N -parameter Brownian sheet X is a Gaussian process, indexed by RN+ := [0 ,∞)N ,
whose mean function is zero and covariance function is

C(s , t) =

n∏
j=1

min(sj , tj) [s := (s1, . . . , sN ), t := (t1, . . . , tN ) ∈ RN+ ].

Clearly, a 1-parameter Brownian sheet is Brownian motion; in that case, the existence
problem has been addressed. In general, we may argue as follows: For all z1, . . . , zn ∈
R and s1, . . . , sn ∈ RN+ ,

n∑
j=1

n∑
k=1

zjzk

N∏
`=1

min(s`j , s
`
k) =

n∑
j=1

n∑
k=1

zjzk

N∏
`=1

∫ ∞
0

1[0,s`j ]
(r)1[0,s`

k
](r) dr

=

n∑
j=1

n∑
k=1

zjzk

∫
RN+

N∏
`=1

1[0,s`j ]
(r`)1[0,s`

k
](r

`) dr.

Thus, we find that

n∑
j=1

n∑
k=1

zjzkC(sj , sk) =

∫
RN+

∣∣∣∣∣
n∑
j=1

N∏
`=1

z
1/N
j 1[0,s`j ]

(r`)

∣∣∣∣∣
2

dr > 0,

for all z1, . . . , zn ∈ R and s1, . . . , sn ∈ RN+ . This proves that the Brownian sheet
exists.

§2.6 Fractional Brownian Motion
〈subsec:fBm〉A fractional Brownian motion [or fBm] is a Gaussian process indexed by R+ that has

mean function 0, X0 := 0, and covariance function given by

E(|Xt −Xs|2) = |t− s|2α [s, t > 0], (7.4) Var:fBm

for some constant α > 0. The constant α is called any one the parameter, Hurst
parameter, index, or Hurst index of X.

Note that (7.4) indeed yields the covariance function of X: Since Var(Xt) =
E(|Xt −X0|2) = t2α, it follows that

|t− s|2α = E
(
X2
t +X2

s − 2XsXt
)

= t2α + s2α − 2Cov(Xs , Xt).

Therefore,

Cov(Xs , Xt) =
t2α + s2α − |t− s|2α

2
[s, t > 0]. (7.5) Cov:fBm

Direct inspection shows that (7.5) does not define a positive-definite function C when
α 6 0. This is why we have limited ourselves to the case that α > 0.

Note that an fBm with Hurst index α = 1/2 is a Brownian motion. The reason is
the following elementary identity:

t+ s− |t− s|
2

= min(s , t) [s, t > 0],

which can be verified by considering the cases s > t and t > s separately.
The more interesting “if” portion of the following is due to Mandelbrot and Van

Ness (1968).
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?〈th:fBm:exists〉?Theorem 2.1. An fBm with Hurst index α exists if and only if α 6 1.

Fractional Brownian motion with Hurst index α = 1 is a trivial process in the
following sense: Let N be a standard normal random variable, and define Xt := tN .
Then, X := {Xt}t>0 is fBm with index α = 1. For this reason, many experts do not
refer to the α = 1 case as fractional Brownian motion, and reserve the teminology
fBm for the case that α ∈ (0 , 1). Also, fractional Brownian motion with Hurst index
α = 1/2 is Brownian motion.

Proof. First we examine the case that α < 1. Our goal is to prove that

C(s , t) :=
t2α + s2α − |t− s|2α

2

is a covariance function.
Consider the function

Φ(t , r) := (t− r)α−(1/2)
+ − (−r)α−(1/2)

+ ,

defined for all t > 0 and r ∈ R, where a+ := max(a , 0) for all a ∈ R. Direct inspection
yields that

∫∞
−∞[Φ(t , r)]2 dr < ∞, since α < 1, and in fact a second computation on

the side yields ∫ ∞
−∞

Φ(t , r)Φ(s , r) dr = κC(s , t) for all s, t > 0, (7.6) Phi2

where κ is a positive and finite constant that depends only on α. In particular,

n∑
i=1

n∑
j=2

zizjC(ti , tj) =
1

κ

n∑
i=1

n∑
j=2

zizj

∫ ∞
−∞

Φ(ti , r)Φ(tj , r) dr

=
1

κ

∫ ∞
−∞

[
n∑
i=1

ziΦ(ti , r)

]2

dr > 0.

This proves the Theorem in the case that α < 1. We have seen already that theorem
holds [easily] when α = 1. Therefore, we now consider α > 1, and strive to prove that
fBm does not exist in this case.

The proof hinges on a technical fact which we state without proof; a proof can be
found in the next chapter and its exercises (see Problem XXX, p. XXX). Recall that
Ȳ is a modification of Y when P{Yt = Ȳt} = 1 for all t.

〈pr:KCT:Gauss〉Proposition 2.2. Let Y := {Yt}t∈[0,τ ] denote a Gaussian process indexed by T :=
[0 , τ ], where τ > 0 is a fixed constant. Suppose there exists a finite constant C and a
constant η > 0 such that

E
(
|Yt − Ys|2

)
6 C|t− s|η for all 0 6 s, t 6 τ . (7.7) ?cond:KCT:Gauss?

Then Y has a Hölder-continuous modification Ȳ . Moreover, for every non-random
constant ρ ∈ (0 , η/2),

sup
06s 6=t6τ

|Ȳt − Ȳs|
|t− s|ρ <∞ almost surely.
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We use Proposition 2.2 in the following way: Suppose to the contrary that there
existed an fBm X with Hurst parameter α > 1. By Proposition 2.2, X would have a
continuous modification X̄ such that for all ρ ∈ (0 , α) and τ > 0,

V (τ) := sup
06s 6=t6τ

|X̄t − X̄s|
|t− s|ρ <∞ almost surely.

Choose ρ ∈ (1 , α) and observe that∣∣X̄t − X̄s∣∣ 6 V (τ)|t− s|ρ for all s, t ∈ [0 , τ ],

almost surely for all τ > 0. Divide both side by |t − s| and let s → t in order to see
that X̄ is differentiable and its derivative is zero everywhere, a.s. Since X̄0 = X0 = 0
a.s., it then follows that X̄t = 0 a.s. for all t > 0. In particular, P{Xt = 0} = 1 for all
t > 0. Since the variance of Xt is supposed to be t2α, we are led to a contradiction.

§2.7 Isonormal Processes, White Noise, and Wiener Inte-
grals

〈subsec:WN〉Let H be a complex Hilbert space with norm ‖ . . . ‖H and corresponding inner product
〈· , ·〉H.

Definition 2.3. The isonormal process indexed by T = H is a Gaussian process
{ξ(h)}h∈H, indexed by H, with mean function 0 and covariance function,

C(h1 , h2) = 〈h1 , h2〉H [h1, h2 ∈ H].

The proof of existence is fairly elementary: For all z1, . . . , zn ∈ R and h1, . . . , hn ∈
H,

n∑
j=1

n∑
k=1

zjzkC(hj , hk) =

n∑
j=1

n∑
k=1

zjzk 〈hj , hk〉H

=

〈
n∑
j=1

zjhj ,

n∑
k=1

zkhk

〉
H

=

∥∥∥∥∥
n∑
j=1

zjhj

∥∥∥∥∥
2

H

,

which is clearly > 0.
The following simple result is one of the centerpieces of this section, and plays an

important role in the sequel.

〈lem:WN:Lin〉Lemma 2.4. For every a1, . . . , am ∈ R and h1, · · · , hm ∈ H,

ξ

(
m∑
j=1

ajhj

)
=

m∑
j=1

ajξ(hj) a.s.

Proof. We plan to prove that: (a) For all a ∈ R and h ∈ H,

ξ(ah) = aξ(h) a.s.; (7.8) WN:Lin1

and (b) For all h1, h2 ∈ H,

ξ(h1 + h2) = ξ(h1) + ξ(h2) a.s. (7.9) WN:Lin2
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Together, (7.8) and (7.9) imply the lemma with m = 2; the general case follows from
this case, after we apply induction. Let us prove (7.8) then:

E
(
|ξ(ah)− aξ(h)|2

)
= E

(
|ξ(ah)|2

)
+ a2 E

(
|ξ(h)|2

)
− 2aCov (ξ(ah) , ξ(h))

= ‖ah‖2H + a2‖h‖2H − 2a〈ah , h〉H = 0.

This proves (7.8). As regards (7.9), we note that

E
(
|ξ(h1 + h2)− ξ(h1)− ξ(h2)|2

)
= E

(
|ξ(h1 + h2)|2

)
+ E

(
|ξ(h1) + ξ(h2)|2

)
− 2Cov (ξ(h1 + h2) , ξ(h1) + ξ(h2))

= ‖h1 + h2‖2H + ‖h1‖2H + ‖h2‖2H + 2〈h1 , h2〉H
− 2 [〈h1 + h2 , h1〉H + 〈h1 + h2 , h2〉H]

= ‖h1 + h2‖2H − 2〈h1 , h2〉H − ‖h1‖2H − ‖h2‖2H,

which is zero, thanks to the Pythagorean rule on H. This proves (7.9) an hence the
lemma.

Lemma 2.4 can be rewritten in the following essentially-equivalent form.

〈th:Wiener〉Theorem 2.5 (Wiener). The map ξ : H→ L2(Ω ,F ,P) := L2(P) is a linear Hilbert-
space isometry.

Theorem 2.5 justifies the reason for calling ξ an iso-normal—sometimes also an
iso-gaussian—process.

Very often, the Hilbert spaceH is an L2-space itself; say,H = L2(µ) := L2(A ,A , µ).
Then, we can think of ξ(h) as an L2(P)-valued integral of h ∈ H. In such a case, we
sometimes adopt an integral notation; namely,∫

h(x) ξ(dx) :=

∫
h dξ := ξ(h).

This operation has all but one of the properties of integrals: The triangle inequality
does not hold.2

Definition 2.6. The isonormal process {ξ(h)}h∈L2(µ) is sometimes referred to as
white noise with intensity measure µ. The random variable

∫
hdξ is called the Wiener

integral of h ∈ H = L2(µ). One also defines definite Wiener integrals as follows: For
all h ∈ L2(µ) and E ∈ A,∫

E

h(x) ξ(dx) :=

∫
E

h dξ := ξ(h1E).

This is a rational definition since ‖h1E‖L2(µ) 6 ‖h‖L2(µ) <∞.

An important property of white noise is that, since it is a Hilbert-space isometry,
it maps orthogonal elements of H to orthogonal elements of L2(P). In other words:

E[ξ(h1)ξ(h2)] = 0 if and only if (h1 , h2)H = 0.

Because (ξ(h1) , ξ(h2)) is a Gaussian random vector of uncorrelated coordindates, we
find that

ξ(h1) and ξ(h2) are independent if and only if (h1 , h2)H = 0.

The following is a ready consequence of this rationale.

2In fact, |ξ(h)| > 0 a.s., whereas ξ(|h|) is negative with probability 1/2.
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〈pr:uncorr:indep〉Proposition 2.7. If H1,H2, . . . are orthogonal subspaces of H, then

{ξ(h)}h∈Hi i = 1, 2, . . .

are independent Gaussian processes.

The following highlights the strength of the preceding result.

〈pr:KL〉Proposition 2.8. Let {ψi}∞i=1 be a complete orthonormal basis for H. Then, we can
find a sequence of i.i.d. standard normal random variables X1, X2, . . . such that

ξ(h) =

∞∑
j=1

〈h , ψj〉HXj ,

where the sum converges in L2(P).

Remark 2.9. Let H := RN in the usual way, and µ := the counting measure on
{1 , . . . , , N}. Then, we can think of H as L2(µ). In this case, Proposition 2.8 yields a
1-1 identification of the corresponding white noise ξ with the i.i.d. sequence {Xi}Ni=1.
Therefore, in the setting of Proposition 2.8, some people refer to a sequence of i.i.d.
standard normal random variables as white noise. See Example 2.11 below for more
details.

Proof. Thanks to Proposition 2.7, Xj := ξ(ψj) defines an i.i.d. sequence of standard
normal random variables. According to the Riesz–Fischer theorem

h =

∞∑
j=1

cjψj for every h ∈ H,

where the sum converges in H. Therefore, Theorem 2.5 ensures that

ξ(h) =

∞∑
j=1

cjξ(ψj) =

∞∑
j=1

cjXj for every h ∈ H,

where the sum converges in L2(P). We have implicitly used the following ready con-
sequence of Wiener’s isometry [Theorem 2.5]: If hn → h in H then ξ(hn) → ξ(h)
in L2(P). It might help to recall that the reason is simply that ‖ξ(hn − h)‖L2(P) =
‖hn − h‖H.

Next we work out a few examples of Hilbert spaces that arise in the literature.

Example 2.10 (Zero-Dimensional Hilbert Spaces). We can identify H = {0} with a
Hilbert space in a canonical way. In this case, white noise indexed by H is just a
normal random variable with mean zero and variance 0 [i.e., ξ(0) := 0].

〈ex:fin:dim:H〉Example 2.11 (Finite-Dimensional Hilbert Spaces). Choose and fix an integer n > 1.
The space H := Rn is a real Hilbert space with inner product (a , b)H :=

∑n
j=1 ajbj

and norm ‖a‖2H :=
∑n
j=1 a

2
j . Let ξ denote white noise indexed by H = Rn and define

a random vector X := (X1 , . . . , Xn) via

Xj := ξ(ej) j = 1, 2, . . . , n,
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where e1 := (1 , 0 , . . . , 0)′, . . . , en := (0 , . . . 0 , 1)′ denote the usual orthonormal basis
elements of Rn. According to Proposition 2.8 and its proof, X1, . . . , Xn are i.i.d.
standard normal random variables and for every n-vector a := (a1 , . . . , an),

ξ(a) =

n∑
j=1

ajXj = a′X. (7.10) MVN

Now consider m points a1, . . . , am ∈ Rn and define

Y :=

 ξ(a1)
...

ξ(am)

 .

Then Y is a mean-zero Gaussian random vector with covariance matrix A′A where A
is an m ×m matrix whose jth column is aj . Then we can apply (7.10) to see that
Y = A′X. In other words, every multivariate normal random vector with mean vector
0 and covariance matrix A′A can be written as a linear combination A′X of i.i.d.
standard normals.

Example 2.12 (Lebesgue Spaces). Consider the usual Lebesgue space H := L2(R+).
Since 1[0,t] ∈ L2(R+) for all t > 0, we can define a mean-zero Gaussian process
B := {Bt}t>0 by setting

Bt := ξ(1[0,t]) =

∫ t

0

dξ. (7.11) B:xi

Then, B is a Brownian motion because

E[BsBt] =
〈
1[0,t] ,1[0,s]

〉
L2(R+)

= min(s , t).

Since E(|Bt−Bs|2) = |t− s|, Kolmgorov’s continuity theorem [Proposition 2.2] shows
that B has a continuous modification B̄. Of course, B̄ is also a Brownian motion,
but it has continuous trajectories [Wiener’s Brownian motion]. Some authors intepret
(7.11) somewhat loosely and present white noise as the derivative of Brownian motion.
This viewpoint can be made rigorous in the following way: White noise is the weak
derivative of Brownian motion, in the sense of distribution theory. We will not delve
into this matter further though.

Let us close this example by mentioning, to the reader who knows Wiener and Itô’s
theories of stochastic integration against Brownian motion, that the Wiener integral∫∞

0
ϕs dBs of a non-random function ϕ ∈ L2(R+) is the same object as

∫∞
0
ϕ dξ = ξ(ϕ)

here. Indeed, it suffices to prove this assertion when ϕs = 1[0,t](s) for some fixed
number t > 0. But then the assertion is just our definition (7.11) of the Brownian
motion B.

Example 2.13 (Lebesgue Spaces, Continued). Here is a fairly general receipe for con-
structing mean-zero Gaussian processes from white noise: Suppose we could write

C(s , t) =

∫
K(s , r)K(t , r)µ(dr) [s, t ∈ T ],

where µ is a locally-finite measure on some measure space (A ,A), and K : A×T → R

is a function such that K(t , •) ∈ L2(µ) for all t ∈ T . Then, the receipe is this: Let ξ
be white noise on H := L2(µ), and define

Xt :=

∫
K(t , r) ξ(dr) [t ∈ T ].
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Then, X := {Xt}t∈T defines a mean-zero T -indexed Gaussian process with covariance
function C. Here are some examples of how we can use this idea to build mean-zero
Gaussian processes from white noise.

1. Let A := R+, µ := Lebesgue measure, and K(t , r) := 1[0,t](r). These choices
lead us to the same white-noise construction of Brownian motion as the previous
example.

2. Given a number α ∈ (0 , 1), let ξ be a white noise on H := L2(R). Because of
(7.6) and our general discussion, earlier in this example, we find that

Xt :=
1

κ

∫
R

[
(t− r)α−(1/2)

+ − (−r)α−(1/2)
+

]
ξ(dr) [t > 0]

defines an fBm with Hurst index α.

3. For a more interesting example, consider the covariance function of the Ornstein–
Uhlenbeck process whose covariance function is, we recall,

C(s , t) = e−|t−s| [s, t > 0].

Define

µ(da) :=
1

π

da

1 + a2
[−∞ < a <∞].

According to (7.3), and thanks to symmetry,

C(s , t) =

∫
ei(t−s)r µ(dr) =

∫
cos(tr − sr)µ(dr)

=

∫
cos(tr) cos(sr)µ(dr) +

∫
sin(tr) sin(sr)µ(dr).

Now we follow our general discussion, let ξ and ξ′ are two independent white
noises on L2(µ), and then define

Xt :=

∫
cos(tr) ξ(dr)−

∫
sin(tr) ξ′(dr) [t > 0].

Then, X := {Xt}t>0 is an Ornstein–Uhlenbeck process.3

3One could just as easily put a plus sign in place of the minus sign here. The rationale for
this particular way of writing is that if we study the “complex-valued white noise” ζ := ξ+iξ′,
where ξ′ is an independent copy of ξ, thenXt = Re

∫
exp(itr) ζ(dr). A fully-rigorous discussion

requires facts about “complex-valued” Gaussian processes, which we will not develop here.
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Problems

1. Let {Xt}t>0 denote a 1-dimensional Brownian motion, and define Yt := tX1/t

for t > 0 and Y0 = 0. Prove that {Yt}t>0 and {−Xt}t>0 are both Brownian
motions.

2. Let {Xt}t>0 denote a Brownian motion, and define X◦t := Xt − tX1 for all
t ∈ [0 , 1], so that the process X is a Brownian bridge.

(a) Verify that X and X◦ are jointly Gaussian, and that Cov(X◦t , X1) = 0 for
all 0 6 t 6 1. Conclude that X1 and {X◦t }t∈[0,1] are independent.

(b) Consider the space C[0 , 1] of all real-valued continuous functions on [0 , 1],
endowed with the sup norm, the corresponding topology, and associated
Borel σ-algebra. For every ε > 0 define a probability measure Pε on C[0 , 1]
by setting

Pε(A) := P(X ∈ A | −ε < X1 < ε).

Prove that Pε converges weakly to the law of X◦. That is, prove that for
all bounded and continuous functions f : C[0 , 1]→ R,

lim
ε→0

∫
f dPε = lim

ε→0
E[f(X) | −ε < X1 < ε] = E[f(X◦)].

(c) Use the preceding to argue informally that “Brownian bridge is Brownian
motion, conditioned to be zero at time 1.” This is informal since the event
{Xt = 0} is P-null.

3. Let X1, X2, . . . be i.i.d. random variables on R.
(a) Suppose in addition that E(X1) = 0 and Var(X1) = 1. Define

Sn(t) := n−1/2
∑

16j6nt

Xj for every n ∈ N and 0 6 t 6 1.

Prove that for every 0 6 t1 < · · · < tk 6 1, fixed, the random variable
(Sn(t1) , . . . , Sn(tk)) converges weakly to (Bt1 , . . . , Btk ) as n→∞, where
B is a Brownian motion.

(b) Suppose instead that X1 is distributed uniformly on [0 , 1]. Define

Fn(t) := n−1/2
n∑
j=1

(
1{Xj6t} − t

)
for every n ∈ N and 0 6 t 6 1.

Then prove that for every 0 6 t1 < · · · < tk 6 1, fixed, the random variable
(Sn(t1) , . . . , Sn(tk)) converges weakly to (B◦t1 , . . . , B

◦
tk ) as n→∞, where

B is a Brownian bridge on [0 , 1].
(c) Finally suppose only that t 7→ F (t) := P{X1 6 t} is continuous. Define

Fn(t) := n−1/2
n∑
j=1

(
1{Xj6F (t)} − F (t)

)
for every n ∈ N and t ∈ R.

Then prove that for all real numbers 6 t1 < · · · < tk, fixed, the random
variable (Sn(t1) , . . . , Sn(tk)) converges weakly to (B◦F (t1) , . . . , B

◦
F (tk)) as

n→∞, where B is a Brownian bridge on [0 , 1].

Throughout these problems, X := {Xs}s>0 denotes an fBm with index α ∈
(0 , 2). Recall that X is Brownian motion when α = 1.
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〈Pbm:fbM:inc〉 4. Prove that for all 0 < s < t < u < v,

Cov (Xt −Xs , Xv −Xv)


< 0 if 0 < α < 1/2,

= 0 if α = 1/2,

> 0 if 1/2 < α < 1.

Conclude from this and Slepian’s inequality (Theorem 5.12, p. 88) that if 0 <
α < 1/2, then for all λ > 0,

P

{
X(j+1)/n −Xj/n >

λ

nα
for all j = 0, . . . , n− 1

}
> (P {X1 > λ})n .

Formulate and establish similarly-flavored inequalities in the cases that α = 1/2
and 1/2 < α < 1.

〈Pbm:fBm〉 5. Define
Yt := exp(−ct)Xexp(ct/α) for all t ∈ R,

where c ∈ R is fixed but otherwise arbitrary. Prove that Y := {Yt}t∈R is a
stationary, mean-zero Gaussian process that is indexed by R, and compute its
covariance function. Conclude from your computation that if X := {Xs}s>0

is a Brownian motion then Yt = exp(−t)Xexp(2t) [t ∈ R] defines an Ornstein–
Uhlenbeck process with covariance given by (7.2).

6. Observe from Proposition 2.2 that t 7→ Xt almost surely has a continuous mod-
ification. By adopting that modification if necessary we may and will assume
that the fBm X has continuous trajectories.

(a) Prove that the random variable (Xt+h −Xt)/h has the same distribution
as hα−1X1 for every t > 0 and h > 0.

(b) Use the preceding to prove that

P

{
lim sup
h↓0

Xt+h −Xt
h

=∞
}

= 1 for every t > 0.

That is, X is a.s. not differentiable at any given point. In fact, it can be
shown that X is a.s. nowhere differentiable; see XXX.

7. Prove that fBm satisfies the following “interpolatory–extrapolatory formula”:
For every s, t > 0,

E (Xst | Xt) =

(
s2α + 1− |s− 1|2α

2

)
Xt a.s.

This is due to Mandelbrot and van Ness XXX.



Chapter 8

Regularity Theory

In this chapter we treat two questions about Gaussian processes simultanteously.
Namely, “when is a Gaussian process continuous?”; and “when is a Gaussian pro-
cess bounded”? We begin by discussing a sufficient condition for questions such as
continuity and boundedness. That condition is based on a very general principle about
abstract stochastic processes, and involves the notion of metric entropy. Later on in
the chapter, we also discuss differentiability questions.

1 Metric Entropy

Let (T , d) be a non-empty, compact metric space and define B(t , r) to be the closed
d-ball of radius r > 0 about t ∈ T ; that is,

B(t , r) := {s ∈ T : d(s , t) 6 r} [t ∈ T, r > 0].

By default, for every ε > 0 there exists an integer n(ε) > 1 and points t1, . . . , tn(ε) ∈ T
such that T = ∪n(ε)

j=1B(tj , ε).

?〈def:N_T〉?Definition 1.1. We write NT (ε) for the smallest such integer n(ε). The function NT
is called the metric entropy of (T , d).

The function NT : (0 ,∞)→ Z+ is non-increasing, and the behavior of NT (ε) for
ε ≈ 0 quantifies the “size” of the compact set T . For example, we can see easily that
T is a finite set if and only if limε↓0 NT (ε) < ∞. And if limε↓0 NT (ε) < ∞, then the
rate at which NT (ε) diverges can yield information about the geometry of T . The
following is one way in which this statement can be quantified.

?〈def:dim_M〉?Definition 1.2. The Minkowski dimension of (T , d) is defined as

dimM(T ) := lim sup
ε↓0

logNT (ε)

log(1/ε)
.

Some authors refer to dimM(T ) as the “fractal dimension” of T . See Mandelbrot
XXX, for instance.

The behavior of NT near zero describes the “size” of the set T . In order to
understand this behavior, we generally proceed in two stages: We obtain an upper

127
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bound for NT (ε) as ε ↓ 0; and then separately find a lower bound for NT (ε) as ε ↓ 0.
Upper bounds are often not hard to find: Since NT (ε) is a minimal covering number
by balls of radius ε, we merely need to find a reasonable ε-covering of T . The following
elementary example highlights this idea.

〈ex:[0,1]〉Example 1.3. Suppose that T = [0 , 1] and d(s , t) = |s− t| for every s, t ∈ T . Then,

B(t , r) = [(t− r) ∨ 0 , (t+ r) ∧ 1] for all t ∈ T and r > 0.

If n > 1 is an integer then the (1/n)-balls of the form [j/n , (j + 1)/n] (for j =
0, . . . , n − 1) form a cover of T . Because there are n such balls, it follows from the
minimality of metric entropy that NT (1/n) 6 n for all n > 1. If ε ∈ (0 , 1) then we
can find a unique integer n > 1 such that 1/(n+ 1) 6 ε < 1/n, and hence

NT (ε) 6 NT

(
1

n+ 1

)
6 n+ 1 <

1

ε
+ 1.

It follows readily from this also that dimM(T ) 6 1.

To summarize what we have learned so far, we find upper bounds for NT by finding
one [hopefully efficient] cover of T . By contrast, it can be tricky to directly find lower
bounds for NT since we can establish NT (ε) > m only after we verify that every ε-
cover of T is comprised of m or more balls. In order to circumvent this difficulty we
may resort to a related covering notion.

〈def:P_T〉Definition 1.4. Choose and fix some ε > 0. We say that t1, . . . , tm ∈ T is an ε-packing
of T if d(ti , tj) > ε whenever 1 6 i 6= j 6 m. Let PT (ε) denote the largest integer
m > 1 for which there exists an ε-packing of T . The function PT is the [Kolmogorov]
capacity of the pseudo-metric space (T , d).

Actually, Kolmogorov capacity and metric entropy are not very different, as the
following shows.

〈lem:N:C〉Lemma 1.5. NT (ε) 6 PT (ε) 6 NT (ε/2) for every ε > 0.

Proof. If PT (ε) = m, then we can find t1, . . . , tm ∈ T such that: (i) d(ti , tj) > ε
when i 6= j; and (ii) mini6m d(ti , t) 6 ε for all t ∈ T thanks to the maximality of PT .
Among other things, this shows that t1, . . . , tm is an ε-covering of T . Since NT (ε) is
the minimum size of all ε-coverings of T , it follows that NT (ε) 6 m = PT (ε).

Conversely, suppose we can find t1, . . . , tν ∈ T such that ∪νi=1Bd(ti , ε/2) = T . If
s1 and s2 are two points in T such that d(s1 , s2) > ε, then s1 and s2 cannot be in the
same ball Bd(ti , ε/2) for any 1 6 i 6 ν. In particular, PT (ε) 6 ν. The minimum such
ν is of course NT (ε/2).

Lemma 1.5 shows that in order to find a good lower bound for NT (ε), we need to
find only one good 2ε-packing of T . Let us illustrate this idea in the context of our
simple Example 1.3.

〈ex:[0,1]:1〉Example 1.6. Suppose that T = [0 , 1], d(s , t) = |s− t| for every s, t ∈ T , and n > 2 is

integral. Since {2j/n}n/2j=0 is a (1/n)-packing of T , it follows that PT (1/n) > 1 + (n/2)
and hence NT (1/(2n)) > 1 + (n/2) by Lemma 1.5. If ε ∈ (0 , 1/2) then we can find a
unique integer n > 1 such that 1/(n+ 1) 6 2ε < 1/n. Thus,

NT (ε) > NT

(
1

2n

)
> 1 +

n

2
>

1

4ε
+

1

2
.

This and Example 1.3 together imply that NT (ε)→∞ as ε ↓ 0 at sharp rate ε−1. In
particular, it follows from this also that dimM(T ) = 1.
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Next are a few more examples.
〈ex:dimM:1〉Example 1.7. 1. Consider the set T :=

∏n
i=1[ai , bi] where ai < bi are real numbers.

We endow T with the Euclidean metric, d(s , t) := ‖s−t‖ for all s, t ∈ T . Then it
is not hard to see that dimM(T ) = n. In other words, the Minkowski dimension
of T agrees with any reasonable topological notion of dimension for T .

2. Let T denote the standard ternary Cantor set in R+, and endow T with the
Euclidean metric, d(s , t) := |t − s| for all s, t ∈ T . Then it is possible to verify
that dimM(T ) = log 2/ log 3, which ought to be a familiar computation to you.

3. If T is a finite set then dimM(T ) = 0. However, there are countable compact
spaces that have non-zero Minkowski dimension. For instance, consider the set
T := {1 , 1/2 , 1/3 , 1/4 , . . .} ∪ {0}, endowed with the Euclidean metric, d(s , t) :=
|t− s| for all s, t ∈ T . Then one can prove that dimM(T ) = 1/2.

4. There are also many metric spaces of infinite Minkowski dimension. An example
is the space T of all continuous, real-valued functions on [0 , 1], endowed with
the usual metric,

d(s , t) := sup
06y61

|s(y)− t(y)| for all s, t ∈ T .

Or one can consider T = Lp[0 , 1] for any 1 6 p 6 ∞, endowed with d(s , t) :=
‖s− t‖Lp[0,1] for all s, t ∈ Lp[0 , 1].

The main result of this section is a careful version of the assertion that a T -indexed
stochastic process is continuous if the index set T is “not too big,” as understood, in
one fashion or another, via the behavior of NT near zero.

Now let {Xt}t∈T be a real-valued stochastic process, indexed by a set T , where
(T , d) is a metric space. Define

Ψ(u) := sup
s,t∈T

P {|Xt −Xs| > d(s , t)u} [u > 0]. (8.1) Psi

Also, introduce the “tail” functions {Tp}p>1 as follows.

Tp(λ) := p

∫ ∞
0

up−1 (λΨ(u) ∧ 1) du [λ > 0, p > 1]. (8.2) T

The goal of this section is to prove the following result about increments of general
T -indexed stochastic processes. In the next section we will work out examples that
highlight some of the uses of such a theorem.

〈th:entropy〉Theorem 1.8. If S ⊂ T is finite, then for all p > 1,

E

 max
s,t∈S:
d(s,t)6δ

|Xt −Xs|p
 6

{
16

∫ δ/4

0

[
Tp
(
[NS(r)]2

)]1/p
dr

}p
,

for every 0 < δ 6 4(T ), where 4(S) := sups,t∈S d(s , t) denotes the d-diameter of S.

There are many variations on Theorem 1.8 XXX. Though this formulation of The-
orem 1.8 is particularly elegant, and might even have a new aspect, the essence of
the proof can be traced back to an unpublished manuscript of Kolmogorov, with non-
trivial extensions due to Preston XXX, Fernique XXX, and particularly Dudley XXX,
after whom this type of theorem is sometimes named. The argument rests on the
following simple a priori estimate.
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〈lem:entropy:1〉Lemma 1.9. Let Θ ⊂ T × T be a finite set of cardinality |Θ|. Then,

E

[
max

(s,t)∈Θ
|Xt −Xs|p

]
6 Tp(|Θ|) · max

(s,t)∈Θ
[d(s , t)]p for all p > 1.

Proof. For every u > 0,

P

{
max

(s,t)∈Θ

∣∣∣∣Xt −Xsd(s , t)

∣∣∣∣ > u

}
6

∑
(s,t)∈Θ

P

{∣∣∣∣Xt −Xsd(s , t)

∣∣∣∣ > u

}
6 |Θ|Ψ(u) ∧ 1.

Integrate [pup−1 du] to see that

E

(
max

(s,t)∈Θ

∣∣∣∣Xt −Xsd(s , t)

∣∣∣∣p) 6 Tp(|Θ|).

This implies the lemma.

Next we apply Lemma 1.12 to improve itself.

〈lem:entropy〉Lemma 1.10. If T is a finite set, then for every p > 1,

max
t0∈T

E

[
max
t∈T
|Xt −Xt0 |

p

]
6

{
8

∫ ∆(T )/4

0

[Tp(NT (r))]1/p dr

}p
.

Remark 1.11. Choose and fix t0 ∈ T and reduce attention to the values of X over
B(t0 , ε) where ε ∈ (0 , 1

2
∆(T )] is fixed. Then, Lemma 1.10 immediately implies the

following “local” version of Theorem 1.8:

max
t0∈T

E

[
max

t∈B(t0,ε)
|Xt −Xt0 |

p

]
6

{
8

∫ ε/4

0

[Tp(NT (r))]1/p dr

}p
.

Proof of Lemma 1.10. Recall the capacity function PT of (T , d) from Definition 1.4,
and define

εn := 2−n∆(T ) and Kn := PT (εn) [n > 0].

One can see readily that 1 = K0 6 K1 6 K2 6 . . . .
The definition of Kolmogorov capacity ensures that for every integer n > 0 we can

find a finite set Tn ⊂ T such that:
• |Tn| = Kn;
• d(u , v) > εn for all distinct pairs of points u, v ∈ Tn;
• infs∈Tn d(s , t) 6 εn for all t ∈ T ; and
• There exists an integer M = M(T , d) > 1 such that Tn = T for all n >M .
For every n > 0 let πn denote the projection of T onto Tn; more precisely, πn(t)

denotes the point in Tn that is closest to t for every t ∈ T . If there are many such
points then we break the ties in some arbitrary fashion. Since T0 is a singleton we can
write it as T0 = {t0} and observe that π0(t) = t0 for all t ∈ T . Also, observe that
t0 ∈ T can be chosen in a completely arbitrary manner, without altering any of the
preceding statements.

Since Tn = T for all n > M it follows that πn(t) = t for every n > M . Thus, to
every t ∈ T we can associate a “chain” {ti}∞i=0 of points as follows: Set tn = πM (t) = t
for all n > M , and then recursively define ti−1 = πi−1(ti) for all i = M, . . . , 1.
This sequence ends with t0—the unique element of T0—and therefore, Xt − Xt0 =
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∑∞
i=0(Xti+1 −Xti). Clearly, all of the summands vanish after the M -th term. In any

case, it follows that

|Xt −Xt0 | 6
∞∑
i=0

max
u∈Ti+1

∣∣Xu −Xπi(u)

∣∣ ,
uniformly for all t ∈ T . Because the right-hand side is independent of t, we apply
Lemma 1.12 and Minkowski’s inequality in order to find that∥∥∥∥max

t∈T
|Xt −Xt0 |

∥∥∥∥
p

6
∞∑
i=0

{Tp(|Ti+1|)}1/p εi =

∞∑
i=0

{Tp (PT (εi+1))}1/p εi,

valid because |Tj | = PT (εj) and εj = 2−j∆(T ). Since εi = 4(εi+1 − εi+2) for every
i > 0, we can then write∥∥∥∥max
t∈T
|Xt −Xt0 |

∥∥∥∥
p

6 4

∞∑
i=0

∫ εi+1

εi+2

{Tp (PT (εi+1))}1/p dr 6 4

∞∑
i=0

∫ εi+1

εi+2

{Tp (PT (r))}1/p dr

= 4

∫ ∆(T )/2

0

{Tp (PT (r))}1/p dr 6 4

∫ ∆(T )/2

0

{Tp (NT (r/2))}1/p dr;

see Lemma 1.5. Because t0 ∈ T is arbitrary, this and a change of variables together
yield the lemma.

Next, we apply Lemma 1.10 to improve itself.

〈lem:entropy:1〉Lemma 1.12. If T is a finite set, then for every p > 1,

E

[
max
s,t∈T

|Xt −Xs|p
]
6

{
16

∫ ∆(T )/4

0

[
Tp
(
|NT (r)|2

)]1/p
dr

}p
.

Proof. The proof hinges on “tensorization.”

Define T̃ := T × T , and endow it with “product distance,”

d̃
(
(s , t) , (s′, t′)

)
:= d(s , s′) ∨ d(t , t′) for every s, t, t′, t′ ∈ T . (8.3) tilde:d

Every ε-ball in T̃ has the form B(s , ε) × B(t , ε) where s, t ∈ T . In particular, if the
balls B1, . . . , Bm form an ε-cover for (T , d), then certainly the balls {Bi × Bj}mi,j=1

form an ε-cover for (T̃ , d̃). In this way, we can relate the metric entropy of T̃ to that
of T as follows:

NT̃ (ε) 6 [NT (ε)]2 for every ε > 0. (8.4) NN2

Consider the stochastic process X̃, indexed by T̃ , as follows:

X̃(s,t) := Xt −Xs for every (s , t) ∈ T̃ .

We may combine (8.4) and Lemma 1.10 (applied to X̃ in place of X) in order to see
that for every p > 1 and t̃0 ∈ T̃ ,

E

[
max

(s,t)∈T̃

∣∣∣X̃(s,t) − X̃t̃0
∣∣∣p] 6 {8

∫ ∆(T̃ )/4

0

[
T̃p
(
|NT (r)|2

)]1/p
dr

}p
, (8.5) ENT
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where ∆(T̃ ) denotes the d̃-diameter of T̃ , and

T̃p(λ) := p

∫ ∞
0

up−1
(
λΨ̃(u) ∧ 1

)
du [λ > 0, p > 1],

where

Ψ̃(u) := sup
(s,t),(s′,t′)∈T̃

P
{∣∣∣X̃(s,t) − X̃(s′,t′)

∣∣∣ > d̃
(
(s , t) , (s′, t′)

)
u
}

[u > 0].

The definition of d̃ ensures that

∆(T̃ ) = ∆(T ). (8.6) ENT:1

Next we estimate Ψ̃ as follows:

Ψ̃(u) 6 sup
(s,t),(s′,t′)∈T̃

P
{
|Xs −Xs′ |+ |Xt −Xt′ | > d̃

(
(s , t) , (s′, t′)

)
u
}

6 sup
(s,t),(s′,t′)∈T̃

P
{
|Xs −Xs′ | > 1

2
d̃
(
(s , t) , (s′, t′)

)
u
}

+ sup
(s,t),(s′,t′)∈T̃

P
{
|Xt −Xt′ | > 1

2
d̃
(
(s , t) , (s′, t′)

)
u
}

;

this is true simply because if a, b, c > 0 satisfy a+b > c then either a > c/2 or b > c/2,
or both. Consequently, the definition of d̃ implies that for every u > 0,

Ψ̃(u) 6 2 sup
s,s′∈T

P
{
|Xs −Xs′ | > 1

2
d(s , s′)u

}
= 2Ψ(u/2).

This inequality, in turn, implies that for every λ > 0 and p > 1,

T̃p(λ) 6 p

∫ ∞
0

up−1 (2λΨ(u/2) ∧ 1) du 6 2p

∫ ∞
0

up−1 (λΨ(u/2) ∧ 1) du

= 2pTp(λ).

Combine this with (8.7) and (8.6) in order to find that for every p > 1 and t̃0 ∈ T̃ ,

E

[
max

(s,t)∈T̃

∣∣∣X̃(s,t) − X̃t̃0
∣∣∣p] 6 {16

∫ ∆(T )/4

0

[
Tp
(
|NT (r)|2

)]1/p
dr

}p
, (8.7) ENT

To simplify this, choose and fix some t0 ∈ T and set t̃0 := (t0 , t0). Because X̃t̃0 = 0,
the lemma follows.

We are ready to prove the main portion of Theorem 1.8; that is, when T is arbitrary.

Proof of Theorem 1.8. Lemma 1.12 and its proof (see in particular (8.4)) together
imply that whenever U ⊆ S × S and p > 1,

E

[
max

(s,t)∈U
|Xt −Xs|p

]
6

{
16

∫ ∆(U)/4

0

[
Tp
(
|NS(r)|2

)]1/p
dr

}p
,

where ∆(U) denotes the diameter of U in the distance d̃ defined in (8.3). We may
apply this fact with

U := {(s , t) ∈ S × S : d(s , t) 6 δ} .
Because ∆(U) 6 δ, Theorem 1.8 follows.
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2 Continuity Theorems

§2.1 Continuity and modifications

Among other things, Theorem 1.8 and its variations can be used to sometimes show
that a stochastic process {Xt}t∈T can be constructed in a nice way, where as before
(T , d) is a metric space. The following is a slight abstraction of a notion that we
encountered earlier (see Proposition 2.2 on page 119).

Definition 2.1. Let X := {Xt}t∈T and Y := {Yt}t∈T be two stochastic processes. We
say that X is a modification—sometimes also called a version—of Y if P{Xt = Yt} = 1
for all t ∈ T .

Of course, if X is a version of Y , then in turn Y is a version of X as well. What the
preceding really says is that X and Y have the same finite-dimensional distributions
in the sense that

P {Xt1 ∈ A1 , . . . , Xtk ∈ Ak} = P {Yt1 ∈ A1 , . . . , Ytk ∈ Ak} ,

for all Borel sets A1, . . . , Ak ⊂ R and all t1, . . . , tk ∈ T . In particular, all computable
probabilities for X are the same as their counterparts for the process Y . In this sense,
if X and Y are modifications of one other, then they are “stochastically indistinguish-
able.”

?〈th:entropy:1〉?
Theorem 2.2. Let X := {Xt}t∈T be a stochastic process and suppose there exists a
real number p > 1 and a separable S ⊆ T such that∫ 4(S)

0

[
Tp
(
[NS(r)]2

)]1/p
dr <∞, (8.8) cond:entropy:1

for some p > 1. Then, {X}t∈S has a continuous version {Yt}t∈S which satisfies

E

 sup
s,t∈S:
d(s,t)6δ

|Yt − Ys|p

 6

{
16

∫ δ/4

0

[
Tp
(
[NS(r)]2

)]1/p
dr

}p
,

for every 0 < δ 6 4(S).

Proof. First of all, let us observe that (8.8) implies that S is totally bounded and
hence bounded; that is, ∆(S) <∞ throughout.

Theorem 1.8 immediately implies that

E

 sup
s,t∈S′:
d(s,t)6δ

|Xt −Xs|p

 6

{
16

∫ δ/4

0

[
Tp
(
[NS(r)]2

)]1/p
dr

}p
,

uniformly for all 0 < δ 6 4(S) and all finite sets S′ ⊂ S. Thanks to (8.8) and the
monotone convergence theorem, the preceding continues to hold if S′ ⊆ S is countable.
We may apply the preceding to the case that S′ is dense in S.

The preceding display, (8.8), and Fatou’s lemma together imply that {Xt}t∈S′ is
continuous a.s. Define

Ys = lim inf
t→s:
t∈S′

Xt for all s ∈ S.
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Because X is a.s. continuous on S′, the stochastic process Y is a.s. continuous on S;
moreover,

P{Ys = Xs} = 1 for all s ∈ S′. (8.9) PYY

We claim that X is continuous in probability on S; that is, Xt converges to Xs in
probability as t→ s for all s ∈ S. If so, then it follows readily from the a.s. continuity
of Y and (8.9) that P{Ys = Xs} = 1 for all s ∈ S; that is, the continuous process Y
is a modification of X. This would complete the proof. But it is easy to see that X is
continuous in probability on S; in fact, it follows immediately from Theorem 1.8 that
for every s, t ∈ T ,

E (|Xt −Xs|p) 6

{
16

∫ d(s,t)/4

0

[
Tp
(
[NS(r)]2

)]1/p
dr

}p
,

which goes to zero as s→ t thanks to (8.8) and the dominated convergence theorem.
Consequently, P{|Xt − Xs| > ε} 6 ε−p E(|Xt − Xs|p) → 0 as s → t in T for every
ε > 0. This completes the proof.

§2.2 Application to Gaussian Processes

Let X := {Xt}t∈T denote a mean-zero Gaussian process, indexed by an arbitrary set
T . Define

d(s , t) :=
√

E (|Xt −Xs|2) [s, t ∈ T ]. (8.10) d

It is easy to see that d(s , t) 6 d(s , u) + d(u , t) for all s, t, u ∈ T , and d(s , t) = d(t , s).
That is, d is a pseudo-metric on T . Let us write s ∼ t if d(s , t) = 0, and [t] := {s ∈
T : s ∼ t}. Clearly, ∼ is an equivalence relation on T and [t] ∈ T/ ∼ denotes the
equivalence class of t ∈ T .

We can define X̄[t] for all [t] ∈ T/ ∼ as X̄[t] := Xs for any and every s ∈ [t]. Then
it follows that X̄ is a mean-zero Gaussian process, indexed by T/ ∼:= {[t] : t ∈ T},
and with the same “finite-dimensional distributions” as X. In this way we can assume
without loss of generality that (T , d) is a metric space; otherwise we study X̄ in place
of X, using the same methods. This is harmless as X is continuous if and only if X̄ is.

With the preceding in mind, we can now see that Theorem 1.8 and its consequences
imply sufficient conditions for X to have a continuous modification. In order to identify
the details, we first develop two estimates on functions Ψ and T1 defined respectively
in (8.1) and (8.2).

〈lem:Psi:Gauss〉Lemma 2.3. Ψ(u) < exp(−u2/2) for all u > 0.

Proof. The usual proof of this sort of fact yields twice the stated upper bound. The
argument for this slight improvement is even easier, and borrowed from Khoshnevisan,
XXX. Observe that for all u ∈ R,

P{Z1 > u} =
1√
2π

∫ ∞
u

e−x
2/2 dx =

e−u
2/2

√
2π

∫ ∞
u

exp

(
− (x− u)(x+ u)

2

)
dx

=
e−u

2/2

√
2π

∫ ∞
0

exp

(
−y(y + 2u)

2

)
dy.

If u > 0, then y+ 2u > y whence follows P{Z1 > u} < 1
2

exp(−u2/2). This proves the
lemma because Ψ(u) = P{|Z1| > u} = 2P{Z1 > u}.
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Once we have an estimate for Ψ, we can bound Tp for all p > 1. The following
does that in the case that p = 1.

〈lem:T_1:Gauss〉Lemma 2.4. T1(λ) 6 4
√

log(λ ∨ 2) for all λ > 0.

Proof. If 0 < λ 6 2, then by Lemma 2.3,

T1(λ) 6
∫ ∞

0

exp(−u2/2) du =
√
π/2 < 4

√
log(λ ∨ 2).

Else if λ > 2, then we write

T1(λ) 6
√

2 log λ+ λ

∫ ∞
√

2 log λ

e−u
2/2 du =

√
2 log λ+

√
2π λP

{
U >

√
2 log λ

}
<
√

2 log λ+

√
π

2
<
(√

2 +
√

3
)√

log(λ ∨ 2) < 4
√

log(λ ∨ 2),

using the fact that P{Z1 > u} 6 1
2

exp(−u2/2) for all u > 0 [see proof of Lemma 2.3].
This has the desired consequence.

We can now appeal to the previous lemma and Theorem 1.8 in order to deduce
the following, which is essentially due to Dudley XXX.

〈th:Dudley〉Theorem 2.5 (Dudley, XXX). If (T , d) is separable and∫ 4(T )/4

0

√
logNT (r) dr <∞, (8.11) cond:cty

then X has a continuous modification Y , and for all δ > 0,

E

 sup
s,t∈T :
d(s,t)6δ

|Yt − Ys|

 6 64
√

2

∫ δ/4

0

√
logNT (r) dr.

Remark 2.6. (8.11) holds iff
∫∞

0

√
logNT (r) dr <∞; see Problem 1 below.

Proof. Theorem 1.8 and Lemma 2.4 together imply that under condition (8.11), the
process X has a continuous modification Y such that

E

 sup
s,t∈T :
d(s,t)6δ

|Yt − Ys|

 6 64
√

2

∫ δ/4

0

√
log(NT (r) ∨ 2) dr,

for all 0 < δ 6 ∆(T ). Define r0 to be the largest number r > 0 such that NT (r) = 1.
If there is no such r then r0 := 0. Since logNT (r) = 0 whenever r > r0 we can inspect
the metric entropy integral according to whether or not θ < r0 in order to see that∫ θ

0

√
logNT (r) dr =

∫ θ

0

√
log(NT (r ∨ 2) dr,

for all θ > 0. This completes the proof.

Let us also mention the following.
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〈co:Dudley〉Corollary 2.7. For all denumerable sets S ⊂ T ,

E

[
max
t∈S

Xt

]
6 64

√
2

∫ ∞
0

√
logNS(r) dr.

Thus, supt∈S |Xt| is finite [a.s.] if and only if E[supt∈S Xt] <∞.

Proof. Without loss of generality, we may and will assume that S = T is finite. Choose
and fix an arbitrary t0 ∈ T and use the fact that E(Xt0) = 0 to write E[maxt∈T Xt] =
E[maxt∈T (Xt −Xt0)]. Therefore, Dudley’s Theorem (Theorem 2.5) implies that

E

[
max
t∈S

Xt

]
6 64

√
2

∫ ∞
0

√
logNS(r) dr,

which is more than enough to yield the inequality of the corollary. Similar considera-
tions (see Problem XXX) prove that

E

[
max
t∈S
|Xt|2

]
6 const ·

{∫ ∞
0

√
logNS(r) dr

}2

, (8.12) Dud2

where the implied constant is “universal”; that is, it does not depend on any of the
parameters of the problem. We will use this fact momentarily.

For the remainder, let S ⊂ T be a countable set [if T is finite, then there is nothing
to prove]. By the Borell, Sudakov–Tsirelson inequality [Theorem 2.1, page 71],

P

{∣∣∣∣max
t∈U
|Xt| − E

[
max
t∈U
|Xt|

]∣∣∣∣ > z

}
6 2 exp

(
− z2

2 supt∈S Var(Xt)

)
[z > 0],

for every finite U ⊂ S. Because supt∈S Var(Xt) <∞ by (8.12), the preceding inequal-
ity implies that supt∈S |Xt| <∞ a.s. iff E[supt∈S |Xt|] <∞.

Finally, because X and −X have the same law,

E

[
sup
t∈S

Xt

]
6 E

[
sup
t∈S
|Xt|

]
6 2 E

[
sup
t∈S

Xt

]
.

Therefore, the corollary follows.

We conclude this section by inspecting a classical condition (see for example XXX)
for the continuity of a “stationary Gaussian process.”

Example 2.8. Suppose T = [0 , 1] and {Xt}06t61 is a stationary Gaussian process with
E[Xt] = 0 and E[XtXs] = %(|t−s|) for a symmetric, strictly decreasing and continuous
function % : R+ → R such that %(0) = 1.1 Because

d(s , t) =
√

2 (1− %(|s− t|)) [0 6 s, t 6 1],

it follows that: (a) 4(T ) 6
√

2; (b) (T , d) is compact; and (c) Every ball in (T , d) is
also a Euclidean ball. In fact,

B(t , r) =

{
s > 0 : |s− t| 6 %−1

(
1− r2

2

)}
[0 6 t 6 1, 0 < r 6

√
2].

1The linear Ornstein–Uhlenbeck process [p. 117] is an example of such a process with
%(z) = exp(−z).
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From this, and Dudley’s theorem, we can conclude that

N[0,1](ε) =
(1 + o(1))

%−1
(
1− 1

2
ε2
) as ε ↓ 0.

This leads to the following sufficient condition for the continuity of the process X,

∫
0+

√√√√log

(
1

%−1
(
1− 1

2
r2
))dr <∞.

As it turns out, this is also a necessary condition for both continuity and boundedness;
see Theorem 3.5 on page 140 below.

§2.3 An Infinite-Dimensional Example

Among other things, Dudley’s theorem has found many applications in the theory
of empirical processes and its connections to machine learning, etc. The following
example is the sort that arises naturally in empirical-process theory (see, Dudley XXX
for instance).

Let H := L2[0 , 1] and consider white noise X := {X(h)}h∈H. Recall that X is a
mean-zero Gaussian process with

Cov[X(f) , X(g)] =

∫ 1

0

f(x)g(x) dx [f, g ∈ H].

It is easy to see that the random function X is unbounded on H. For instance, choose
and fix an arbitrary orthonormal family {φk}∞k=1 in H—such as φk(x) = sin(2πkx)
for all k > 0—and note that X(φ1), X(φ2), . . . are i.i.d. N(0 , 1) random variables, and
hence are unbounded. In fact, we have seen already that

lim sup
k→∞

X(φk)√
2 log k

= 1 a.s;

see (5.2) on page 71. Still, there are many infinite-dimensional subsets T ⊂ H for
which {X(f)}f∈T defines a bounded random function. The following furnishes one
such example.

Proposition 2.9. Let T denote the collection of all Lipschitz-continuous functions
f : [0 , 1] → R such that f(0) = 0 and Lip(f) 6 1. Then, {X(f)}f∈T has a bounded
version.

Proof. Since T is not a closed subspace of H, it is helpful to instead metrize T via
%(f , g) := sup06x61 |f(x) − g(x)| for f, g ∈ T . We will prove that {X(f)}f∈T has a
version Y that is continuous when T is metrized by % rather than the courser metric

d(f , g) :=
√

E(|X(f)−X(g)|2) = ‖f − g‖H

of H. This enterprise will immediately yield the a.s.-boundedness of f 7→ Y (f), for
example, as well as the measurability of supf∈T Y (f), supf∈T |Y (f)|, etc.

The Arzela–Ascoli theorem XXX ensures that (T , %) is compact; i.e., T is closed
and NT (ε) < ∞ for all ε > 0. We wish to understand the behavior of NT (ε) near
ε = 0.

For every integer n > 0 define Tn to be the collection of all continuous, piecewise
linear, functions g : [0 , 1]→ R such that:
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1. g is linear on [j/n , (j + 1)/n] for every 0 6 j 6 n− 1;

2. |g((j + 1)/n)− g(j/n)| = 1/n.

It is easy to see that:

(i) For every f ∈ T there exists g ∈ Tn such that %(f , g) 6 n−1; and

(ii) |Tn| 6 2n.

Thus, NT (1/n) 6 2n, whence logNT (1/n) 6 n log 2. For all ε ∈ (0 , 1) we can find
an integer n > 1 such that (n + 1)−1 < ε 6 n−1. For this choice of n, we find that
logNT (ε) 6 logNT (1/(n+ 1)) 6 (n+ 1) log 2 6 2 + 2ε−1. In particular,√

log(NT (ε) ∨ e) 6
2√
ε
∨ 1 [0 < ε < 1].

The preceding defines an integrable function of ε ∈ (0 , 1). Since 4(T , %) = 1 and
[d(f , g)]2 = E(|X(f) −X(g)|2) =

∫ 1

0
|f(x) − g(x)|2 dx 6 [%(f , g)]2 for all f, g ∈ T , it

follows from Theorem 2.5 that X has a continuous version Y which satisfies

E

 sup
f,g∈T
%(f,g)6δ

|Y (f)− Y (g)|

 6 const ·
∫ δ/4

0

(
2√
ε
∨ 1

)
dε 6 const ·

√
δ,

for all δ ∈ (0 , 1). We have seen already that T is compact. Therefore, the continuity
of Y implies its uniform boundedness on T .

3 Lower Bounds

We continue using the notation of the preceding subsection. In particular, X :=
{Xt}t∈T denotes a mean-zero Gaussian process with canonical distance d(s , t) :=√

E(|Xt −Xs|2), and we assume that (T , d) is a compact metric space. In this sec-
tion we discuss some useful lower bounds for E[maxt∈T Xt], for example when T is
countable.

§3.1 Sudakov Minorization

Recall that Z1, . . . , Zn are i.i.d. with a N(0 , 1) distribution, and define

µ(n) := E

[
max

16i6n
Zi

]
[n > 1].

〈lem:M〉Lemma 3.1. There exist positive and finite constants K,L such that

K
√

logn 6 µ(n) 6 L
√

logn for all n > 1.

Proof. The Lemma holds trivially when n = 1; we concentrate on n > 2. Since
µ(1) = 0, µ(n) = (1 + o(1))

√
2 logn as n → ∞ [Proposition 1.3, page 7], and µ is

increasing, it suffices to prove that µ(2) > 0. But µ(2) is equal to E[max(Z1 , Z2)] =
E[max(Z1 , Z2) − Z1] = E[max(0 , Z2 − Z1)]. It follows easily from this that µ(2) >
0.2

2In fact, because Z2−Z1 has a N(0 , 2) distribution, Z2−Z1 is independent of sign(Z2−Z1),
and hence µ(2) = 1

2
E(|Z2 − Z2|) = π−1/2.
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〈rem:M〉
Remark 3.2. The numerical values of K and L are not very good. For instance, the
best-possible choice for K is

inf
n>2

µ(n)√
logn

6
µ(2)√
log 2

=
1√

π log 2
< 0.7,

which is smaller than the limiting value, limn→∞ µ(n)/
√

logn =
√

2.

Lemma 3.1 will now be used in order to establish a useful lower bound for E[supt∈T Xt].

〈pr:Sudakov〉Proposition 3.3 (Sudakov, XXX). Choose and fix some ε > 0, and let A be a subset
of T with the property that d(s , t) > ε whenever s, t ∈ A. Then,

E

[
max
t∈A

Xt

]
> εµ(|A|) > Kε

√
log(|A|),

where K is the constant of Lemma 3.1 and | · · · | denotes cardinality.

Proof. In the case that Var(X1) = · · · = Var(Xn), this theorem is just a restatement
of Example 5.14 [page 89]. The general case is handled the same way, but requires an
appeal to Fernique’s inequality (Theorem 5.16, page 90) instead of Slepian’s (Theorem
5.12, page 88). We will work out the details once more in order to gel the underlying
ideas.

Without loss of generality, we can—and will—assume that |A| > 2; else the state-
ment of the theorem is the tautology that 0 > 0.

Define, for all t ∈ A,

Yt := εZt + ξ,

where ξ and the Zt’s are all independent N(0 , 1) random variable. Clearly, (Yt)t∈A
has a mean-zero multivariate normal distribution, and

E
(
|Yt − Ys|2

)
= ε2 > [d(s , t)]2 = E

(
|Xs −Xt|2

)
.

Therefore, Fernique’s inequality [Theorem 5.16, page 90] yields

E

[
max
t∈A

Xt

]
> E

[
max
t∈A

Yt

]
= εE

[
max
t∈A

Zt

]
= εµ(|A|),

by the definition of µ.

We can summarize the results of this section as follows.

〈pr:Sudakov:1〉
Proposition 3.4 (Sudakov Minorization). We always have

sup
S⊂T :
S finite

E

[
max
t∈S

Xt

]
> sup

0<ε<4(T )

εµ (PT (ε)) > sup
0<ε<4(T )

εµ (NT (ε))

> K sup
0<ε<4(T )

ε
√

logNT (ε) > K lim sup
ε→0

ε
√

logNT (ε),

where K is the constant of Lemma 3.1.
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§3.2 Fernique’s Theorem

Sudakov minorization [Proposition 3.4] tells us that if

lim sup
ε→0

ε
√

logNT (ε) =∞, (8.13) Sudakov:minor

then X does not have continuous trajectories, whereas Dudley’s theorem [Theorem
2.5] implies that the metric entropy condition∫ ∞

0

√
logNT (r) dr <∞ (8.14) Dudley:major

is sufficient for the continuity of X.
Sudakov’s condition (8.13) and Dudley’s condition (8.14) are related. Indeed,∫ ∞

0

√
logNT (r) dr =

∫ ∆(T )

0

√
logNT (r) dr (see Problem 1)

=

∞∑
n=0

∫ 2−n∆(T )

2−n−1∆(T )

√
logNT (r) dr

>
∆(T )

2

∞∑
n=0

2−n
√

logNT (2−n∆(T )).

Therefore, (8.14) fails to hold whenever (8.13) holds. But the converse is not always
true; see, for example, XXX. As it turns out, this situation can arise because neither
condition is always sharp. The sharp condition is a “majorizing-measure condition,”
which you can find in Talagrand’s landmark paper XXX; see also XXX. We will not
discuss majorizing measures in this course primarily because it is exceedingly difficult
to compute them in concrete settings. In addition, the Sudakov and Dudley theorems
have broad utility XXX that extend beyond the particular applications that we have
in mind for these lectures.

Still, it would be a pity to say nothing about the beautiful general theory. As a
compromise, we will state and prove Fernique’s theorem which states that, for station-
ary Gaussian processes, the Dudley condition is necessary as well as sufficient. Recall
that if (T , d) is a compact abelian group, then we say that X := {Xt}t∈T is stationary
if d(s , t) =

√
E(|Xt −Xs|2) is a function of s − t, equivalently, t − s, where we are

using the additive notation for the group T in order to be be concise.

〈th:Fernique:1〉Theorem 3.5 (Fernique, XXX). Let X := {Xt}t∈T be a stationary, mean-zero Gaus-
sian process, where (T , d) is a metric abelian group; in particular, d(s , t) = d(s− t , 0)
for all s, t ∈ T . Then, for all denumerable sets S ⊂ T ,

E

[
max
s∈S

Xs

]
>
K2

16

∫ ∞
0

√
logNS(ε) dε,

where K is the constant of Lemma 3.1.

〈rem:cont〉Remark 3.6. One can write the final assertion of Theorem 3.5 by choosing S to be a
dense subset of a compact set T in order to see that

sup
S⊂T

S denumerable

E

[
max
s∈S

Xs

]
>
K2

16

∫ ∞
0

√
logNT (ε) dε.
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It follows from this observation and Theorems 2.5 and 3.5 that a stationary, mean-zero
Gaussian process X := {Xt}t∈T is continuous iff it is bounded iff

∫∞
0

√
logNT (ε) dε <

∞. And, barring measure-theoretic details, we have

K2

16

∫ ∞
0

√
logNT (r) dr 6 E

[
sup
t∈T

Xt

]
6 64

√
2

∫ ∞
0

√
logNT (r) dr.

One can prove Fernique’s theorem, fairly readily, using the following improvement
of Sudakov minorization [Proposition 3.4], due to Talagrand XXX.

〈pr:Talagrand〉Proposition 3.7 (Talagrand, XXX). Let X := {Xt}t∈T be any mean-zero Gaussian
process, indexed by a general compact (T , d), and consider A ⊂ T , a non-empty ε-
packing of T for some ε > 0. Then,

E

[
max
t∈A

Xt

]
> 1

2
εµ(|A|) + min

s∈A
E

(
max

t∈B(s,Kε/8)
Xt

)
>
K

2
ε
√

log |A|+ min
s∈A

E

(
max

t∈B(s,Kε/8)
Xt

)
,

where K was defined in Lemma 3.1.

Proof. We will present essentially the original proof of Talagrand XXX, since it is
straightforward. Marcus and Rosen XXX have devised a clever argument which yields
slightly better constants, but their argument is more involved.

By considering {Xt}t∈A, it suffices to consider the case that T = A and d(s , t) > ε
for all s, t ∈ T . If |T | = 1, then the proposition states that 0 > 0. Therefore, we may
consider only the case that |T | > 2.

Define, for all t ∈ T and r > 0,

Yt(r) := max
s∈B(t, r)

(Xs −Xt) = max
s∈B(t, r)

Xs −Xt.

Since maxs∈B(t, r) E(|Xs −Xt|2) 6 r2, the Borel, Sudakov–Tsirelson inequality (The-
orem 2.1, page 71) implies that

max
t∈T

P {|Yt(r)− E[Yt(r)]| > λ} 6 2 exp

(
− λ2

2r2

)
,

for all λ > 0. In particular,

P

{
max
t∈T
|Yt(r)− E[Yt(r)]| > λ

}
6 2|T | exp

(
− λ2

2r2

)
∧ 1,

and hence,

E

(
max
t∈T
|Yt(r)− E[Yt(r)]|

)
6
∫ ∞

0

[
2|T | exp

(
− λ2

2r2

)
∧ 1

]
dλ

= r
√

2 log(2|T |) + 2|T |
∫ ∞
r
√

2 log(2|T |)
exp

(
− λ2

2r2

)
dλ

= r
√

2 log(2|T |) + 2r|T |
√

2πP
{
U >

√
2 log(2|T |)

}
,

where U has a N(0 , 1) distribution. Define

V := max
t∈T
|Yt(r)− E[Yt(r)]| .



142 CHAPTER 8. REGULARITY THEORY

Since P{U > u} 6 1
2

exp(−u2/2) [see proof of Lemma 2.3], the preceding and the
triangle inequality together yield

E(V ) 6 r
√

2 log(2|T |) + r

√
π

2
6 4r

√
log |T |,

thanks to the assumption that |T | > 2. Since Yt(r) > E[Yt(r)] − V , the definition of
Yt(r) yields

max
s∈B(t, r)

Xs > Xt + E

[
max

s∈B(t, r)
Xs

]
− V a.s. for all t ∈ T and r > 0.

Maximize over all t ∈ T and take expectations to find that

E

[
max
t∈T

max
s∈B(t, r)

Xs

]
> E

[
max
t∈T

Xt

]
+ min

t∈T
E

[
max

s∈B(t, r)
Xs

]
− 4r

√
log |T |

> εµ(|T |) + min
t∈T

E

[
max

s∈B(t, r)
Xs

]
− 4r

K
µ(|T |).

We have appealed to Sudakov’s inequality [Proposition 3.3] to bound E[maxt∈T Xt]
and Lemma 3.1 to bound 4r

√
log |T |. Set r := Kε/8 to deduce the lemma.

〈lem:Fernique:comb〉Lemma 3.8. Suppose (T , d) is a compact abelian group, and d(s , t) = d(s − t , 0)
for all s, t ∈ T . Then, NT (α) 6 NT (β) · NB(t0, β)(α) for all 0 < α < β such that
B(t0 , β) ⊂ T .

Proof. We have made this sort of calculation earlier in (8.4) on page 131. We adapt
those ideas to the present setting next.

Observe that, regardless of the respective values of β > α > 0, the stationarity
of X implies that NB(t, β)(α) does not depend on t ∈ T . Let K := NT (β) so that
we can find t1, . . . , tK ∈ T such that the balls B(ti , β) cover T . We can cover every
ball B(ti , β) by L := NB(t1, β)(α)-many balls of radius α. Therefore, we can certainly
cover T with KL-many balls of radius α. By the minimality property of the covering
number NT (α), this implies that NT (α) 6 KL, which is the lemma.

Proof of Theorem 3.5. Throughout the proof, we may [and will] assume without loss
of generality that S = T is a countable set.

Let K denote the constant of Lemma 3.1 and recall that K < 1 [Remark 3.2], and
define

R :=
8

K
> 1.

Choose and fix some t0 ∈ T and observe that T = B(t0 , R
m), where m ∈ Z is the

unique integer defined so that

Rm > 4(T ) > Rm−1.

With this observation in mind, we let ε := Rm−1 and deduce from Talagrand’s in-
equality [Proposition 3.7] that

E

[
max

t∈B(t0,Rm)
Xt

]
>
K

2
Rm−1

√
logPT (Rm−1) + min

s∈T
E

[
max

t∈B(s,Rm−1)
Xs

]
.
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By stationarity, E[maxB(s,ε) X] does not depend on s ∈ T . Therefore, Lemma 1.5
implies that

E

[
max

t∈B(t0,Rm)
Xt

]
>
K

2
Rm−1

√
logNT (Rm−1) + E

[
max

t∈B(t0,Rm−1)
Xs

]
=
K

2
Rm−1

[√
logNT (Rm−1)−

√
logNT (Rm)

]
+ E

[
max

t∈B(t0,Rm−1)
Xs

]
,

since NT (Rm) = 1. We are set up nicely to carry out an induction argument: Appeal
to Talagrand’s inequality [Proposition 3.7] once again—this time with ε := Rm−2—in
order to see that

E

[
max

t∈B(t0,Rm−1)
Xs

]
>
K

2
Rm−2

√
logNB(t0,Rm−1) (Rm−2) + E

[
max

t∈B(t0,Rm−2)
Xs

]
>
K

2
Rm−2

√
logNT (Rm−2)− logNT (Rm−1) + E

[
max

t∈B(t0,Rm−2)
Xs

]
,

by Lemma 3.8. The concavity of f(x) :=
√
x implies that

√
log a− log b >

√
log a −√

log b for all a > b > 1. Define

Jk := E

[
max

s∈B(t0, Rk)
Xs

]
[k ∈ Z].

We apply the preceding, inductively, in order to find that

E

[
max
s∈T

Xs

]
= Jm

>
K

2

1∑
j=0

Rm−j−1
[√

logNT (Rm−j−1)−
√

logNT (Rm−j)
]

+ Jm−1

...
...

...
...

>
K

2

L∑
j=0

Rm−j−1
[√

logNT (Rm−j−1)−
√

logNT (Rm−j)
]

+ Jm−L−1,

for every integer L > 1. Because T is a finite set, we can choose the integer L > 1 large
enough to ensure that B(t0 , R

m−L−1) = {t0}. Since Jm−L−1 = 0 and logNT (Rm−j) =
0 for all j > L, we can deduce the following:

E

[
max
s∈T

Xs

]
>
K

2

∞∑
j=0

Rm−j−1
[√

logNT (Rm−j−1)−
√

logNT (Rm−j)
]

>
K

2

∞∑
j=0

[
Rm−j−1 −Rm+j+2

]√
logNT (Rm−j−1)

=
K

2R

∞∑
j=0

∫ Rm−j

Rm−j−1

√
logNT (Rm−j−1) dε

>
K

2R

∫ Rm

0

√
logNT (ε) dε =

K

2R

∫ ∞
0

√
logNT (ε) dε,

since Rm > 4(T ); see Problem 1. Plug in the above the numerical value of R = 8/K
to finish.
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4 Stationary Processes and Differentiability

Let X := {Xt}t∈T be a Gaussian process. When T has a nice manifold structure,
one can go beyond asking questions about continuity to those about smoothness. The
situation is particularly simple to understand when T = R and X is stationary, in
which case we may assume that

E(X0) = 0 and Var(X0) = 1, (8.15) std:norm

without incurring any loss in generality.3

§4.1 A Necessary Condition for Differentiability
?〈subsec:diff〉?Because continuity is a sufficient condition for differentiability, we assume throughout

that X has continuous trajectories a.s. Of course, as we have seen in Theorems 2.5 and
3.5 (pp. 135 and 140, respectively), a necessary and sufficient condition for continuity
is the finiteness of the metric entropy integral for X; see also Remark 3.6. But one
can do much better. Indeed, if X were continuously differentiable a.s., then

X ′t = lim
s→t

Xt −Xs
t− s

would exist and be finite a.s. for every t ∈ R. Since limits of Gaussians are Gaussian
(XXX), it would follow readily that X ′ := {X ′t}t∈R must be a stationary Gaussian
process. In particular, for every z ∈ R,

E exp
(
izX ′0

)
= lim
t→0

E exp

(
iz
Xt −X0

t

)
= lim
t→0

exp

(
−z

2

2
Var

[
Xt −X0

t

])
.

(8.16) Eexp(izX’)

Let us write

ρ(t) := E(XtX0) for all t ∈ R.
According to Lemma 1.8,

E(XsXt) = ρ(t− s) = ρ(s− t) for all s, t ∈ R.

Thus, ρ is symmetric, and we might think of ρ as the “covariance function” of X. In
particular, ρ is also “positive definite” in the sense that

n∑
j=1

n∑
k=1

zjzkρ(tj − tk) > 0 for all z1, . . . , zn, t1, . . . , tn ∈ R.

See Lemma 1.4.
Since Var(Xt −X0) = 2[1− ρ(t)], whence it follows from (8.16) that

E exp
(
izX ′0

)
= exp

(
−z2 lim

t→0

[
1− ρ(t)

t2

])
for every z ∈ R, (8.17) Eexp(izX’):1

3This is because, when Var(X0) > 0, it follows that t 7→ {Xt − E(X0)}/
√

Var(X0) is
differentiable if and only if t 7→ Xt is differentiable. And if Var(Xt) = 0 for one hence all
t ∈ R, then Xt = E(Xt) = 0 for all t ∈ R, and differentiability questions are trivial.
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a part of the assertion of this computation being that the latter limit exists. If that
limit were infinity, then the left-hand side would be zero for every z 6= 0. This cannot
be, since the left-hand side is 1 when z = 0 and is a continuous function of z by
the dominated convergence theorem. Thus, it follows that if X were continuously
differentiable a.s., then certainly we would have the following:

lim
t→0

1− ρ(t)

t2
exists and is finite. (8.18) cond:rho’’

By (8.15), |ρ(h)| 6 1 and so the limit is also nonnegative. Also, it follows from (8.17)
and the Gaussian nature of X ′ that

Var(X ′0) = lim
t→0

Var

(
Xt −X0

t

)
= 2 lim

t→0

1− ρ(t)

t2
. (8.19) Var(X’):1

〈pr:rho:lip〉Proposition 4.1. Condition (8.18) implies that ρ is uniformly Lipschitz continuous.

Proof. Because ρ(t)− ρ(s) = E[X0(Xt −Xs)], we may apply stationarity, (8.15), and
the Cauchy–Schwarz inequality in order to see that

|ρ(t)− ρ(s)| 6
√

E (|Xt −Xs|2) =
√

E
(
|X|t−s| −X0|2

)
=
√

2[1− ρ(t− s)],

for all s, t ∈ R. Therefore,

sup
s,t∈R

0<|t−s|<δ

|ρ(t)− ρ(s)|
|t− s| 6

√
2 sup

0<h<δ

1− ρ(h)

h2

is finite for all δ > 0 sufficiently small. The preceding is also manifestly bounded above
by 2δ−1, whence it follows that ρ is uniformly Lipschitz continuous.

We will soon see that in fact (8.18) implies that ρ ∈ C2(R). To this end, let us
first recall Herglotz’s theorem: Every continuous positive-definite function on R is
the Fourier transform of a finite Borel measure. See XXX. Because ρ(0) = 1 and ρ is
real valued, it follows from Herglotz’s theorem and Proposition 4.1 that there exists a
Borel probability measure ν on R such that

ρ(t) =

∫ ∞
−∞

cos(tx) ν(dx) for all t ∈ R. (8.20) spectral:rep

The measure ν is called the spectral measure of X.
We can revisit (8.19) and observe that we can write Var(X ′t) in terms of the spectral

measure as follows:

Var(X ′0) = 2 lim
t→0

∫ ∞
−∞

(
1− cos(tx)

t2

)
ν(dx). (8.21) Var(X’):2

Since the integrand is > 0, Fatou’s lemma implies that Var(X ′0) >
∫∞
−∞ x

2 ν(dx), and
hence ∫ ∞

−∞
x2 ν(dx) <∞.

Therefore, the spectral representation (8.20) of ρ, and the dominated convergence
theorem, together imply that ρ ∈ C2(R), and

ρ′(t) = −
∫ ∞
−∞

x sin(tx) ν(dx) and ρ′′(t) = −
∫ ∞
−∞

x2 cos(tx) ν(dx), (8.22) rho’rho’’
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for all t ∈ R. Because 0 6 1 − cos θ 6 θ2/2 for all θ ∈ R, and since ν has two finite
moments, the dominated convergence theorem implies that the limit and the integral
can be exchanged in (8.21), which leads us to the following:

Var(X ′0) = 2

∫ ∞
−∞

x2 ν(dx) = −ρ′′(0). (8.23) Var(X’)

Because X ′ is a stationary Gaussian process, in order to characterize the law of X ′, it
remains to find Cov(X ′0 , X

′
s) for every s ∈ R [Lemma 1.8]. One adapts the argument

that led to (8.17) in order to see that

Cov(X ′0 , X
′
s) = lim

t→0
Cov

(
Xt −X0

t
,
Xs+t −Xs

t

)
= − lim

t→0

ρ(s+ t) + ρ(s− t)− 2ρ(s)

t2

= −ρ′′(s),

(8.24) Cov(X0Xs)

after yet another application of Taylor’s expansion. In particular, if X is continuously
differentiable, then X ′ is necessarily a stationary, mean-zero Gaussian process with
the above covariance, and hence (by Fernique’s theorem, Theorem 3.5; see also Re-
mark 3.6), has a finite metric entropy integral

∫∞
0

√
logNT (ε) dε for every closed and

bounded interval T ⊂ R, where the metric entropy NT is computed with respect to
the metric,

d(s , t) :=
√

E (|X ′t −X ′s|2) =
√
−2 [ρ′′(0)− ρ′′(t− s)], (8.25) X’:d:stationary

defined for all s, t ∈ R. Since X ′ is stationary, it is in fact enough to consider the
preceding metric entropy integral for T = [0 , 1]. Let us recap the efforts of this section
as the following theorem.

〈th:X’:1〉Theorem 4.2 (Cambanis XXX, Doob XXX). If X is an a.s. continuously-differentiable
stationary Gaussian process that satisfies (8.15), then ρ ∈ C2(R) and X ′ is a mean-
zero, stationary Gaussian process with covariance given by (8.24). Moreover, the met-
ric entropy integral

∫∞
0

√
logN[0,1](ε) dε is finite for the distance given by (8.25).

In the next section we will prove that Theorem 4.2 is in fact sharp.

§4.2 A Sufficient Condition for Differentiability

In this section we establish the following converse to Theorem 4.2.

〈th:X’:2〉Theorem 4.3 (Cambanis XXX, Doob XXX). Suppose X is a stationary Gaussian
process that satisfies (8.15). Suppose also that ρ ∈ C2(R) and

∫∞
0

√
logN[0,1](ε) dε <

∞, where N[0,1] denotes the metric entropy of [0 , 1] with respect to the metric d of
(8.25). Then, X is a.s. continuously differentiable.

Together, Theorems 4.2 and 4.3 then imply the following:

〈co:X’〉Corollary 4.4 (Cambanis XXX, Doob XXX). Suppose X is a stationary Gaussian
process that satisfies (8.15). Then,

P{X ∈ C1(R)} = 1

if and only if ρ ∈ C2(R) and
∫∞

0

√
logN[0,1](ε) dε < ∞, where N[0,1] denotes the

metric entropy of [0 , 1] with respect to the metric d of (8.25).
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We conclude this chapter by proving Theorem 4.3.

Proof of Theorem 4.3. First of all, let us compute directly to find that for all t ∈ R
and ε, δ > 0,

E

(∣∣∣∣Xt+ε −Xtε
− Xt+δ −Xt

δ

∣∣∣∣2
)

= Var

(
Xε −X0

ε

)
+ Var

(
Xδ −X0

δ

)
− 2 Cov

(
Xε −X0

ε
,
Xδ −X0

δ

)
= 2

1− ρ(ε)

ε2
+ 2

1− ρ(δ)

δ2
− 2

ρ(ε− δ)− ρ(ε)− ρ(δ) + 1

εδ
.

A Taylor expansion reveals that ρ(h) = 1 + 1
2
h2ρ′′(0) + o(1) as h → 0, which forces

the preceding quantities to tend to zero as ε, δ → 0. In other words, the condition
ρ ∈ C2(R) implies that h 7→ h−1(Xt+h − Xt) is Cauchy in L2(P) for every t ∈ R.
Define

X ′t := lim
h→0

Xt+h −Xt
h

for every t ∈ R,

where the limit takes place in L2(P). Because there are null sets involved, the preceding
is not enough to justify the differentiability of X, but it comes close. Next we close
the remaining technical gaps in order to show that X ′ is indeed the derivative of X
a.s.

Since limits of Gaussians are themselves Gaussian, it follows that X ′ := {X ′t}t∈R
is a mean-zero, stationary Gaussian process, and its covariance is described by the
formula (8.24), as in the previous section.

The finiteness of the metric entropy integral
∫∆([0,1])

0

√
logN[0,1](ε) dε shows that

{X ′t}t∈[0,1] is continuous a.s. [up to a modification]. By stationarity, this proves that
X ′ is continuous. Therefore, Fubini’s theorem shows that for all nonrandom functions
ϕ ∈ C1

c (R),∥∥∥∥∫ ∞
−∞

ϕ(t)

[
Xt+h −Xt

h
−X ′t

]
dt

∥∥∥∥
L2(P)

6
∫ ∞
−∞
|ϕ(t)|

∥∥∥∥Xt+h −Xth
−X ′t

∥∥∥∥
L2(P)

dt.

For every h, δ > 0, {h−1(Xt+h −Xt)− δ−1(Xt+δ −Xt)}t∈R is a mean-zero stationary
Gaussian process. Let δ → 0 to see that so is {h−1(Xt+h−Xt)−X ′t}t∈R. Consequently,

lim sup
h→0

∥∥∥∥∫ ∞
−∞

ϕ(t)

[
Xt+h −Xt

h
−X ′t

]
dt

∥∥∥∥
L2(P)

6 lim
h→0

∥∥∥∥Xh −X0

h
−X ′0

∥∥∥∥
L2(P)

∫ ∞
−∞
|ϕ(t)|dt = 0.

That is,

lim
h→0

∫ ∞
−∞

ϕ(t)
Xt+h −Xt

h
dt =

∫ ∞
−∞

ϕ(t)X ′t dt in L2(P), (8.26) intint:1

for every ϕ ∈ C1
c (R). Clearly,

P

{∫ ∞
−∞

ϕ(t)
Xt+h −Xt

h
dt =

∫ ∞
−∞

Xt
ϕ(t− h)− ϕ(t)

h
dt

}
= 1,
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owing to a change of variables. Because of (8.15) and Minkowski’s inequality,

lim sup
h→0

∥∥∥∥∫ ∞
−∞

Xt
ϕ(t− h)− ϕ(t)

h
dt+

∫ ∞
−∞

Xtϕ
′(t) dt

∥∥∥∥
L2(P)

6 lim
h→0

∫ ∞
−∞

∣∣∣∣ϕ′(t)− ϕ(t)− ϕ(t− h)

h

∣∣∣∣ dt = 0.

That is,

lim
h→0

∫ ∞
−∞

Xt
ϕ(t− h)− ϕ(t)

h
dt = −

∫ ∞
−∞

ϕ′(t)Xt dt in L2(P),

for every ϕ ∈ C1
c (R). Therefore, it follows from (8.26) that

P

{∫ ∞
−∞

ϕ(t)X ′t dt = −
∫ ∞
−∞

ϕ′(t)Xt dt

}
= 1,

for every ϕ ∈ C1
c (R). A standard approximation argument can now be used to show

that P{
∫ a

0
X ′t dt = Xa−X0} = 1 for every a ∈ R and in particular the following holds

with probability one: ∫ a

0

X ′t dt = Xa −X0, (8.27) intint:2

simultaneously for every rational number a. Since both sides of (8.27) describe a.s.-
continuous functions of a, it follows that (8.27) holds for all a ∈ R off a single P-null
set. This completes the proof.
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Problems

Unless it is stated to the contrary, throughout these problems, (T , d) denotes
a metric space, NT denotes the correspoding metric entropy, and

I(δ) :=

∫ δ

0

√
logNT (r) dr and J (δ) :=

∫ δ

0

√
log(NT (r) ∨ 2) dr,

for all δ > 0. Also, let ∆(T ) denote the d-diameter of T , as before.

〈Pbm:I〉 1. Verify that I(∆(T )) =
∫∞

0

√
logNT (r) dr, and also prove that

I(δ) 6 I(δ/2) 6 2I(δ),

for all δ ∈ (0 ,∆(T )].
2. Let T = [0 , 1] and d(s , t) := |t− s| for all s, t ∈ T . Improve the metric entropy

estimates of Examples 1.3 and 1.6 by showing that εNT (ε)→ 1 as ε ↓ 0.
3. Verify the claims of Example 1.7.
4. Suppose T = {1 , . . . , n} where n > 2 is integral, and suppose {Xi}i∈T is a

collection of i.i.d. standard-normal random variables. Let Mn := max16i6nXi.
(a) Use Corollary 2.7 to prove that

A
√

logn 6 I(∆(T )) 6 J (∆(T )) 6 B
√

logn,

where A,B > 0 are real numbers that do not depend on n.
(b) Conclude that C

√
logn 6 E(Mn) 6 D

√
logn for all n > 1 where C,D > 0

are real numbers that do not depend on n.
(c) Compare with Proposition 1.3 (p. 7), and discuss the efficiency of Theorems

1.8 and 5.16 in the present setting.
5. Extend Lemma 2.4 by proving that for every p > 1,

cp := sup
λ>0

Tp(λ)

[log(λ ∨ 2)]p/2
<∞.

(a) Use your result in order to deduce (8.12) from Theorem 2.5.
(b) The preceding problem came about in the proof of Corollary 2.7 because

we needed to prove that supt∈S Var(Xt) < ∞. For a less heavy-handed
approach prove directly that

sup
t∈S

Var(Xt) 6 ∆(S) + inf
s∈S

Var(Xs).

Then prove that (8.14) implies that ∆(S) < ∞, which is tacitly assumed
throughout any way.

6. Let X := {Xt}t∈T be a mean-zero Gaussian process where (T , d) is a separable
metric space. Suppose also thatX is a.s. continuous and satisfies E(supt∈T Xt) <
∞ and Var(Xs) > 0 for some s ∈ T . Prove that

lim
y→∞

1

y2
log P

{
sup
t∈T
|Xt| > y

}
= − 1

2 supt∈T Var(Xt)
.

This is due to Landau and Shepp XXX. (Hint: See Theorem 2.1, p. 71.)
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7. On one hand, use Dudley’s theorem [Theorem 2.5, p. 135] to verify that the
examples in §2.1 through §2.6 of the previous chapter [pp. 116–118] are all con-
tinuous Gaussian processes. [Do not appeal to Kolmogorov’s continuity theorem
as a simpler alternative.] On the other hand, prove also that the isonormal pro-
cess of §2.7 [p. 120] is not continuous a.s.

8. Carefully verify all three lines in (8.24).
〈pbm:KCT〉 9. Let {Xt}t∈T be a Gaussian process and suppose that (T , d) is separable and

0 < dimM(T ) <∞, where d is defined in (8.10).
(a) Prove that X has a continuous modification Y that satisfies the following

for all δ ∈ (0 , 1):

E

 sup
s,t∈T :
d(s,t)6δ

|Yt − Ys|

 6 Aδ
√

log(1/δ),

where A = A(T , d) is a positive real number.
(b) Conclude that

Λ(α) := E

 sup
s,t∈T :
d(s,t)>0

|Yt − Ys|
[d(s , t)]α

 <∞ whenever 0 < α <
1

dimM(T )
.

(Hint: Start by checking that

Λ(α) 6
∞∑
n=0

E

 sup
s,t∈T :

2−n−1∆(T )6d(s,t)<2−n∆(T )

|Yt − Ys|
[d(s , t)]α

 ,

for every α > 0. )
(c) Deduce the Kolmogorov continuity theorem (Proposition 2.2, p. 119) for

Gaussian processes from the preceding parts.
10. (Problem 9, continued) Let {Xt}t>0 denote an fBm with Hurst index α ∈ (0 , 1).

〈Pbm:KCT:1〉 (a) Prove that there exist real numbers 0 < c1 6 c2 such that

c1δ
α
√

log(1/δ) 6 E

 sup
06s,t61:
|t−s|6δ

|Xt −Xs|

 6 c2δ
α
√

log(1/δ),

for all δ ∈ (0 , 1). (Hint: See Problem 5, p. 126.)
(b) For every κ > 0 let Cκ denote the collection of all Hölder-continuous,

real-valued functions on [0 , 1] with Hölder exponent κ. That is, h ∈ Cκ iff

‖h‖Cκ := sup
06s<t61

|h(t)− h(s)|
|t− s|κ <∞.

Conclude from the preceding that, for every κ > 0,

P{X ∈ Cκ} =

{
1 if κ < α,

0 if κ > α.

(c) It can be shown that P{X ∈ Cα} = 0 as well; see XXX. Verify this in the
case that α ∈ (0 , 1/2], using Problem 4, p. 126.
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11. (Problem 10, continued) Let {Xt}t>0 denote an fBm with index α ∈ (0 , 1).
Prove that there exist real numbers c1, c2 > 0 such that

c1δ
α 6 E

(
sup

06t6δ
Xt

)
6 c2δ

α for every δ ∈ (0 , 1).

12. Let X := {Xt}t∈R be a stationary Gaussian process that satisfies (8.15) and let
ρ(t) := Cov(Xs , Xt) for all t ∈ R.

(a) Prove that, if ρ ∈ C2n(R) for some integer n > 1, then −d2nρ/dt2n is
positive definite; that is, prove that

N∑
j=1

N∑
k=1

zjzk
d2n

dt2n
ρ(tj − tk) 6 0 for all z1, . . . , zN , t1, . . . , tN ∈ R.

(b) Construct an example of a covariance function ρ such that ρ(0) = 1 and
ρ ∈ C∞(R).

13. Prove that if Y := {Yt}t∈R is a stationary mean-zero Gaussian process, then Y
is continuous [up to a modification] if and only if the Gaussian process {Yt}t∈[0,1]

is continuous [up to a modification]. Apply this with Y := X ′ in Theorem 4.2 to
complete the proof of the necessity of the finiteness condition for I(∆([0 , 1])).

〈pbm:X’:Holder〉 14. Suppose X := {Xt}t∈R is a stationary Gaussian process that satisfies (8.15).
Suppose also that ρ(t) := Cov(Xt , X0) is twice continuously differentiable on
R and its second derivative ρ′′ is Hölder continuous at zero. That is, suppose
there exist t0, θ > 0 such that 1 − ρ′′(t) 6 C|t|θ whenever |t| 6 t0. Then prove
that P{X ∈ C1(R) and X ′ is Hölder continuous} = 1.

15. (Problem 14, continued) Suppose ρ ∈ C2n(R) for some integer n > 1 and
the nth derivative dnρ/dtn is Hölder continuous at zero. Prove that P{X ∈
Cn(R) and dnX/dtn is Hölder continuous} = 1.

16. LetX be a stationary Gaussian process that satisfies (8.15) and choose and fix an
integer n > 1. Find a necessary and sufficient condition for P{X ∈ Cn(R)} = 1,
stated solely in terms of the covariance function ρ.

?〈pbm:X:X’〉? 17. Suppose X is a stationary Gaussian process that satisfies (8.15), and assume
that X ∈ C1(R) a.s.

(a) Prove that the collection of all random variables of the form either Xt or
X ′t is a mean zero Gaussian process.

(b) Compute Cov(Xt , X
′
s) for every s, t > 0. Use your formula to conclude

that Xt and X ′t are independent random variables for every fixed choice of
t ∈ R. Prove also that the Gaussian processX andX ′ are not independent.

(c) Is the last independence property still valid if we drop the stationarity
assumption for X? Prove or construct a counterexample.
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Chapter 9

Level Sets

1 Banach’s Theorem, and Some Applications

The principal aim of this chapter is to study the level sets of Gaussian processes. To
see why this might be interesting, let us briefly consider the following early example,
to which we shall return later in this chapter in greater depth.

Let q > 1 be a fixed integer and consider the random polynomial,

Xt := Z0 + Z1t+ · · ·+ Zqt
q for all t ∈ R. (9.1) rdm:poly

where Z0, Z1, . . . are independent random variables, each distributed as N(0 , 1). One
can think of X as a “typical” polynomial. With this interpretation in mind, it might
be interesting to know about the expected number of real zeros,

N (q) := E(#{t ∈ R : Xt = 0}),

of the random polynomial X. Does N (q) grow as q →∞? If so, then how fast? Where
do we think the real zeros of X are? Etc. Answers will come in due time. For now,
suffice it to say that the answers lie in a part of classical function theory that surrounds
“Banach’s indicatrix theorem.” Thus, we begin with that result.

§1.1 Banach’s Indicatrix Theorem

For every continuous function f : R→ R and real numbers a < b and y, define

N[a,b](f , y) := # {x ∈ [a , b] : f(x) = y} , (9.2) N(f)

where “N[a,b](f , y) =∞” is permitted. We frequently write N[a,b](f) for the function
y 7→ N[a,b](f , y), and refer to N[a,b](f) as the counting function – or indicatrix – of
f . For a graphical representation see Figure 9.1. That figure depicts a function f
together with its counting function N[a,b](f) drawn reflected and rotated in order to
make the construction clear.

As was suggsted in the preamble to this chapter, we will be interested mainly in
analyzing N[a,b](f) when f is a realization of a nice Gaussian process. But before we
study random functions, let us say a few things about a beautiful classical theorem, due
to Stephan Banach, that studies non-random functions f . Our forthcoming discussion
will culminate in the following elegant theorem.

153
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x

f(x)

N[a,b](f , y)

y

43210

Figure 9.1. The graphs of a function f and its counting function N[a,b](f)
〈fig:f:N(f)〉

〈th:Banach〉Theorem 1.1 (Banach XXX). If f ∈ C1(R), then for all real numbers a < b and all
continuous functions Ψ : R→ R,∫ ∞

−∞
Ψ(y)N[a,b](f , y) dy =

∫ b

a

Ψ(f(x))|f ′(x)| dx.

We now begin work toward proving Theorem 1.1. This undertaking requires some
notions, from elementary function theory, which we recall and develop next.

Let f : R→ R be a real-valued function on R and a < b two real numbers. Let P
be a partition of [a , b] with n + 1 elements a = x0 < x1 < · · · < xn−1 < xn = b, and
define

S(P , f) :=

n−1∑
i=0

|f(xi+1)− f(xi)|.

The total variation of f on [a , b] is defined as

V[a,b](f) := supS(P , f),

where the supremum is taken over all such partitions P of the interval [a , b]. If
V[a,b](f) < ∞ then we say that f has bounded variation on [a , b]. If f has bounded
variation on [a , b] for every two real numbers a < b, then we say that f has bounded
variation.

〈pr:V(f)〉
Proposition 1.2. Every C1 function on R has bounded variation. Moreover,

V[a,b](f) =

∫ b

a

|f ′(x)|dx, (9.3) eq:V(f)

for all real numbers a < b and f ∈ C1(R).

Proof. Choose and fix real numbers a < b and f ∈ C1(R). It suffices to verify the
identity (9.3).

Choose and fix a real number ε > 0. Let us also choose and fix a partition P of
[a , b] with nodes a = x0 < x1 < · · · < xn−1 < xn = b such that

V[a,b](f)− ε 6 S(P , f) 6 V[a,b](f). (9.4) VSV
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If we add finitely-many additional points to P , then we obtain a new partition Q
of [a , b] which manifestly satisfies V[a,b](f)− ε 6 S(P , f) 6 S(Q , f) 6 V[a,b](f). Such
a partition Q is sometimes called a refinement of P .

We can assume, without loss in generality, that P has been refined enough already
so that

sup
x,y∈[xi,xi+1]

|f ′(x)− f ′(y)| 6 ε for all i = 0, . . . , n− 1. (9.5) f’-f’

For otherwise, the continuity of f ′ allows us to replace P by a refinement of P that
satisfies (9.5). In this case, we can observe that for all i = 0, . . . , n− 1,∫ xi+1

xi

|f ′(x)| dx 6
(
|f ′(xi)|+ ε

)
(xi+1 − xi) =

∣∣∣∣∫ xi+1

xi

f ′(xi) dx

∣∣∣∣+ ε(xi+1 − xi)

6

∣∣∣∣∫ xi+1

xi

f ′(x) dx

∣∣∣∣+ 2ε(xi+1 − xi)

= |f(xi+1)− f(xi)|+ 2ε(xi+1 − xi),

and a matching lower bound also holds provided that we replace ε everywhere by −ε.
This shows that, for all i = 0, . . . , n− 1,∣∣∣∣∫ xi+1

xi

|f ′(x)| dx− |f(xi+1)− f(xi)|
∣∣∣∣ 6 2ε(xi+1 − xi).

Sum over i in order to deduce from (9.4) that∣∣∣∣∫ b

a

|f ′(x)| dx− S(P , f)

∣∣∣∣ 6 2ε(b− a) ⇒
∣∣∣∣∫ b

a

|f ′(x)|dx− V[a,b](f)

∣∣∣∣ 6 ε(2b− 2a+ 1),

as long as P is refined enough to ensure (9.5). This does the job because ε > 0 can be
made to be as small as we want.

We have delved into the theory of functions of bounded variation because it has a
connection to Banach’s indicatrix. The next proposition makes clear the relationship
between the indicatrix of a nice function f and its total variation; see also Proposition
1.2.

〈pr:Banach〉
Proposition 1.3. If f ∈ C1(R), then for all real numbers a < b,∫ ∞

−∞
N[a,b](f , y) dy =

∫ b

a

|f ′(x)| dx. (9.6) eq:Banach

Proposition 1.3 is a deceptively-subtle statement. For example, it has the non-
trivial corollary that N[a,b](f) < ∞ almost everywhere for every f ∈ C1(R). For
a second example, we may observe that, whereas the right-hand side of (9.6) is a
Riemann integral, the left-hand side is not; though it is in general a Lebesgue integral.
In order to see why, consider the case that f is a constant—say c—on [a , b]. In that
case, N[a,b](f , y) = 0 for all y 6= c and N[a,b](f , c) = ∞. This suffices to show that
N[a,b](f) is not Riemann integrable in this case. In fact, the Riemann-integrability of
the indicatrix is delicate enough to merit a more detailed discussion. We do that in
the following form next.

〈lem:N:meas〉Lemma 1.4. N[a,b](f) is Borel measurable for every two real numbers a < b provided
only that f is continuous.
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Remark 1.5. Lemma 1.4 does not claim that the Lebesgue integral
∫∞
−∞N[a,b](f , y) dy

is finite. Only that it is well defined.

Proof. Define for every integer n > 0,

Ik,n :=

[
a+

k(b− a)

2n
, a+

(k + 1)(b− a)

2n

]
for all k = 0, . . . , 2n − 1, (9.7) Ikn

and

N (n)

[a,b](f , y) :=

2n−1∑
k=0

1f(Ik,n)(y) for each y ∈ R,

where f(Ik,n) := {f(x) : x ∈ Ik,n} is, as usual, the image of Ik,n under the map f .
Because f is continuous, every image f(Ik,n) is in fact a closed interval. Therefore,

N (n)

[a,b](f) is an elementary function in the sense of Lebesgue’s integration theory.

Next, we may observe that N (n)

[a,b](f , y) 6 N (n+1)

[a,b] (f , y) for every y ∈ R and n > 0.
Therefore,

N (∞)

[a,b] (f , y) := lim
n→∞

N (n)

[a,b](f , y)

exists pointwise, and hence defines a Borel-measurable function. It remains to prove
that N (∞)

[a,b] (f) = N[a,b](f). Because N (n)

[a,b](f) 6 N[a,b](f) pointwise, we can see im-

mediately that N (∞)

[a,b] (f) 6 N[a,b](f) pointwise. We plan to prove that the converse
inequality also holds.

Choose and fix an arbitrary y ∈ R and let L denote any non-negative integer that
satisfies L 6 N[a,b](f , y). Fix such an L. There exist L distinct points x1, . . . , xL ∈
[a , b] such that f(xi) = y for all i = 1, . . . , L. If we choose n > 1 large enough then

x1, . . . , xL fall in L different dyadic intervals among I
(n)
1 , . . . , I

(n)
2n−1. In particular,

L 6 N (n)

[a,b](f , y) and hence L 6 N (∞)

[a,b] (f , y). Let L saturate N[a,b](f , y) to see that

N[a,b](f , y) 6 N (∞)

[a,b] (f , y) and complete the proof.

With measurability under way, we can establish Proposition 1.3.

Proof of Proposition 1.3. We continue to use the notation and construction of the
proof of Lemma 1.4, and observe that∫ ∞

−∞
N (n)

[a,b](f , y) dy =

2n−1∑
k=0

(
sup
Ik,n

f − inf
Ik,n

f

)
=

2n−1∑
k=0

∣∣∣∣∣sup
Ik,n

f − inf
Ik,n

f

∣∣∣∣∣ . (9.8) Nsupsup

Because f is continuous, the suprema and infima are all attained, and hence∫ ∞
−∞
N (n)

[a,b](f , y) dy 6 V[a,b](f).

Let n→∞ and recall from the proof of Lemma 1.4 that N (n)(f) converges upward to
N[a,b](f) pointwise as n → ∞. Therefore, the monotone convergence theorem yields∫∞
−∞N[a,b](f , y) dy 6 V[a,b](f) =

∫ b
a
|f ′(x)|dx, thanks to Proposition 1.2. We work to

establish the converse inequality now.
Choose and fix an arbitrary ε > 0 and note that there exists δ > 0 such that

|f(u)− f(v)| > |f ′(v)|(u− v)− ε(u− v).
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simultaneously for all u, v ∈ [a , b] that satisfy u > v and |u − v| < δ. Now, if I is a
closed interval in [a , b] then supI f−infI f = supu,v∈I |f(u)−f(v)|. These observations
and (9.8) together imply that

∫ ∞
−∞
N (n)

[a,b](f , y) dy >
2n−1∑
k=0

∣∣∣∣f (a+
(k + 1)(b− a)

2n

)
− f

(
a+

k(b− a)

2n

)∣∣∣∣
>
b− a

2n

2n−1∑
k=0

∣∣∣∣f ′ (a+
k(b− a)

2n

)∣∣∣∣− ε(b− a).

Because the sum on the right-most side is the Riemann-sum approximation of the
total variation

∫ b
a
|f ′(x)| dx of f , we can let n→∞ to find that

∫∞
−∞N[a,b](f , y) dy >∫ b

a
|f ′(x)| dx− ε(b− a). This completes the proof because ε > 0 is arbitrary.

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Throughout, we choose and fix two real numbers a < b.
Recall the dyadic intervals Ik,n’s from (9.7). Because Ψ and Ψ ◦ f are respectively

uniformly continuous on f([a , b]) and [a , b], it follows that for every ε > 0 there exists
n0(ε) > 0 such that whenever n > n0(ε),

sup
f(Ik,n)

|Ψ(u)−Ψ(v)| 6 ε and sup
s,t∈Ik,n

|Ψ(f(s))−Ψ(f(t))| 6 ε,

simultaneously for all k = 0, . . . , 2n − 1. Therefore, if n > n0(ε) then∣∣∣∣∣
∫
f(Ik,n)

Ψ(y)N[a,b](f , y) dy −Ψ
(
f
(
k2−n

)) ∫
f(Ik,n)

N[a,b](f , y) dy

∣∣∣∣∣
6 ε

∫
f(Ik,n)

N[a,b](f , y) dy,

for all k = 0, . . . , 2n − 1. Because N[a,b](f) = NIk,n(f) on f(Ik,n), it follows that∫
f(Ik,n)

N[a,b](f , y) dy =

∫
f(Ik,n)

NIk,n(f , y) dy =

∫
Ik,n

|f ′(x)| dx;

see Proposition 1.3. Therefore, if n > n0(ε) then∣∣∣∣∣
∫
f(Ik,n)

Ψ(y)N[a,b](f , y) dy −Ψ
(
f
(
k2−n

)) ∫
Ik,n

|f ′(x)| dx

∣∣∣∣∣ 6 ε

∫
Ik,n

|f ′(x)| dx,

for all k = 0, . . . , 2n − 1. Similarly,∣∣∣∣∣Ψ (f (k2−n
)) ∫

Ik,n

|f ′(x)| dx−
∫
Ik,n

Ψ(f(x))|f ′(x)|dx

∣∣∣∣∣ 6 ε

∫
Ik,n

|f ′(x)|dx,

for all k = 0, . . . , 2n − 1. Therefore, by the triangle inequality,∣∣∣∣∣
∫
f(Ik,n)

Ψ(y)N[a,b](f , y) dy −
∫
Ik,n

Ψ(f(x))|f ′(x)| dx

∣∣∣∣∣ 6 2ε

∫
Ik,n

|f ′(x)| dx,
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for all k = 0, . . . , 2n − 1, provided only that n > n0(ε). Sum over all these k’s to see
that, as long as n > n0(ε), as have∣∣∣∣∣

∫
f([a,b])

Ψ(y)N[a,b](f , y) dy −
∫ b

a

Ψ(f(x))|f ′(x)|dx

∣∣∣∣∣ 6 2ε

∫ b

a

|f ′(x)| dx.

The theorem follows from this because: (i) ε > 0 is arbitrary; and (ii) N[a,b](f , y) = 0
when y 6∈ f([a , b]).

§1.2 Rice’s Formula

Let X := {Xt}t∈R denote a mean-zero, stationary Gaussian process with

Var(X0) = 1 and ρ(s) = E(X0Xs) for all s ∈ R. (9.9) Rice:Var:Corr

Suppose further that
P{X ∈ C1(R)} = 1.1 (9.10) Rice:C1

Recall that the level set of X at a point y ∈ R is X−1({y}) := {t ∈ R : Xt = y}.
A natural measure of the size of the level set X−1({y}) is of course the indicatrix
N[a,b](X) of X, measured for all a < b; see (9.2) on page 153. For example, Proposition
1.3 on page 155, and a little bit of measure theory, together imply that there exists a
Lebesgue-null set Y ⊂ R such that a.s.,

N[a,b](X , y) <∞ for all y 6∈ Y and real numbers a < b.

One of the main goals of this section is to provide additional detail on the distri-
bution of the indicatrix of X. Specifically, we plan to prove the following.

〈th:Rice〉Theorem 1.6 (Rice’s Formula). Suppose X := {Xt}t∈R is a mean-zero stationary
Gaussian process that satisfies (9.9) and (9.10). Then,

E
[
N[a,b](X , y)

]
=

(b− a)
√
|ρ′′(0)|

π
e−y

2/2, (9.11) ?eq:Rice?

for all real numbers a < b and y.

We begin the proof with the following important technical result. In somewhat
imprecise words, this result states that, with probability one, the extreme points of X
can only take truly-random values. A more precise statement follows.

〈lem:Bulinskaya〉Lemma 1.7 (Bulinskaya XXX). For all y ∈ R,

P
{
∃t ∈ R such that Xt = y and X ′t = 0

}
= 0.

Proof. It is easy to see that

EN :=
{
ω : ∃t ∈ [N ,N + 1) such that Xt(ω) = y and X ′t(ω) = 0

}
(9.12) E:Bulinskaya

is measurable for every N ∈ Z. We plan to prove that P(E0) = 0. This will do the
job since P{∃t ∈ R : Xt = y and X ′t = 0} 6

∑
N∈Z P(EN ), which will be zero since

every summand is equal to P(E0) by stationarity.

1Corollary 4.4 on page 146 contains a necessary and sufficient condition for condition (9.10)
solely in terms of the correlation function of X.
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Let us choose and fix an arbitrary ε > 0. Define for all integers `,m, n > 1 and
k = 0, . . . , n− 1, the events

Fk,n :=

{
ω : Xt(ω) = y and X ′t(ω) = 0 for some

k

n
6 t <

k + 1

n

}
,

G`,n :=

{
ω : µn(ω) >

1

`

}
where µn := sup

06u,v<1
|u−v|<1/n

∣∣X ′u −X ′v∣∣ .
Then,

P(E0) 6
n−1∑
k=0

P
(
Fk,n ∩Gc`,n

)
+ P(G`,n), (9.13) P(E)P(E)

for all integers `, n > 1. Now we choose ` = `(n) as follows: Because of the a.s.-
continuity of the process X ′, µn → 0 as n→∞, almost surely. Therefore, there exists
n0(ε) such that for every n > n0(ε) we can find an integer

` = `(n) > 1/ε such that P(G`(n),n) 6 ε. (9.14) P(F)

This takes care of the final term in (9.13). We work to estimate the first term on the
remainder of the right-hand side of (9.13) next.

Off a single P-null set, the following holds for every t ∈ [k/n , (k + 1)/n):

Xk/n = Xt −
∫ t

k/n

(
X ′s −X ′t

)
ds−X ′t

(
t− k

n

)
.

Now,

sup
t∈[k/n,(k+1)/n]

∣∣∣∣∣
∫ t

k/n

(
X ′s −X ′t

)
ds

∣∣∣∣∣ 6 µn
n

almost surely on Gc`(n),n.

Therefore,

Fk,n ∩Gc`(n),n ⊂
{
ω :

∣∣Xk/n(ω)− y
∣∣ < 1

n`(n)

}
.

Because the probability density γ1 of a N(0 , 1) is bounded above by (2π)−1/2 < 1
2
, it

follows that P{|Xk/n − y| < r} =
∫ r
−r γ1(y − x) dx < r for every r > 0. This yields

P
(
Fk,n ∩Gc`(n),n

)
<

1

n`(n)
6
ε

n
,

valid for all n > n0(ε). It now follows from (9.13) and (9.14) that

P(E0) 6 2ε for all ε > 0 and integers n > n0(ε).

Let n→∞, and then ε→ 0, in this order, to deduce the lemma.

Next we present a slightly-different representation of the indicatrix of X. Before
we do that, we need to introduce some notation.

For every two real numbers a < b define

tk,n = tn,k(a , b) :=
k(b− a)

2n
for k = 0, . . . , 2n − 1 and n > 0. (9.15) eq:tnk
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If f : R→ R and y ∈ R, then we also let

σk,n(f , y) :=

{
1 if [f(tk,n)− y] [f(tk+1,n)− y] < 0,

0 otherwise.

Thus, σk,n(f , y) = 1 if and only if one of f(tk,n) and f(tk+1,n) lies strictly above y
and the other lies strictly below y. Define

K
(n)

[a,b](f , y) :=

2n−1∑
k=0

σk,n(f , y) for all y ∈ R.

The following shows that the quantity K
(n)

[a,b](f , y) frequently converges upward to

N[a,b](f , y) as n → ∞. The reason that the following is helpful is that it is much

simpler to analyze K
(n)

[a,b](f) than it is to analyze N[a,b](f) because the former depends
only on the values of f at the tk,n’s, whereas the latter depends on the values of f at
points that can be harder to pinpoint in general.

〈lem:K〉Lemma 1.8 (Grenander XXX). Choose and fix real numbers a < b and y, and some
f ∈ C1(R). Suppose that: (a) There is no t ∈ R such that f(t) = y and f ′(t) = 0;
and (b) f(tn,k) 6= y for every k = 0, . . . , 2n − 1 and n > 0, where tn,k = tn,k(a , b) was
defined in (9.15). Then

K
(∞)

[a,b](f , y) = lim
n→∞

K
(n)

[a,b](f , y)

exists and is equal to N[a,b](f , y) for every y ∈ R.

Proof. We adapt the proof of Lemma 1.4 to the present setting.
Because

K
(n)

[a,b](f , y) 6 K
(n+1)

[a,b] (f , y) for all n > 0 and y ∈ R,

the positive integer K
(n)

[a,b](f , y) converges upward to a limit K
(∞)

[a,b](f , y) for every

y ∈ R. If σk,n(f , y) = 1 then the mean-value property of the function f ensures that

f(t) = y for some t ∈ [tk,n , tk+1,n]. This proves that K
(n)

[a,b](f , y) 6 N[a,b](f , y). Let

n→∞ to see that K
(∞)

[a,b](f , y) 6 N[a,b](f , y) pointwise. In order to prove the converse
bound we need to introduce some notation.

We say that f traverses through t ∈ R at y ∈ R if there exists ε = ε(t) > 0
such that [f(u) − y][f(v) − y] < 0 for every t − ε < u < v < t + ε. See Figure 9.2.
Because f is C1, whenever f(t) = y then either f traverses through y at t, or f(t) = y
and f ′(t) = 0, which cannot happen as per the assumption of the lemma. Therefore,
N[a,b](f , y) is equal to the total number of times f traverses y at some point in [a , b].
Suppose m is an integer such that m 6 N[a,b](f , y). Then, there are at least m distinct
points z1, . . . , zm ∈ [a , b] at which f traverses y. Because of this and the fact that
f(tj,`) 6= y for all j and ` it follows that, for all n large enough, the zi’s fall in distinct
dyadic intervals of the form [tk,n , tk+1,n] and hence

m 6 K
(n)

[a,b](f , y) 6 K
(∞)

[a,b](f , y),

for all m 6 N[a,b](f , y). This implies that K
(∞)

[a,b](f , y) > N[a,b](f , y) and completes
the proof.
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x

f(x)

f(t) = y

t

f(t+ ε)

f(t− ε)

t+ εt− ε

Figure 9.2. f traverses through y at t.
〈fig:traverse〉

The final step of proof of Theorem 1.6 is the following elegant limit result about
our stationary Gaussian process X.

〈lem:P(X<y<X)〉Lemma 1.9 (Lindgren et al XXX). For every y ∈ R,

lim
t→0

1

t
P{X0 > y > Xt} =

√
|ρ′′(0)|
2π

e−y
2/2.

Proof. The random vector (X0 , Xt) has a N2(0 ,Γ(t)) distribution where Γ1,1(t) =
Γ2,2(t) = 1 and Γ1,2(t) = Γ2,1(t) = ρ(t). A quick computation of covariances show
that X0 and

Yt := Xt − ρ(t)X0

are independent, and Yt has a mean-zero normal distribution with variance Var(Yt) =
[1 − ρ(t)]2. Also, ρ(0) = 1 implies that there exists t0 6= 0 such that ρ(t) > 0 for all
t ∈ (−t0 , t0). Therefore, for all t ∈ (−t0 , t0),

P{X0 > y > Xt} = P {X0 > y > ρ(t)X0 + Yt}

=
1√
2π

E

(∫ (y−Yt)/ρ(t)

y

e−w
2/2 dw; y <

y − Yt
ρ(t)

)
.

where z+ := max(z , 0), as is customary. Since ρ′(0) = 0 and ρ′′(0) < 0—see (8.22)—a
Taylor expansion shows that ρ(t) = 1− 1

2
t2|ρ′′(0)|+ o(t2) as t→∞, and hence

y − Yt
ρ(t)

= y − tX ′0 + o(t) a.s. and in L2(P) as t→ 0.

Therefore, the dominated convergence theorem yields

lim
t→∞

1

t
P{X0 > y > Xt} =

e−y
2/2

√
2π

E
(
X ′0; X ′0 > 0

)
=

e−y
2/2

2
√

2π
E
(
|X ′0|

)
.

If W has a mean-zero normal distribution then E(|W |) =
√

2 Var(W )/π. The result
follows since X ′0 has a N(0 , |ρ′′(0)|) distribution; see (8.23) on page 146.

We are in position to prove Theorem 1.6.
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Proof of Theorem 1.6 (Grenander XXX). Choose and fix three real numbers a < b
and y. Because P{Xt = y} = 0 for every t ∈ R,

P
{
Xtn,k = y for some k = 0, . . . , 2n − 1 and n > 0

}
= 0,

where tn,k was defined in (9.15). This and Lemma 1.7 permit the use of Lemma 1.8,
with f ≡ X, in order to see that

E
[
N[a,b](X , y)

]
= E

[
K

(∞)

[a,b](X , y)
]

= lim
n→∞

E
[
K

(n)

[a,b](X , y)
]
,

where we have used the monotone convergence theorem to justify the last identity.
Now, the stationarity of X implies that

E
[
K

(n)

[a,b](X , y)
]

= 2nP
{

[X0 − y]
[
X(b−a)/2n − y

]
< 0
}

= 2n+1P
{
X0 < y < X(b−a)/2n

}
,

owing to the fact that X and −X have the same law. Thus, Lemma 1.9 implies the
theorem.

§1.3 Kac’s Theorem

We conclude this section by discussing a second application of Banach’s theorem (The-
orem 1.1). This application concerns the first set of questions that were asked at the
beginning of this chapter. Namely, we would like to say a few things about the level
sets of the Gaussian random polynomial in (9.1) (see p. 153). More precisely, we plan
to prove the following result of M. Kac.

〈th:Kac〉Theorem 1.10 (Kac, XXX). Let X be the Gaussian random polynomial of (9.1),
where q > 1 is a non- random integer. Then, for every two real numbers a < b,

E
[
N[a,b](X , 0)

]
=

1

π

∫ b

a

√
1

(t2 − 1)2
− (q + 1)2t2q

(t2q+2 − 1)2
dt. (9.16) Kac:E(N)

Originally, Kac XXX discovered an equivalent, though slightly different, repre-
sentation of the formula (9.16). Edelman and Kostlan XXX found the formula the
way it is stated here, and used it to expand on Kac’s asymptotic evaluation of the
expected number of real zeros of X as q →∞. In order to introduce Kac’s asymptotic
evaluation, let us write

N(−∞,∞)(X , 0) := sup
a<b

N[a,b](X , 0)

for the total number of the real-valued zeros of X. Then we have the following.

〈co:th:Kac〉Corollary 1.11 (Kac, XXX). E[N(−∞,∞)(X , 0)] ∼ (2/π) log q as q →∞.

Thus, we see that the expected number of real zeros of X tends logarithmically
to infinity as q → ∞. It shall follow also from Theorem 1.10, Corollary 1.11, and
(9.23) below that we can expect all but a bounded number of the zeros of X to lie in
arbitrarily-small open neighborhoods of ±1. These form fairly definitive answers to
our earlier questions that followed (9.1); see page 153.

Theorem 1.10 and Corollary 1.11 both rely heavily on Banach’s indicatrix of the
random polynomial X (see Proposition 1.3, p. 155). As a first step toward clarifying
this let us observe that Theorem 1.1 and a standard approximation argument from
integration theory together yield the following.
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〈co:Banach〉Corollary 1.12. If f ∈ C1(R) and a < b and c < d are real numbers, then∫ d

c

N[a,b](f , y) dy =

∫ b

a

1[c,d](f(x))|f ′(x)| dx.

Therefore, it follows from Lebesgue’s differentiation theorem (XXX) that, for every
f ∈ C1(R) and all bounded intervals [a , b],

N[a,b](f , y) = lim
ε↓0

∫ b

a

1[y,y+ε](f(x))

ε
|f ′(x)| dx, (9.17) eq:Kac

for almost every y ∈ R. It is easy to see that, for every y ∈ R, the probability measure
A 7→

∫
A
ε−11[y,y+ε](a) da converges weakly to the point mass δy as ε ↓ 0. Therefore,

we may think of (9.17) as a rigorous interpretation of the “non-rigorous formula,”

N[a,b](f , y) =

∫ b

a

δy(f(x))|f ′(x)| dx, (9.18) Banach:N:delta

valid for almost every y ∈ R.

Simple examples show that (9.17), whence informally also (9.18), cannot possibly
hold for every y; consider for example f ≡ 1 and y = 1. The following corollary
of Banach’s theorem shows that, nevertheless, (9.17) often holds pointwise for most
values of y.

〈co:Kac〉Corollary 1.13 (Kac XXX). Choose and fix some f ∈ C1(R) and a closed interval
[a , b] ⊂ R. If, in addition, Zf (a , b) := {x ∈ [a , b] : f ′(x) = 0} is a finite set, then the
limit in (9.17) holds for every y 6∈ {f(a) , f(b)} ∪ Zf (a , b).

For variants, see Problems XXX.

Proof. Because Zf (a , b) is finite, we can find a real number εy > 0 such that f ′(x) 6= 0
for all x ∈ [y , y + εy]. An elementary argument shows that the jumps of N[a,b](f)
necessarily lie in the finite set {f(a) , f(b)} ∪Zf (a , b); Figure 9.1 can serve as a visual
aid to formulating such an argument. Instead of proving this we note that, as a result,
if y 6∈ {f(a) , f(b)} ∪ Zf (a , b) and ε ∈ (0 , εy), then

N[a,b](f , x) = N[a,b](f , y) for all x ∈ (y , y + εy).

Consequently, Corollary 1.12 to Banach’s theorem ensures that

N[a,b](f , y) =
1

ε

∫ y+ε

y

N[a,b](f , x) dx =

∫ b

a

1[y,y+ε](f(x))

ε
|f ′(x)| dx,

for all ε ∈ (0 , εy). Let ε ↓ 0 to finish.

The proof of Theorem 1.10 requires a final technical result which we state next.

〈lem:Kac〉Lemma 1.14. If f : R→ R is a polynomial of degree at most q > 1, then

sup
ε>0

sup
y∈R

∫ ∞
−∞

1[y,y+ε](f(x))

ε
|f ′(x)| dx 6 q.
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Proof. Define T0 := −∞ and then iteratively let Tk+1 := inf{x > Tk : f ′(x) = 0} for
all k > 0, where inf ∅ :=∞. Define

F := {j > 0 : Tj <∞} ,

and notice that∫ ∞
−∞

1[y,y+ε](f(x))

ε
|f ′(x)| dx =

∑
j∈F

∫ Tj+1

Tj

1[y,y+ε](f(x))

ε
|f ′(x)| dx. (9.19) kac:int:sum

The mean-value property of f ′ ensures that f is strictly monotone in (Tj , Tj+1) for
every j ∈ F . Therefore, we may change variables in order to see that∫ Tj+1

Tj

1[y,y+ε](f(x))

ε
|f ′(x)|dx =

∣∣∣∣∣
∫ f(Tj+1)

f(Tj)

1[y,y+ε](a)

ε
da

∣∣∣∣∣ for all j ∈ F ,

where f(−∞) := lima→−∞ f(a) and f(∞) := lima→∞ f(a). In particular,∫ Tj+1

Tj

1[y,y+ε](f(x))

ε
|f ′(x)| dx 6

∫ ∞
−∞

1[y,y+ε](a)

ε
da = 1,

for every y ∈ R, ε > 0 and j ∈ F . Because f ′ is a polynomial of degree 6 q − 1, the
fundamental theorem of algebra implies that f ′ has no more than q−1 zeros, including
real ones. This in turn implies that the cardinality of F is at most q. Thus, the lemma
follows from (9.19) and the previously-displayed inequality.

Armed with the preceding, we are in position to prove Kac’s theorem.

Proof of Theorem 1.10. Because X ′ is a.s. a polynomial of degree q − 1, the random
set ZX(a , b) has at most q − 1 elements. Moreover, elementary considerations show
that

P {y 6∈ {Xa , Xb} ∪ ZX(a , b)} = 1 for every y ∈ R.
Therefore, Corollary 1.13 implies readily implies that for every y ∈ R,

N[a,b](X , y) = lim
ε↓0

∫ b

a

1[y,y+ε](Xt)

ε
|X ′t| dt, (9.20) N:Kac

almost surely. Furthermore, Lemma 1.14 and the dominated convergence theorem
together imply that (9.20) holds also in Lp(P) for every p > 1. Thus,

E
[
N[a,b](X , y)

]
= lim

ε↓0

1

ε

∫ b

a

E
(
|X ′t|; y < Xt < y + ε

)
dt

= lim
ε↓0

∫ b

a

E
(
|X ′t|

∣∣ y < Xt < y + ε
) P {y < Xt < y + ε}

ε
dt.

Evidently, P{y < Xt < y + ε}/ε tends to the probability density of Xt at y as ε ↓ 0.
Because

P{y < Xt < y + ε}
ε

6 P{Xt > y} 6 exp

(
− y2

2 Var(Xt)

)
for all y ∈ R,

the preceding and Problem 7 together imply that

E
[
N[a,b](X , y)

]
=

∫ b

a

E
(
|X ′t|

∣∣ Xt = y
) 1√

2πVar(Xt)
exp

(
− y2

2 Var(Xt)

)
dt.
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In particular, we may set y = 0 to see that

E
[
N[a,b](X , 0)

]
=

∫ b

a

E ( |X ′t| | Xt = 0)√
2πVar(Xt)

dt.

It is not hard to check directly (see Problem 7 below) that

E
(
|X ′t|

∣∣ Xt = 0
)

=

√
2

π

[
Var(X ′t)−

[Cov(X ′t , Xt)]
2

Var(Xt)

]
.

Therefore,

E
[
N[a,b](X , 0)

]
=

1

π

∫ b

a

√
Var(X ′t) Var(Xt)− [Cov(Xt , X ′t)]

2

[Var(Xt)]2
dt, (9.21) pre:Kac:E(N)

which yields (9.16) after a direct computation; see Problem 8.

We conclude this section with a proof of Kac’s asymptotic evaluation of the ex-
pected number of real zeros of a random polynomial.

Proof of Corollary 1.11. Let a ↓ −∞ and b ↑ ∞ and appeal to Theorem 1.10 an the
monotone convergence theorem in order to see that

E
[
N(−∞,∞)(X , 0)

]
=

2

π

∫ ∞
0

√
1

(t2 − 1)2
− (q + 1)2t2q

(t2q+2 − 1)2
dt. (9.22) eq:Kac0:eq

Let Fq(t) denote the integrand of the last integral. Choose and fix a number δ ∈ (0 , 1)
and observe that∫ 1−δ

0

Fq(t) dt+

∫ ∞
1+δ

Fq(t) dt 6
∫ ∞

1+δ

dt

t2 − 1
+

∫ 1−δ

0

dt

1− t2 <∞. (9.23) eq:Kac-1:eq

A direct computation reveals that∫ 1

1−δ
Fq(t) dt =

∫ qδ

0

√√√√ 1

s2 |2− (s/q)|2
− |1 + (1/q)|2 |1− (s/q)|2q(

1− |1− (s/q)|2q+2)2 ds.

Let Hq(s) denote the integrand of the last integral. Because

lim
q→∞

∫ 1

0

Hq(s) ds =

∫ 1

0

√
1

4s2
− e−2s

(1− e−2s)2 ds <∞,

it follows readily from (9.23) that∫ 1

1−δ
Fq(t) dt = O(1) +

∫ qδ

1

Hq(s) ds as q →∞. (9.24) eq:Kac1:eq

Elementary computations show that Hq(s) = (2s)−1 + o(1) as q → ∞, uniformly for
all s ∈ [1 , qδ]. Consequently, as q →∞,∫ 1

1−δ
Fq(t) dt = 1

2
log q + o(1), (9.25) eq:Kac2:eq

by (9.24). A similar analysis yields
∫ 1+δ

1
Fq(t) dt = 1

2
log q + o(1) as q → ∞. The

corollary follows from this, (9.22), (9.23), and (9.25).
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2 Brownian Local Time

One can continue to ask about the indicatrix of Gaussian processes in the case that
the process in question does not have C1 sample trajectories. In this section we
highlight aspects of this theory in the special case that the Gaussian process is Br-
ownian motion. While it is possible to study far more general non-C1 Gaussian pro-
cesses than Brownian motion, the presentation here is greatly simplified thanks to the
independent-increments property of Brownian motion.

§2.1 A First Computation

We can try to apply Banach’s theorem and its ramifications by applying it not to
Brownian motion directly (since Brownian motion is not continuously differentiable),
but to a piecewise-linear Gaussian process which approximates Brownian motion very
well. To construct a typical example of such an approximating process, define for
every integer n > 1,

Bn(t) := (nt− bntc)
{
B

(
bntc+ 1

n

)
−B

(
bntc
n

)}
+B

(
bntc
n

)
, (9.26) def:B_n(t)

for all t > 0, where B := {B(t)}t>0 denotes standard Brownian motion. Equivalently,
we define Bn by setting Bn(j/n) = B(j/n) for all integers j > 0, and by then linearly
interpolating these values to obtain Bn(t) for other values of t > 0. Figure 9.3 shows
a simulation of the graph of a Brownian motion B (in blue), superimposed by the
trajectory of the corresponding process Bn for a fixed value of n.

Figure 9.3. The blue line if Brownian motion B; the red line is the linear interpolant Bn.
The x-axis denotes time t.

〈fig:B_n(t)〉
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Since Bn is piecewise linear, its indicatrix is finite. Because B is continuous, it fol-
lows that for every T > 0, supt∈[0,T ] |Bn(t)−B(t)| → 0 almost surely as n→∞. Thus,
one might hope to define an “indicatrix” for B by studying limn→∞N[0,T ](Bn , y). The
following shows that this quest is hopeless because we expect N[0,T ](Bn , 0) to blow up
as n → ∞. This agrees with the following elementary property of Brownian motion
P{N[0,T ](B , 0) = ∞} = 1 for all T > 0. For simplicity, we shall study the case that
T = 1.

〈pr:BM:N〉
Proposition 2.1. Let Bn be defined as above. Then,

E
[
N[0,1](Bn , 0)

]
∼ 2

π

√
n as n→∞.

The proof requires a simple calculation with Brownian motion.

〈lem:BM:abc〉Lemma 2.2. If a < b < c, then

E ( |B(c)−B(a)| | B(b) = 0) =

√
2

π

(
c− a− (b− a)2

b

)
a.s.

Proof. Let α := (b − a)/b and note that, for this choice of α, the random variables
B(c) − B(a) − αB(b) and B(b) are uncorrelated and hence independent. It follows
from this calculation that

E ( |B(c)−B(a) | B(b) = 0) = E (|B(c)−B(a)− αB(b)|) a.s.

If X has a mean-zero normal distribution, then an elementary computation shows
that E(|X|) =

√
(2/π) Var(X). Apply this identity with X = B(c)−B(a)−αB(b) to

deduce the result.

We now return to our immediate goal and prove Proposition 2.1.

Proof of Proposition 2.1. Thanks to the definition (9.26) of the process Bn, we com-
pute directly to find that Var[Bn(t)] = n−1(nt − bntc)2 + n−1bntc. In particular, it
follows that

sup
t>0
|Var [Bn(t)]− t| 6 2

n
. (9.27) Var(B)-t

Just as was proved in (9.20) for random Gaussian polynomials, one can prove that

N[0,1](Bn , 0) = lim
ε↓0

∫ 1

0

1[0,ε](Bn(t))

ε
|B′n(t)| dt

= 2n lim
ε↓0

∫ 1

0

1[0,ε](Bn(t))

ε

∣∣∣∣B(bntc+ 1

n

)
−B

(
bntc
n

)∣∣∣∣ dt. (9.28) BM:Kac

Therefore, (9.27) and Lemma 2.2 together imply that

E
[
N[0,1](Bn , 0)

]
= n

∫ 1

0

E

(∣∣∣∣B(bntc+ 1

n

)
−B

(
bntc
n

)∣∣∣∣ ∣∣∣∣ Bn(t) = 0

)
dt√

2πVar[Bn(t)]

=
n

π

∫ 1

0

√√√√√ 1

n
−

(
t− bntc

n

)2

t

dt√
Var[Bn(t)]

∼
√
n

π

∫ 1

0

√√√√√
1−

(
t− bntc

n

)2

nt

dt√
t

as n→∞.
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This proves the result readily.

§2.2 Occupation Densities

We have argued in the previous section that one cannot expect a Brownian motion
B to have a finite, well-defined indicatrix-type function in an obvious sense. Still, if
B did have a reasonable indicatrix, then it might be also reasonable to imagine that,
just as it was true in Banach’s theorem,∫ ∞

−∞
Ψ(y)N[0,T ](B , y) dy =

∫ T

0

Ψ(B(s))|B′(s)| ds a.s., (9.29) eq:BM:Banach:none

for every T > 0 and bounded and measurable function Ψ : R → R. Proposition
2.1 gives an indication of why the above cannot be true. And, intuitively speaking,
the preceding cannot hold because Brownian motion is nowhere-differentiable a.s.; see
XXX. See also Problem 13. However, as it turns out, the preceding display has a
Brownian-motion analogue, provided that we formally replace the right-hand side by∫ T

0
Ψ(B(s))|B′(s)|2 ds. There is a sense in which “|B′(s)|2 ds = ds.” [This can be

formalized by the statement that Brownian motion has finite quadratic variation; see
Problem 4 on page 23]. In that case, the proper replacement of the indicatrix of B
is an interesting object, called Brownian local time, which is the centerpiece of this
section.

With the preceding in mind, define for every T > 0 and Borel set A ⊂ R,

µT (A) :=

∫ T

0

1A(B(s)) ds. (9.30) eq:BM:mu_T

Evidently, every µT is a.s. a finite Borel measure on R. Because µT (A) is the Lebesgue
measure of the time spent in the set A by Brownian motion before time T , µT is referred
to as the occupation measure of Brownian motion on the time interval [0 , T ].

One can define µT , equivalently, via the following:∫ T

0

Ψ(B(s)) ds =

∫ ∞
−∞

Ψ(x)µT (dx), (9.31) eq:BM:ODF:mu

a.s. for every T > 0 and bounded and measurable function Ψ : R→ R. Indeed, (9.31)
certainly implies (9.30) upon setting Ψ := 1A. And the converse implication is valid
because integration theory teaches us that the general form of (9.31) follows provided
that (9.31) is valid for all functions Ψ of the form 1A.

Note that the left-hand side of (9.31) is equal to the right-hand side of (9.29) but
with |B′(s)|ds replaced by the intuitively-pleasing expression |B′(s)|2 ds “=” ds. The
following is the main result of this section, and interprets the left-hand side of (9.29).

〈th:BM:ODF〉Theorem 2.3 (Lévy XXX). P{µT � Leb} = 1 for every T > 0, where Leb denotes
the standard one-dimensional Lebesgue measure. Write LT (x) := µT (dx)/dx for the
Radon-Nikodým derivative. Then, P{LT ∈ L1(R) ∩ L2(R)} = 1 for every T > 0, and∫ T

0

Ψ(B(s)) ds =

∫ ∞
−∞

Ψ(x)LT (x) dx, (9.32) eq:BM:ODF

a.s. for every T > 0 and bounded and measurable function Ψ : R→ R.
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Among other things, Theorem 2.3 — see (9.32) — says that (9.29) becomes a
true identity provided that: (1) We remove the formal expression |B′(s)| from the
right-hand side; and (2) Replace the indicatrix on the left-hand side by the function
LT . Thus, in a sense, the role of N[0,T ](B , y) is played by LT (y) in the theory of
Brownian motion. The random process y 7→ LT (y) is called the local time of B at
y ∈ R before time T , and the identity (9.32) is called the occupation density formula
for the Brownian motion B.

Proof (Kahane XXX). Choose and fix some T > 0. Since µT , as defined in (9.30), is
a bona fide finite measure a.s., it has a well-defined Fourier transform a.s., and the
latter can be computed as follows:

µ̂T (z) :=

∫ ∞
−∞

eizxµT (dx) =

∫ T

0

eizB(s) ds a.s. for every z ∈ R.

We may apply Fubini’s theorem to find that for all z ∈ R,

E
(
|µ̂T (z)|2

)
=

∫ T

0

ds

∫ T

0

dt E
(

eiz{B(t)−B(s)}
)

=

∫ T

0

ds

∫ T

0

dt e−z
2|t−s|/2

6 T 2 ∧ 4T

z2
,

after a few computations. A second appeal to Fubini’s theorem now yields

E
(
‖µ̂T ‖2L2(R)

)
6
∫ ∞
−∞

(
T 2 ∧ 4T

z2

)
dz <∞.

In particular, we can conclude from this that µ̂T ∈ L2(R) a.s. According to the
Plancherel theorem, the Fourier transform is a linear isometry from L2(R) to L2(R).
Consequently, it follows that the random measure µT is a.s. a function LT ∈ L2(R)
in the sense of distribution theory. Equivalently, there a.s. exists a random element
LT ∈ L2(R+) such that µT (dx) = LT (x) dx, as measures. Since µT (R) = T , it follows
also that LT ∈ L1(R) a.s., and in fact ‖LT ‖L1(R) = T . In particular, we can deduce
(9.32) from this and the Radon–Nikodým theorem, and conclude the proof.

§2.3 Regularity of Local Times

Theorem 2.3 and the Lebesgue density theorem XXX together show that with proba-
bility one,

LT (x) = lim
ε↓0

1

ε

∫ T

0

1[x,x+ε](B(s)) ds, (9.33) eq:BM:LT:approx

for all but a null-set of x’s. Now apply Fubini’s theorem to see that we can reverse the
order of the logical quantifiers in the preceding. That is, there exists a null set of x’s
off which (9.33) holds a.s. This is the Brownian-motion analogue of the Kac formula
(9.17) on page 163.2

Define for all ε > 0 and x ∈ R,

ϕε(x) := ε−1
1[0,ε](x).

2Also, the intuitive, somewhat-informal statement (9.18) has the following analogue for

Brownian motion: LT (x) =
∫ T
0 δx(B(s)) ds.
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The quantities that appear in the right-hand side of (9.33) can be expressed as follows:∫ T

0

ϕε(x+B(s)) ds =

∫ ∞
−∞

ϕε(x+ y)µT (dy) =

∫ ∞
−∞

ϕε(x+ y)LT (y) dy [see (9.32)]

=
1

2π

∫ ∞
−∞

e−ixzϕ̂ε(z)µ̂T (z) dz

=
1

2π

∫ ∞
−∞

dz

∫ T

0

ds e−ixz−izB(s)

(
1− eiεz

iεz

)
.

owing to Parseval’s identity. In other words, we have shown that there exists a
Lebesgue-null set NT ⊂ R such that limε↓0 L

(ε)
T (x) = LT (x) a.s. for every x 6∈ NT ,

where

L
(ε)
T (x) =

1

ε

∫ T

0

1[x,x+ε](B(s)) ds

=
1

2π

∫ ∞
−∞

dz

∫ T

0

ds e−ixz−izB(s)

(
1− eiεz

iεz

)
,

(9.34) eq:BM:LT:Fourier

for all x ∈ R and T, ε > 0. Since the only key property of LT is that it is the Radon–
Nikodým derivative of µT with respect to Lebesgue measure, we can change LT on a
Lebesgue-null set without altering any of the salient properties of LT , as outlined in
Theorem 2.3. Thus, we now redefine

LT (x) := lim inf
ε↓0

L
(ε)
T (x) for all T > 0 and x ∈ R.

Let us remark once again that, for this redefined version of Brownian local time,
we continue to have, for every T > 0 fixed, the a.s. identity LT (x) dx = µT (dx)
(as measures). Moreover, it still continues to be the case that for every T > 0,

LT (x) = limε↓0 L
(ε)
T (x) a.s. for all x 6∈ NT . An advantage of working with the newly-

redefined notion of local times is that they satisfy the following inequality.

〈pr:BM:L(x)-L(y)〉Proposition 2.4. For every δ ∈ (0 , 1/2) and T > 0 there exists a real number Kn,T,δ

such that
E
(
|LT (x)− LT (y)|2n

)
6 Kn,T,δ|x− y|2nδ,

simultaneously for all x, y ∈ R and n ∈ N.

Proof. Because of Fatou’s lemma, it suffices to prove the proposition with LT (x) −
LT (y) replaced by L

(ε)
T (x)− L(ε)

T (y), where ε > 0 is now held fixed. With this aim in
mind, choose and fix T, ε > 0, x, y ∈ R, and n ∈ N and write

D := E

(∣∣∣L(ε)
T (x)− L(ε)

T (y)
∣∣∣2n) ,

to simplify the typography. Thanks to (9.34),

D =
1

(2π)2n

∫
R2n

dz

∫
[0,T ]2n

ds

2n∏
`=1

(
1− e−i(x−y)z`

) 2n∏
j=1

(
1− eiεzj

iεzj

)
E

(
2n∏
`=1

e−iyz`−iz`B(s`)

)

6
|x− y|2nδ

π2n

∫
R2n

2n∏
`=1

|z`|δ dz

∫
[0,T ]2n

ds

∣∣∣∣∣E
(

2n∏
`=1

e−iz`B(s`)

)∣∣∣∣∣ ,
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using the elementary fact that |1− exp(iθ)| 6 |θ| ∧ 2|θ|δ for all θ ∈ R and δ ∈ (0 , 1).
This and a simple calculation (see Problem 12 on p. 180) together yield

D 6
(2n)!|x− y|2nδ

π2n

∫
R2n

2n∏
`=1

|z`|δ dz

∫
∆n(T )

ds e−
1
2

∑2n
k=1(sk−sk−1)(zk+···+z2n)2 ,

where s0 := 0 and

∆n(T ) := {s ∈ R2n : 0 6 s1 < · · · < s2n < T}. (9.35) eq:Delta

Change variables and set w2n+1 := 0 in order to see that

D 6
(2n)!|x− y|2nδ

π2n

∫
∆n(T )

ds

∫
R2n

dw

2n∏
`=1

|w` − w`+1|δe−
1
2

∑2n
k=1(sk−sk−1)w2

k

6
(2n)!|x− y|2nδ

π2n

∫
∆n(T )

ds

∫
R2n

dw

2n∏
`=1

(
|w`|δ + |w`+1|δ

)
e−

1
2

∑2n
k=1(sk−sk−1)w2

k .

If a1, . . . , am > 1 =: am+1, then

m∏
`=1

(a` + a`+1) 6 2m
m∏
`=1

max(a` , a`+1) 6 2m
∑

Γ

m∏
`=1

aΓ(`),

where the sum is taken over all mappings Γ that map {1 , . . . ,m} to {1 , . . . ,m+1} such
that Γ(`) ∈ {` , `+ 1} for all ` = 1, . . . ,m (remembering all the time that am+1 = 1).
Consequently,

D 6
(2n)!16n|x− y|2nδ

π2n

∫
∆n(T )

ds

2n∏
`=1

∫ ∞
−∞

dq
(

1 + |q|2δ
)

e−
1
2

(sk−sk−1)q2

=
(2n)!32nA2n

δ |x− y|2nδ

π2n

∫
∆n(T )

[
1 +

(
2

sk − sk−1

)α]
ds√

sk − sk−1
,

where Aδ :=
∫∞
−∞(1 + |v|2δ) exp(−v2/2) dv. Because the above integral is finite — see

Problem 11 — this completes the proof.

Proposition 2.4 and the Kolmogorov continuity theorem (Theorem ??, page ??)
together imply that, for every T > 0, x 7→ LT (x) has a continuous modification. Once
again, let us redefine LT , this time as this continuous version. It still holds that for each
fixed T > 0, LT (x) dx = µT (dx) almost surely (as measures). But this modification
of our local times has nicer properties than its predecessor. Here is one such property
that is worth mentioning: Because the right-hand side of (9.33) is ε−1

∫ x+ε

x
LT (y) dy

— see (9.32) — it follows from the continuity of LT and the fundamental theorem of
calculus that, with probability one, (9.33) holds simultaneously for every x ∈ R (of
course, for the new modification of the local times; notice the strengthened order of
the quantifiers!). Next we seek to improve our definition of local times yet again by
trying to find a modification of LT (x) that is continuous in both T and x. To this
end, the following will suffice.

〈pr:BM:L(T)-L(S)〉Proposition 2.5. For every integer m > 1 there exists a number Km > 0 such that

E (|LT (x)− LS(x)|m) 6 Km(T − S)m/2,

simultaneously for all T > S > 0 and x ∈ R.
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Proof. Thanks to (9.34), for every x ∈ R, ε > 0, and T > S > 0,

D := D(T , S , x , ε) := L
(ε)
T (x)− L(ε)

S (x) = ε−1

∫ T

S

1[x,x+ε](B(s)) ds.

Therefore,

E (|D|m) =
m!

εm

∫
0<s1<···<sm<T−S

P

(
m⋂
i=1

{B(S + si) ∈ [x , x+ ε]}

)
ds.

If 0 < s1 < · · · < sm < T − S, then the independence of the increments of B ensures
that the above integrand is not more than

P {B(S + s1) ∈ [x , x+ ε]}
m−1∏
i=1

P {B(si+1 − si) ∈ [−ε , ε]} .

Since the probability density function ofB(r) is bounded above uniformly by (2πr)−1/2,
it follows that

E (|D|m) 6
m!

εm

∫
0<s1<···<sm<T−S

ε√
2π(S + s1)

m−1∏
i=1

2ε√
2π(si+1 − si)

ds

6
m!2(m/2)−1

πm/2

∫
0<s1<···<sm<T−S

ds√
s1(s2 − s1) · · · (sm − sm−1)

6
m!2(m/2)−1

πm/2

(∫ T−S

0

dr√
r

)m
,

which is clearly equal to a finite constant Km times (T − S)m/2. Let ε ↓ 0 and appeal
to Fatou’s lemma to finish.

Owing to Propositions 2.4 and 2.5, the Kolmogorov continuity theorem now implies
the following:

〈th:Trotter〉Theorem 2.6 (Trotter, XXX). The two-parameter process R+×R 3 (T , x) 7→ LT (x)
has a continuous modification. In fact, for all α, δ ∈ (0 , 1/2) and M,T > 0 there exists
a random variable V = V (α , δ ,M , T ) such that E(|V |k) <∞ for all k > 2, and with
probability one,

|Lt(x)− Ls(y)| 6 V
{

(t− s)δ + (y − x)α
}
,

uniformly for all 0 < s < t < T and −M < x < y < M .

From now on, when we refer to “Brownian local times,” we will mean the jointly-
continuous version of the local times that is furnished by Trotter’s theorem (Theorem
2.6).

3 The Zero Set of Brownian Motion

It is easy to see that, by virtue of its definition, the indicatrix of a function f ∈ C1

describes the size of the level sets of f . For example, N[0,T ](f , 0) is by default the
cardinality of the zero set of f in [0 , T ].

The goal of this section is to prove that the Brownian local times describe, in a
similar though more subtle manner, the “size” of the level sets of Brownian motion B.
The subtletly comes about since “size” is now measured using Hausdorff dimension –
rather than cardinality – which is the topic that we begin with.



3. THE ZERO SET OF BROWNIAN MOTION 173

§3.1 Hausdorff Dimension

Choose and fix a real number s > 0 and a set A ⊂ R, and define

Hεs(A) := inf

∞∑
j=1

(2rj)
s,

where the infimum is taken over all countable closed covers {[xj − rj , xj + rj ]}∞j=1 of
A such that 2rj 6 ε. Because ε 7→ Hεs(A) is nonincreasing,

Hs(A) := lim
ε↓0
Hεs(A)

exists. The set function Hs maps subsets of R into the extended interval [0 ,∞].

It is easy to verify the following.

〈lem:H_s〉Lemma 3.1. For every fixed s > 0 and A,B ⊂ R, the set function Hs satisfies the
following:

1. Hs(∅) = 0;
2. Hs(∪∞i=1Ai) 6

∑∞
i=1Hs(Ai) for all A1, A2, . . . ⊂ R;

3. Hs(A ∪B) = Hs(A) +Hs(B), provided additionally that A ∩B = ∅;
4. Hs(xA+ y) = |x|sHs(A) for every x, y ∈ R.

Thus we see that Hs is a Carathéodory outer measure for every s > 0. This
observation motivates the following.

Definition 3.2. Hs is called the s-dimensional Hausdorff measure on R.

It is, in fact, possible to prove that every Hs is a bona fide Borel measure on R.

〈th:H_s〉Theorem 3.3. For every fixed s > 0, the restriction of Hs to the Borel subsets of R
is a measure. That is, part 2 of Lemma 3.1 can be extended to the assertion that Hs
is countably additive on the Borel subsets of R.

The proof uses a classical method, and proceeds by proving that every Borel set
is “measurable” for the outer measure Hs. Because we will not need this fact we
shall skip the proof and simply refer to XXX for details. Instead, let us observe that
whenever 0 < ε < 1, 0 < s < t, and A ⊂ R, and if {[xj−rj , xj +rj ]}∞j=1 is a countable
closed cover of A such that 2rj < ε for every j > 1, then

Hεs(A) 6
∞∑
j=1

(2rj)
t 6 εt−s

∞∑
j=1

(2rj)
s.

Optimize over all such closed covers of A, and then send ε ↓ 0 in order to find that
Ht(A) = 0 as soon as 0 < s < t and Hs(A) < ∞. Equivalently, if Ht(A) > 0 and
0 < s < t, then Hs(A) =∞. In other words,

dimH(A) := sup {s > 0 : Hs(A) =∞} = inf {s > 0 : Hs(A) = 0} , (9.36) eq:dimh

for every A ⊂ R.

Definition 3.4. We call dimH(A) the Hausdorff dimension of A ⊂ R.
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We can readily deduce many of the properties of Hausdorff dimension from Lemma
3.1 and Theorem 3.3. The following is easy to prove. We include the proof as a way
to introduce some of the ideas that are frequently used to compute and/or estimate
the Hausdorff dimension of a given set.

〈lem:dimh〉Lemma 3.5. For every A,A1, A2, . . . ⊂ R:
1. dimH(∅) = 0 and dimH([0 , 1]) = 1;
2. dimH(xA+ y) = dimH(A) for every x, y ∈ R;
3. dimH(A1 ∩A2) 6 dimH(A1);
4. dimH(∪∞i=1Ai) = supi>1 dimH(Ai).

Proof. It is particularly easy to prove parts 3 and 2: Because every countable closed
cover of A1 is also a countable closed cover of A1 ∩A2, it follows that Hεs(A1 ∩A2) 6
Hεs(A1) for all ε > 0. Let ε tend to zero to deduce part 3 of the lemma. And part 2
follows from the fact that Hs(xA+ y) <∞ if and only if Hs(A) <∞; see Lemma 3.1.
Next we prove part 1.

Since Hs(∅) = 0, we can see immediately that dimH(∅) = 0. To complete the
proof of part 1 it remains to show that dimH([0 , 1]) = 1. With this aim in mind, choose
and fix an integer N > 1 and let Cj := [j/N , (j+ 1)/N ] for all j = 0, . . . , N −1. Since
{Cj}∞j=1 is a finite closed cover of [0 , 1], it follows that

H1/N
s (A) 6

N∑
j=1

|Cj |s = N1−s for all s > 0, (9.37) eq:H:UB

where |Cj | denotes the Lebesgue measure of Cj . We can let N → ∞ to see that
Hs([0 , 1]) = 0—whence dimH([0 , 1]) 6 s—whenever s > 1. Thus, dimH([0 , 1]) 6 1.
We complete the proof of part 1 by verifying that dimH([0 , 1]) > 1. Choose and fix
ε ∈ (0 , 1) and let {Bj}∞j=1 denote a countable closed cover of [0 , 1] such that |Bj | 6 ε
for all j > 1. Then, by the countable subadditivity of Lebesgue’s measure,

∞∑
j=1

|Bj | >
∣∣∪∞j=1Bj

∣∣ = |[0 , 1]| = 1. (9.38) pre:Frostman

Because the Bjs are arbitrary, this proves that Hε1([0 , 1]) > 1 for all ε > 0, and hence
H1([0 , 1]) > 0. It follows from this and the definition of Hausdorff dimension that
dimH([0 , 1]) > 1, which completes the proof of part 1.

We conclude the proof of the lemma by establishing part 4. Before we move in
this direction, let us first observe that

dimH(A) > 0 for every A ⊂ R, (9.39) eq:dim>0

thanks to the already-proven parts 1 and 3 of the lemma. Now we verify part 4 and
complete the proof of the lemma.

It remains to demonstrate that

dimH

(
∞⋃
i=1

Ai

)
6 sup

i>1
dimH(Ai), (9.40) eq:dimcup:le:supdim

since the reverse inequality follows from part 3. If the right-hand side of (9.40) is
infinite then there is nothing to prove; see (9.39). Therefore, we may assume without
loss in generality that supi>1 dimH(Ai) <∞. Choose and fix an arbitrary real number
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s > supi>1 dimH(Ai). By (9.36), Hs(Ai) = 0 for all i > 1, which in turn implies that
Hs(∪∞i=1Ai) = 0; see part 2 of Lemma 3.1. Apply (9.36) once more to see that

dimH

(
∞⋃
i=1

Ai

)
6 s for every s > sup

i>1
dimH(Ai),

which implies (9.40), whence also completes the proof of the lemma.

As part of the proof of Lemma 3.5 we learned that a natural way to estimate
dimH(A) from above is to find an “efficient” countable closed cover {Cj}∞j=1 of A such
that |Cj | 6 ε for all j > 1, and then use the tautological bound, Hεs(A) 6

∑∞
j=1 |Cj |

s;
see (9.37). The more tricky method—see (9.38)—that was used to bound dimH(A)
from below has an extension that is worthy of special mention.

〈lem:Frostman〉Lemma 3.6 (Frostman XXX). Suppose A ⊂ R is compact and there exists a proba-
bility measure µ that is supported in A and satisfies the following for some s, η, c > 0:

sup
x∈R

µ([x , x+ ε]) 6 cεs for all ε ∈ (0 , η).

Then, dimH(A) > s.

Proof. Choose and fix ε ∈ (0 , η), and let {Bj}∞j=1 be an otherwise arbitrary countable
closed cover of A that satisfies |Bj | 6 ε for all j > 1. Then, by the condition on µ,

∞∑
j=1

|Bj |s > c−1
∞∑
j=1

µ(Bj) > c−1µ

(
∞⋃
j=1

Bj

)
= c−1µ(A) = c−1.

Compare with (9.38). Optimize over {Bj}∞j=1 to see that Hεs(A) > c−1, whence also
Hs(A) > c−1 > 0.

§3.2 The Ternary Cantor Set

Every x ∈ [0 , 1] can be written as x =
∑∞
j=1 xj3

−j where the ternary digits x1, x2, . . .
of x are 0, 1, or 2. The ternary Cantor set C can be defined as the collection of all
points in [0 , 1] whose ternary digits are in {0 , 2}. To be sure,

C := {0 6 x 6 1 : xj ∈ {0 , 2} for all j > 1} .

For every integer n > 1 define

Cn := {0 6 x 6 1 : xj ∈ {0 , 2} for all j = 1, . . . , n} .

Then clearly C1 ⊃ C2 ⊃ · · · and C = ∩∞n=1Cn.
Elementary properties of geometric series imply that x1 = 0 if and only if x ∈

[0 , 1/3], and x1 = 2 if and only if x ∈ [2/3 , 1]. Therefore,

C1 =
[
0 , 1

3

]
∪
[

2
3
, 1
]
.

Similarly,
C2 =

[
0 , 1

9

]
∪
[

2
9
, 1

3

]
∪
[

2
3
, 7

9

]
∪
[

8
9
, 1
]
,

etc. In general, Cn is the disjoint union of 2n closed intervals B1,n, . . . , B2n,n, all with
length 3−n. Moreover, we can obtain Cn+1 from Cn by dividing every Bj,n into three
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C1

C2

C3

C4

Figure 9.4. The first four stages of construction of C
〈fig:Cantor〉

equal parts and jettisoning the middle part (see Figure 9.4). For this reason, C is also
sometimes known as the middle-thirds Cantor set.

Because {Bj,n}2
n

j=1 is a finite closed cover of C , it follows readily that

H2−n
s (C ) 6

2n∑
j=1

|Bj,n|s = (2/3s)n .

If s > log 2/ log 3, then the preceding tends to zero as n → ∞. This implies that
Hs(C ) = 0 for all s > log 2/ log 3, and hence dimH(C ) 6 s. Let s ↓ log 2/ log 3 to see
that dimH(C ) 6 log 2/ log 3. The following celebrated theorem of Cantor shows that
this inequality is in fact an identity.

Theorem 3.7 (Cantor XXX). dimH(C ) = log 2/ log 3.

Proof. Let X1, X2, . . . be independent random variables, all defined on a common,
suitable, probability space (Ω ,F ,P), such that P{Xj = 0} = P{Xj = 2} = 1/2.
Then,

X :=

∞∑
j=1

Xj3
−j (9.41) eq:CantorLeb:X

is a well-defined random variables that satisfies P{X ∈ C } = 1.

Let µ := P ◦ X−1 denote the distribution of X, and recall that C = ∩∞n=1Cn
where Cn is comprised of 2n closed, disjoint intervals B1,n, . . . , B2n,n each with length
3−n. A little thought shows that µ(Bj,n) does not depend on j (because the Xjs are
exchangeable). Since

2n∑
j=1

µ(Bj,n) = µ

(
2n⋃
j=1

Bj,n

)
= µ(Cn) = µ(C ) = 1,

this proves that

µ(Bj,n) = 2−n for all j = 1, . . . , 2n and n > 1. (9.42) eq:mu(B)

If I ⊂ [0 , 1] is an interval of length 3−n, then I ∩ C intersects at most one Bj,n, and
hence µ(I) = µ(I ∩ C ) 6 µ(Bj,n) = 2−n thanks to (9.42). In other words,

sup
x∈[0,1]

µ
([
x , x+ 3−n

])
6 2−n for all n > 1.
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Every ε ∈ (0 , 1) can be sandwiched between 3−n−1 and 3−n, where n = n(ε) > 1 is
an integer. Therefore, set ρ := log 2/ log 3 to see that

sup
x∈[0,1]

µ ([x , x+ ε]) 6 sup
x∈[0,1]

µ
([
x , x+ 3−n

])
6 2−n = 3−nρ 6 (3ε)ρ.

Because this is valid for every ε ∈ (0 , 1), and since µ is supported in C , Frostman’s
lemma (Lemma 3.9) implies that dimH(C ) > ρ = log 2/ log 3. This completes the proof
since we established the reverse inequality (that is, dimH(C ) 6 log 2/ log 3) above the
statement of the theorem.

Define a random variable X by (9.41), and let F (t) := P{X 6 t} describe the
cumulative distribution function of X. Then, F grows only on the Cantor set C .
Because |Cn| = (2/3)n and C = ∩∞n=1Cn, the Cantor set C has zero Lebesgue measure.
This shows that the monotone function F grows only on a set of zero Lebesgue measure
(and Hausdorff dimension log 2/ log 3). The function F is called the Cantor–Lebesgue
function. It is also known as the devil’s staircase because of the shape of its graph
(see Figure 9.5).
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Figure 9.5. A plot of the Cantor–Lebesgue function F . The monotone function F is flat on,
and only on, the relative complement [0 , 1] \ C of the Cantor set.

〈fig:Cantor:Lebesgue〉

§3.3 Brownian Motion
〈th:BM:zero:set:Levy〉Theorem 3.8. With probability one, dimH B

−1{0} = 1/2 for every j > 1.

Recall that the support of a locally-finite measure µ on R is the largest closed set
supp(µ) such that µ(R \ supp(µ)) = 0.

〈lem:Frostman〉Lemma 3.9 (Frostman’s lemma). Let A ⊂ R be fixed. Suppose there exists a proba-
bility measure µ such that µ(Ac) = 0

Lemma 3.10. For all t > 0 and η ∈ (0 , 1/e),

P {B(s) = 0 for some s ∈ [t , t+ η]} 6

(√
2

πt
+ 4

)√
η log(1/η).
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Proof. Choose and fix an arbitrary η ∈ (0 , 1/e) and t > 0, and observe that for every
ε > 0,

P {B(s) = 0 for some s ∈ [t , t+ η]} 6 P {|B(t)| 6 ε}+ P

{
sup

r∈[t,t+η]

|B(r)−B(t)| > ε

}

6
2ε√
2πt

+ P

{
sup
r∈[0,η]

|B(r)| > ε

}

The last probability is not greater than 2P{supr∈[0,η] B(r) > ε} 6 4 exp{−ε2/(2η)},
by a standard estimate on the maximum of Brownian motion. Hence,

P {B(s) = 0 for some s ∈ [t , t+ η]} 6 inf
ε>0

[
ε√
πt/2

+ 4 exp

(
− ε

2

2η

)]
.

If we plug in ε :=
√
η log(1/η), then we obtain the upper bound

P {B(s) = 0 for some s ∈ [t , t+ η]} 6
√
η log(1/η)√
πt/2

+ 4
√
η,

which implies the lemma since log(1/η) > 1.

Proof of Theorem 3.8.
Z := {t ∈ [0 , 1] : B(t) = 0}.

λ((s , t]) := Lt(0)− Ls(0) for all 0 < s < t < 1.

sup
t∈[0,1]

λ((t , t+ ε)) = O(εδ) as ε ↓ 0, a.s.

This and Frostman’s lemma together prove that dimH Z > δ a.s. for every δ ∈ (0 , 1/2),
and hence dimH Z > 1/2 a.s.

Hδ,2−n(Z) 6 2−δn
2n−1∑
j=0

1{Z∩[j2−n,(j+1)2−n] 6=∅}.

E
[
Hδ,2−n(Z)

]
6 2−δn

2n−1∑
j=0

P
{
Z ∩

[
j2−n, (j + 1)2−n

]
6= ∅

}
= 2−δn

2n−1∑
j=0

P
{
B(t) = 0 for some t ∈

[
j2−n, (j + 1)2−n

]}
.

E
[
Hδ,2−n(Z)

]
6 2−δn

2n−1∑
j=0

∞∑
k=n

P
{
B
(
k2−n

)
B
(
(k + 1)2−n

)
< 0
}
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Problems

1. Prove carefully Corollary 1.12. Note that the corollary is valid for every c < d
and not almost every such pair.

2. We say that a function f : R → R is piecewise C1 if f is continuous and for
every two real numbers a < b there exist finitely-many points a = x0 < x1 <
· · · < xn−1 < xn = b such that the restriction of f to (xi , xi+1) is C1 for every
i = 0, . . . , n− 1. Prove that Theorem 1.1 and Corollary 1.1 remain valid if f is
assumed only to be piecewise C1.

3. Prove that EN , as defined by (9.12), is measurable.
?〈pbm:Xcont->Ccont〉? 4. Let (T , d) be a compact metric space, and suppose X := {Xt}t∈T is a mean-zero

Gaussian process indexed by T . Note that d is not necessarily the metric that
was defined using X in (8.10), p. 134. Prove that if t 7→ Xt is almost surely
continuous, then (s , t) 7→ Cov(Xt , Xs) is a continuous function on T × T .

〈pbm:LD:stationary〉 5. Suppose X := {Xt}t∈R is a mean-zero stationary Gaussian process such that
P{X ∈ C1(R)} = 1 and Var(X0) = 1. Let ρ(t) := Cov(Xt , X0) for all t ∈ R
and prove that, for all T > 1 and δ > 0,

P

{
sup
t∈[0,T ]

Xt > y

}
6
T
√
|ρ′′(0)|
π

e−y
2/2 for every y > 0.

(Hint: If supt∈[0,T ] Xt(ω) > y then certainly N[0,T ](X , y)(ω) > 1.)
6. Use the result of Problem 5 in order to prove that:

(a) lim supt→∞Xt/
√

2 log t 6 1 a.s.; and
(b) limy→∞ y

−2 log P{supt∈[0,T ] Xt > y} = −1/2.
〈pbm:joint:Gauss:cond〉 7. Suppose (X ,Y ) has a bivariate normal distribution with E(X) = E(Y ) = 0,

Var(X) = σ2
X > 0, Var(Y ) = σ2

Y > 0, and ρ = Corr(X ,Y ) ∈ (−1 , 1). Prove
that

lim
ε↓0

E (|X| | 0 < Y < ε) = E (|X| | Y = 0) =

√
2

π
σ2
X(1− ρ2),

and that supε∈(0,1) E(|X| | 0 < Y < ε) <∞.
(Hint: Start by finding a constant α such that X − αY is independent of Y .)

〈pbm:rdm:poly〉 8. Let X := {Xt}t∈R be the random Gaussian polynomial of (9.1) on page 153,
and let X ′t := dXt/dt. Prove that Cov(X ′s , Xt) = (∂/∂s) Cov(Xs , Xt) for all
s, t ∈ R, and similarly that Cov(X ′s , X

′
t) = (∂/∂t) Cov(X ′s , Xt).

(a) Use these computations to verify the following formulas: For all t 6= 1,

Var(Xt) =
t2q+2 − 1

t2 − 1
,

Cov(X ′t , Xt) =
t
(
qt2q+2 − (q + 1)t2q + 1

)
(t2 − 1)2

,

Var(X ′t) =
t2q+2 − t2 − 1 + t2q

(
qt2 − q − 1

)2
(t2 − 1)3

.

(b) Use the preceding to verify the details of the computation that begins from
(9.21) (see p. 165) and leads to (9.16) (see p. 162).

9. Let B denote a standard Brownian motion, and {LT }T>0 its local time process.
(a) Prove that a.s., LT (x) = 0 for all |x| > supt∈[0,T ] |Bt| and all T > 0.

(b) Prove that P{supt∈[0,T ] |Bt| > λ} 6 2 exp{−λ2/(2T )} for all λ, T > 0.
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(c) Use the preceding to improve Trotter’s theorem (Theorem 2.6) to the fol-
lowing: For all α, δ ∈ (0 , 1/2) and T > 0 there exists a random variable
V = V (α , δ , T ) such that E(|V |k) <∞ for all k > 2, and with probability
one,

|Lt(x)− Ls(y)| 6 V
{

(t− s)δ + (y − x)α
}
,

uniformly for all 0 < s < t < T and −∞ < x < y <∞.
10. Verify the details of (9.28) (p. 167).

〈pbm:BM:multiple:int〉 11. Choose and fix some T > 0. Recall ∆n(T ) from (9.35) and define, for all α > 0,

In(α , T ) :=

∫
∆n(T )

ds

sα1 (s2 − s1)α · · · (s2n − s2n−1)α
.

Prove that In(α , T ) <∞ if and only if α < 1. For a greater challenge, suppose
that 0 < α < 1, and compute In(α , T ). (Hint: Induction!)

〈pbm:BM:CHF〉 12. Let B denote a standard one-dimensional Brownian motion. Prove that, for all
z1, . . . , zm ∈ R and 0 =: t0 < t1 < · · · < tm,

E

(
m∏
j=1

eizjB(tj)

)
= exp

{
−1

2

m∑
k=1

(tk − tk−1) (zk + · · ·+ zm)2

}
.

〈pbm:BM:N:0-1〉 13. Prove that P{N[0,T ](B , y) ∈ {0 ,∞}} = 1 for every T > 0 and y ∈ R, where
B denotes standard one-dimensional Brownian motion. You may use, without
proof, the strong Markov property of B in the following (weak) form. Choose
and fix some a ∈ R, and let τa := inf{s > 0 : B(s) = a}. Then, τa < ∞ a.s.,
and {B(τa+t)−B(τa)}t>0 is a standard Brownian motion. See XXX for details.
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