
Chapter 3

Harmonic Analysis
hch:Harmonic_Analysisi

Recall that if f 2 L2([0 , 2⇡]n), then we can write f as

f(x) = (2⇡)�n
X

k2Zn

e�ik·xf̂k, (3.1) F:L

where f̂k :=
R
[0,2⇡]n

eik·xf(x) dx denotes the “kth Fourier coe�cient” of f , and conver-

gence holds in L2([0 , 2⇡]n); that is,
R
[0,2⇡]n

|f(x)� fN (x)|2dx ! 0 as N ! 1, where

fN (x) :=
P

kkk6N
exp{ik · x}f̂k.

Eq. (3.1) is one of the many possible starting points of the theory of harmonic
analysis in the Lebesgue space [0 , 2⇡]n. In this chapter we develop a parallel theory
for the Gauss space (Rn,B(Rn) ,Pn). Problems 15 through 20 work out the analogous
details for “Poisson” spaces. And other distributional spaces are also possible; see XXX
for more discussion on this topic.

1 Hermite Polynomials in Dimension One

Before we discuss the general n-dimensional case, let us consider the special case that
n = 1. We may observe the following elementary computations:

�0
1(x) = �x�1(x), �00

1 (x) = (x2
� 1)�1(x), �000

1 (x) = �(x3
� 3x)�1(x), etc.

It follows from these computations, and from induction, that the kth derivative of �1
satisfies

�(k)
1 (x) = (�1)kHk(x)�1(x) [k > 0, x 2 R], (3.2) def:Hermite

where Hk is a polynomial of degree at most k. Moreover,

H0(x) = 1, H1(x) = x, H2(x) = x2
� 1, H3(x) = x3

� 3x, etc.

Definition 1.1. Hk is called the Hermite polynomial of degree k > 0.

Be warned that some authors normalize their Hermite polynomials di↵erently than
has been done here. Therefore, our notation, and normalizing constants, might di↵er
from theirs in certain places.

The following basic lemma records some of the salient features of Hermite polyno-
mials.
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42 CHAPTER 3. HARMONIC ANALYSIS

hlem:Hermitei
Lemma 1.2. For all x 2 R and k 2 Z+:

hlem:Hermite:1i 1. Hk+1(x) = xHk(x)�H 0
k(x);

hlem:Hermite:2i 2. H 0
k+1(x) = (k + 1)Hk(x); and

hlem:Hermite:3i 3. Hk(�x) = (�1)kHk(x).

This simple lemma teaches us a great deal about Hermite polynomials. For in-
stance, we learn from part 1 and induction that

Hk is a polynomial of exact degree k for every k > 0,

and the following Rodriguez formula holds for all k > 0 and x 2 R:

Hk+1(x) = xHk(x)� kHk�1(x). (3.3) Rodriguez

Finally, every Hk is monic; that is, the coe�cient of xk in Hk(x) is one for all k > 0.
Other properties of Hermite polynomials will unfold themselves in due time. For the
time being, let us prove Lemma 1.2.

Proof. We prove part 1 of the lemma by direct computation:

(�1)k+1Hk+1(x)�1(x) = �(k+1)
1 (x) [by (3.2)]

=
d
dx

�(k)
1 (x)

= (�1)k
d
dx

[Hk(x)�1(x)] [by (3.2)]

= (�1)k
⇥
H 0

k(x)�1(x) +Hk(x)�
0
1(x)

⇤

= (�1)k
⇥
H 0

k(x)� xHk(x)
⇤
�1(x),

where the last line follows from a third appeal to (3.2), together with the fact that
H1(x) = x. Divide both sides by (�1)k+1�1(x) to complete the proof of part 1.

Part 2 is clearly correct when k = 0. We now apply induction: Suppose H 0
j+1(x) =

(j + 1)Hj(x) for all 0 6 j 6 k. We plan to prove this for j = k + 1. By part 1
and the induction hypothesis, the Rodriguez formula (3.3) holds. Therefore, we can
di↵erentiate the latter formula in order to find that

H 0
k+1(x) = Hk(x) + xH 0

k(x)� kH 0
k�1(x)

= Hk(x) + kxHk�1(x)� kH 0
k�1(x),

thanks to a second appeal to the induction hypothesis. Because of Part 1, xHk�1(x)�
H 0

k�1(x) = Hk(x). This proves that H
0
k+1(x) = (k + 1)Hk(x), and part 2 follows.

We apply parts 1 and 2 of the lemma, and induction, in order to see that Hk is
odd [and H 0

k is even] if and only if k is. This proves part 3.

The following is the raison d’être for our study of Hermite polynomials. Specifi-
cally, it states that the sequence {Hk}

1
k=0 plays the same sort of harmonic-analyatic

role in the 1-dimensional Gauss space (R ,B(R) ,P1) as do the complex exponentials
in Lebesgue spaces.

hth:Hermite:1i
Theorem 1.3. The normalized Hermite polynomials

n
Hk/

p
k!
o1

k=0
form a complete,

orthonormal basis for L2(P1).
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Before we prove Theorem 1.3 let us mention the following corollary.

hco:Hermite:1i
Corollary 1.4. For every f 2 L2(P1),

f = f(Z) =
1X

k=0

1
k!

hf ,HkiL2(P1) Hk(Z) =
1X

k=0

1
k!

E [fHk]Hk a.s.

To prove this we merely apply Theorem 1.3 and the Riesz–Fischer theorem. Next
is another corollary which also has a probabilistic flavor.

hco:Hermite:Wiener:1i
Corollary 1.5 (Wiener XXX). For all f, g 2 L2(P1),

E[fg] =
1X

k=0

1
k!

E[fHk] E[gHk] and Cov(f , g) =
1X

k=1

1
k!

E[fHk] E[gHk].

Proof. Multiply both sides of the first identity of Corollary 1.4 by g(x) and integrate
[dP1] in order to obtain the identity,

hg , fiL2(P1) =
1X

k=0

1
k!

hf ,HkiL2(P1) hg ,HkiL2(P1).

The exchange of sums and integrals is justified by Fubini’s theorem. The preceding is
another way to say the first result. The second follows from the first and the fact that
H0 ⌘ 1.

We now prove Theorem 1.3.

Proof of Theorem 1.3. Recall the adjoint operator A from (2.4) on page 36. Presently,
n = 1; therefore, in this case, A maps a scalar function to a scalar function. Since
polynomials are in the domain of the definition of A [Chapter 2, Proposition 3.3], parts
1 and 2 of Lemma 1.2 respectively say that:1

Hk+1 = AHk and DHk+1 = (k + 1)Hk for all k > 0. (3.4) A:D:H

Consequently,

E(H2
k) = E [Hk ·A(Hk�1)] = E [D(Hk) ·Hk�1] = kE

⇥
H2

k�1

⇤
.

Since E(H2
0 ) = 1, induction shows that E(H2

k) = k! for all integers k > 0.
Next we prove that

E(HkHk+`) = 0 for integers ` > 0, k > 0.

By (3.4),

E(HkHk+`) = E [Hk ·A(Hk+`�1)] = E [D(Hk)Hk+`�1] = kE [Hk�1Hk+`�1] .

1It is good to remember that Hk plays the same role in the Gauss space (R ,B(R) ,P1) as
does the monomial xk in the Lebesgue space. Therefore, DHk+1 = (k+1)Hk is the Gaussian
analogue of the statement that d(xk+1)/dx = (k+1)xk. As it turns out the adjoint operator
behaves a little like an integral operator, and the identity AHk = Hk+1 is the Gaussian
analogue of the anti-derivative identity

R
xk dx / xk+1, valid in Lebesgue space.
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Now iterate this identity to find that

E (HkHk+`) = k! E [H0H`] = k!

Z 1

�1
H`(x)�1(x) dx = 0,

since H` �1 = (�1)`�(`)
1 , thanks to (3.2). It follows that

n
Hk/

p
k!
o1

k=0
is an orthonor-

mal sequence of elements of L2(P1).
In order to complete the proof, we need to show the orthonormal basis is complete.

We do this in a standard way. Namely, we suppose that f 2 L2(P1) is orthogonal in
L2(P1) to Hk for all k > 0, and then proceed to prove that, as a consequence, f = 0
almost surely [P1].

Part 1 of Lemma 1.2 shows that Hk(x) = xk
� p(x) where p is a polynomial of

degree k� 1 for every k > 1. Consequently, the span of H0, . . . , Hk is the same as the
span of the monomials 1, x, · · · , xk for all k > 0. In particular,

R1
�1 f(x)xk�1(x) dx = 0

for all k > 0. Multiply both sides by (�it)k/k! and add over all k > 0 in order to see
that Z 1

�1
f(x)e�itx�1(x) dx = 0 for all t 2 R. (3.5) pre:Hermite

If the Fourier transform ĝ of a function g 2 Cc(R) is absolutely integrable, then by
the inversion theorem of Fourier transforms,

g(x) =
1
2⇡

Z 1

�1
e�itxĝ(t) dt for all x 2 R.

Multiply both sides of (3.5) by ĝ(t) and integrate [dt] in order to see from Fubini’s
theorem that

R
fg dP1 = 0 for all g 2 Cc(R) such that ĝ 2 L1(R). Since the class of

such functions g is dense in L2(P1), it follows that
R
fg dP1 = 0 for every g 2 L2(P1).

Set g ⌘ f to see that f = 0 a.s.

Finally, let us mention one more important corollary.

hco:Nashi
Corollary 1.6 (A Poincaré Inequality). For all f 2 D

1,2(P1),

Var(f) 6 E
�
|Df |2

�
.

Proof. By Corollary 1.5 and (3.4),

Var(f) =
1X

k=0

1
(k + 1)!

|E[fHk+1]|
2 =

1X

k=0

1
(k + 1)!

|E[fA(Hk)]|
2

=
1X

k=0

1
(k + 1)!

|E[D(f)Hk]|
2 6

1X

k=0

1
k!

|E[D(f)Hk]|
2 .

The right-most quantity is equal to E(|Df |2), thanks to Corollary 1.5.

2 Hermite Polynomials in General Dimensions

For every k 2 Z
n

+ and x 2 R
n define

Hk(x) :=
nY

j=1

Hkj (xj) [x 2 R
n].
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These are n-variable extensions of Hermite polynomials. Though, when n = 1, we will
continue to write Hk(x) in place of Hk(x) in order to distinguish the multi-dimensional
case from the case n = 1.

Clearly, x 7! Hk(x) is a polynomial, in n variables, of degree kj in the variable xj .
For instance, when n = 2,

H(0,0)(x) = 1, H(1,0)(x) = x1, H(0,1)(x) = x2, (3.6) {?}

H(1,1)(x) = x1x2, H(1,2)(x) = x1(x
2
2 � 1), . . . . (3.7) {?}

Because each measure Pn has the product form Pn = P1 ⇥ · · · ⇥ P1, Theorem 1.3
immediately extends to the following.

hth:Hermitei
Theorem 2.1. Define k! :=

Q
n

q=1 kq! for all k 2 Z
n

+. Then, for every integer n > 1,

the collection
n
Hk/

p
k!
o

k2Zn
+

is a complete, orthonormal basis in L2(Pn).

Corollary 1.4 has the following immediate extension.

hco:Hermitei
Corollary 2.2. For every n > 1 and f 2 L2(Pn),

f =
X

k2Zn
+

E(fHk)
k!

Hk almost surely,

where the infinite sum converges in L2(Pn).

Similarly, the following immediate extension of Corollary 1.5 computes the covari-
ance between two arbitrary square-integrable random variables in the Gauss space.

hco:Hermite:Wieneri
Corollary 2.3 (Wiener XXX). For all n > 1 and f, g 2 L2(Pn),

E[fg] =
X

k2Zn
+

1
k!

E[fHk] E[gHk] and Cov(f , g) =
X

k2Zn
+

k 6=0

1
k!

E(fHk) E(gHk).

And the following generalizes Corollary 1.6 to several dimensions.

hpr:Nashi
Proposition 2.4 (The Poincaré Inequality). For all f 2 D

1,2(Pn),

Var(f) 6 E
�
kDfk2

�
.

Proof. By Corollary 2.2, the following holds a.s. for all 1 6 q 6 n:

Dqf =
X

k2Zn
+

E[Dq(f)Hk]
k!

Hk =
X

k2Zn
+

E[fAq(Hk)]
k!

Hk,

where we recall Aq denotes the qth coordinate of the vector-valued adjoint operator.
By orthogonality and (3.4),

E
�
kDfk2

�
=

nX

q=1

X

k2Zn
+

1
k!

|E[fAq(Hk)]|
2

=
nX

q=1

X

k2Zn
+

1
k!

��������
E

2

664f(Z)Hkq+1(Zq)
Y

16`6n

` 6=q

Hk`(Z`)

3

775

��������

2

.
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Fix an integer 1 6 q 6 n and relabel the inside sum as j` := k` if ` 6= q and jq := kq+1.
In this way we find that

E
�
kDfk2

�
>

nX

q=1

X

j2Zn
+

jq>1

1
j1! · · · jn!

��������
E

2

664f(Z)Hjq (Zq)
Y

16`6n

` 6=q

Hj`(Z`)

3

775

��������

2

=
nX

q=1

X

j2Zn
+

jq>1

1
j1! · · · jn!

|E [fHj ]|
2 .

using only the fact that 1/(jq � 1)! > 1/jq!. This completes the proof since the right-
hand side is simply

X

j2Zn
+

1
j1! · · · jn!

|E [fHj ]|
2
� |E[fH0]|

2 ,

which is equal to the variance of f(Z) [Corollary 2.3].

Consider a Lipschitz-continuous function f : Rn
! R. Recall [Example 1.6, page

32] that this means that Lip(f) < 1, where

Lip(f) := sup
x,y2Rn

x 6=y

|f(x)� f(y)|
kx� yk

.

Since f 2 D
1,2(Pn) and kDfk 6 Lip(f) a.s., the Poincaré inequality has the following

ready consequence.

hco:Nash:Lipi
Corollary 2.5. For every Lipschitz-continuous function f : Rn

! R,

Var(f) 6 |Lip(f)|2.

If f is almost constant, then f ⇡ E(f) with high probability and hence Var(f) ⇡ 0.
The preceding estimate is an a priori way of saying that “in high dimensions, most
Lipschitz-continuous functions are almost constant.” This assertion is substantiated
further by the following two examples.

Example 2.6. The function f(x) := n�1Pn

i=1 xi is Lipschitz continuous and Lip(f) =
1/

p
n. In this case, Corollary 2.5 implies that

Var
�
n�1Pn

i=1 Zi

�
6 n�1,

which is in fact an identity. This example shows that the bound in the Poincaré
inequality can be attained. The fact that f is “almost constant” is another way to
state Khintchine’s weak law of large numbers.

Example 2.7. For a more interesting example consider either the function f(x) :=
max16i6n |xi| or the function g(x) := max16i6n xi. Both f and g are Lipschitz-
continuous functions with Lipschitz constant at most 1. The Poincaré inequality im-
plies that Var(Mn) 6 1,2 where Mn denotes either max16i6n Zi or max16i6n |Zi|.

2This bound is sub optimal. The optimal bound is Var(Mn) = O(1/ logn). For more
information on this see part (b) of Problem 19 on page 27.
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This is a non-trivial result about, for example, the absolute size of the centered ran-
dom variable Mn � EMn. The situation changes completely once we remove the
centering. Indeed by Proposition 1.3 (p. 7) and Jensen’s inequality,

E(M2
n) > |E(Mn)|

2
⇠ 2 log n as n ! 1.

Similar examples can be constructed for more general Gaussian random vectors
than Z, thanks to the following.

hpr:Poincare:Xi
Proposition 2.8. Let Q be a positive semidefinite matrix, and define �⇤ to be its
largest eigenvalue. If X is distributed as Nn(0 , Q), then

Var[f(X)] 6 �⇤ E
�
k(Df)(X)k2

�
for every f 2 D

1,2(Pn).

Proof. We can write Q = S2 where S is a symmetric n⇥n matrix; that is, S is a square
root of Q. Define g(x) := f(Sx) for every x 2 R

n, and observe that: (i) X has the
same distribution as SZ; and therefore (ii) Var(f(X)) = Var(g(Z)) 6 E(k(Dg)(Z)k2)
thanks to Proposition 2.4. By the chain rule, (Dg)(Z) = (Df)(SZ)S, whence

k(Dg)(Z)k2 = h(Df)(SZ)S , (Df)(SZ)SiRn = h(Df)(SZ) , (Df)(SZ)QiRn ,

thanks to the facts that Q = S2 and S is symmetric.3 Since Q is symmetric, Rayleigh’s
principle yields hx, xQiRn 6 �⇤kxk

2 for all x 2 R
n. Set x := (Df)(SZ) to see that

E(k(Dg)(Z)k2) 6 �⇤ E(k(Df)(SZ)k2),

which is equal to �⇤ E(k(Df)(X)k2).

The above proposition is sharp: For example, consider a function f such that
Df is constant almost everywhere, and lies in the span of the top eigenvalue of Q.
However, the proposition can be sharpened for certain specific choices of f . The next
proposition highlights this assertion.

hpr:Var:maxi
Proposition 2.9. If X has a Nn(0 , Q) distribution, then

Var(Mn) 6 max
16i6n

Var(Xi),

where Mn denotes either max16i6n Xi or max16i6n |Xi|.

Proof. Let S denote a symmetric square root of Q, and define f(x) = max16i6n xi.
According to the proof of Proposition 2.8,

Var

✓
max
16i6n

Xi

◆
= Var[f(SZ)] 6 E

⇥
h(Df)(SZ) , (Df)(SZ)Qi

Rn

⇤
.

We saw in Example 1.8, p. 33 that Df is Lebesgue-almost-everywhere a standard basis
vector of Rn, and hence h(Df)(SZ) , (Df)(SZ)QiRn is Pn-almost surely a diagonal
entry of Q. This implies the proposition in the case that Mn = max16i6n Xi. The
case that f(x) = max16i6n |xi| is handled the same way, except that now Df is ±1
times some standard basis element of Rn.

3Needless to say, ha , biRn :=
P

n

i=1 aibi for all a, b 2 Rn.
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3 Wick’s Formula

Theorem 1.3 shows that the (normalized) Hermite polynomials form a complete, or-
thonormal basis for L2(Pn). From this a straightforward change-of-variables argument
allows us to find a similar basis for any L2(Qn), where Qn is the law of a Nn(0,�)
random variable with � being full rank. Here is the statement of that fact.

hco:Hermite:correlatedi
Corollary 3.1. Let Qn denote the law of a Nn(0,�) random variable with � full rank.
Define functions C by Ck(x) = Hk(�

�1/2x) for k 2 Zn

+. Then {Ck/
p

k!}k2Zn
+

form a

complete, orthonormal basis for L2(Qn). Hence for any f 2 L2(Qn)

f =
X

k2Zn
+

E[fCk]
k!

Ck.

Corollary 3.1 is of course a simple consequence of Theorem 2.1 and Corollary 2.2.
In practice, for a general f it is rarely possible to explicitly compute this decomposition
of f since the coe�cients E[fCk] involve complicated integrals. When f is a polynomial
there is a combinatorial way of organizing a variant of this decomposition that goes
by the name of Wick’s formula. In fact it is a straightforward extension of the Isserlis
formula of Chapter 1, Theorem 5.1, and we have already seen the essential ingredients
of Wick’s formula in Chapter 1, Lemma 5.2.

Given the polynomials Ck from above we begin by defining, for integers j > 1, the
linear subspaces Pj of L2(Qn) by

Pj = Span{Ck : |k| = j},

where |k| =
P

n

m=1 km. We set P0 to be the space of constant functions, and then
Corollary 3.1 can be rephrased as saying that L2(Qn) decomposes into the orthogonal
sum of the subspaces Pj , j > 0. Symbolically this is written as

L2(⌦,F ,Qn) =
1M

j=0

Pj , (3.8) eq:Wiener_chaos_defn

where F is the �-algebra generated by X1, . . . , Xn.
A useful alternative description of the spaces Pj is that if X = (X1, . . . , Xn) is

a collection of mean zero, jointly Gaussian variables, then Pj is simply the linear
subspace of all degree j polynomials in the variables X1, . . . , Xn that are uncorrelated
with all degree < j polynomials in X1, . . . , Xn. This definition has the advantage that
it does not require the explicit basis of polynomials {Ck : |k| = j} to define Pj , and
this “basis free” definition does not require that the covariance matrix of X1, . . . , Xn

has full rank. In particular it allows for some of the Xi to be equal. Nonetheless the
decomposition (3.8) still holds, and simply states that every function of X1, . . . , Xn

with finite variance can be uniquely written as a (possibly) infinite sum of polynomials,
one from each Pj . The equality (3.8) is often called the Wiener chaos decomposition
of the L2 space.

Wick’s formula explains how the decomposition works for polynomial functions
of the Gaussian variables. A straightforward implication of (3.8) is that a polyno-
mial of degree ` in X1, . . . , Xn (noting that the degree of a monomial is the sum of its
exponents, and the degree of a polynomial is the maximum degree of all monomials ap-
pearing in it) can be uniquely decomposed into a sum of elements from P0,P1, . . . ,P`.
As noted above the part in Pj is simply the orthogonal projection of the polynomial
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onto Pj , in the L2(Qn) inner product. To express the projection we define projection
operators

⇡j : L2(⌦,F , Qn) ! Pj .

Thus for every random variable Y 2 L2(⌦,F , Qn) we can use the projection operator
⇡j to uniquely write Y = U + V , where U 2 Pj and U, V are orthogonal in the
L2(Qn) inner product. Of course U = ⇡jY and V = Y � ⇡jY . Recall that projection
operators are linear operators, so to explain Wick’s formula for polynomials it is enough
to consider what the projection operators ⇡ do to monomials of the form

f(X1, . . . , Xn) = Xa1

1 Xa2

2 . . . Xan
n

with the ak being non-negative integers that sum to `. Wick’s formula gives both an
expression for ⇡`f and a way of writing f as a sum of elements from Pj , j 6 `. As
for the Isserlis formula it is a combinatorial expression involving matchings. For the
statement and proof of Wick’s formula it is useful to introduce notation to describe
matchings. We write a partial matching of a set A as m � u, where m is the perfect
matching of a subset of A and u is the remaining unmatched pairs. Lastly, to state
the formula it is easier to allow for repetitions among the variables rather than using
the powers to express the polynomial. Thus in the following remember that some of
the Xi can be the same.

?hth:Wicki?
Theorem 3.2 (Wick, YYYY). Let X1, . . . , Xn have a Nn(0,�) distribution, where �
is an n⇥ n covariance matrix. Then

⇡n(X1X2 . . . Xn) =
X

m�u

(�1)|m|
Y

(i,j)2m

�i,j

Y

k2u

Xk. (3.9) eqn:Wick_projection

where the sum ranges over all partial matchings m� u of {1, . . . , n}, and |m| denotes
the number of matched pairs in the partial matching. Furthermore, the decomposition
of the regular product X1X2 . . . Xn into orthogonal parts is given by

X1X2 . . . Xn =
X

m�u

Y

(i,j)2m

�i,j ⇡|u|

 
Y

k2u

Xk

!
, (3.10) eqn:Wick_decomposition

where ⇡|u| is the projection to the Wiener chaos of the number of unmatched terms |u|.

Thus the theorem contains two distinct parts. The first is that the projection is
itself a polynomial in the variables Xi, while the second is that every polynomial in
Gaussian variables term can be written uniquely as a sum of polynomials in the same
variables with the property that any two terms in the sum are uncorrelated.

Some examples are in order. Our first example is a “trivial” one.

Example 3.3. A single Gaussian variable X1 has to be left unmatched, and hence

X1 = ⇡1(X1),

as expected. By linearity this extends to the identity ⇡1(aX1 + b) = a⇡1(X1), valid
for all real numbers a and b.

For a more interesting example consider the following.
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Example 3.4. If (X1 , X2) has a Gaussian distributions, then X1 and X2 can either be
matched or unmatched. This observation readily leads us to the formula

⇡2(X1X2) = X1X2 � E[X1X2].

This is equivalent to the assertion that X1X2 = ⇡2(X1X2) + E[X1X2], which is the
orthogonal decomposition of X1X2. These formulas continue to hold when X1 = X2 =
X. In this way we are led to the well-known formula:

⇡2(X
2) = X2

� E[X2] = X2
�Var(X).

In fact it can be checked by that if X is a standard normal random variable and
n > 1 an integer then

⇡n(X
n) = Hn(X), (3.11) eq:Hermite_projection_formula

for Hn the one-dimensional Hermite polynomial of degree n. To see this in the n = 3
case use the formula for X1, X2, X3

⇡3(X1X2X3) = X1X2X3 � E[X1X2]X3 � E[X1X3]X2 � E[X2X3]X1

and setX1 = X2 = X3 = X. Similarly, for four variables there are either no matchings,
exactly one matching, or exactly two matchings, which leads to the expression

⇡4(X1X2X3X4) =X1X2X3X3 � E[X1X2]X3X4 � E[X1X3]X2X4 � E[X1X4]X2X3

� E[X2X3]X1X4 � E[X2X4]X1X3 � E[X3X4]X1X2

+ E[X1X2] E[X3X4] + E[X1X3] E[X2X4] + E[X1X4] E[X2X3].

By setting X1 = X2 = X3 = X4 = X the right hand side becomes exactly H4(X).
We also observe that equation (3.10) contains the Isserlis formula of Theorem 5.1,

Chapter 1. On the right hand side of (3.10) every partial matching that is not a
perfect matching necessarily contains a Wick product, and that Wick product is in
Pj for some j > 0. Therefore it is orthogonal to P0 and hence mean zero. Thus after
taking expected value of (3.10) only the perfect matching terms remain on the right
hand side, which produces precisely the Isserlis formula.

Proof. We prove (3.9) first. Let Y be the right hand side of (3.9). We will first show
that it is in Pn. We see that Y is a polynomial of degree n since it contains the term
X1 . . . Xn, corresponding to the case when no terms are matched, and since all other
terms have at least one pair matched their degree is stricly less than n. Thus we only
need to show that Y is orthogonal to all polynomials of degree < n. We will start by
showing it is orthogonal to P0, which is equivalent to showing that E[Y ] = 0. This is
not totally obvious since the Xi may repeat themselves, but it follows from the Isserlis
formula and a combinatorial argument:

E[Y ] =
X

m�u

(�1)|m|
Y

(i,j)2m

�i,j E

"
Y

k2u

Xk

#

=
X

m�u

(�1)|m|
Y

(i,j)2m

�i,j

X

perfect matchings
m0(u) of u

Y

(i0,j0)2m0

�i0,j0

=
X

m�u

X

m0(u)

(�1)|m|
Y

(i,j)2m

�i,j

Y

(i0,j0)2m0(u)

�i0,j0

=
X

m([n])

Y

(i,j)2m

�i,j

X

m0⇢m

(�1)|m
0|.
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The second equality is simply the Isserlis formula and the third is simply a rearrang-
ment of the sum. The final equality is the most important. Summing over m� u and
m0(u) after the third equality is equivalent to summing over all perfect matchings of
[n] = {1, . . . , n}, which is how we arrive to the fourth equality. The product terms
after the third equality clearly only depend on the full perfect matching, while the
term (�1)|m| depends on a subset of the perfect matching, which is why we isolate it
and sum over all such subsets in the last equality. Now from the distributive property
of multiplication it follows that for any finite subset A

(1 + (�1))|A| =
X

B⇢A

(�1)|B| = 0,

thus by using this property above we get E[Y ] = 0 as claimed.
Now to show that Y is orthogonal to general polynomials of degree < n is not

much di↵erent. By linearity it is enough to show that E[Y Xn+1 . . . Xn+`] = 0 for
any Gaussian variables Xn+1, . . . , Xn+`, where ` 6 n� 1. Then we modify the above
argument as follows:

E[Y Xn+1 . . . Xn+`] =
X

m�u

(�1)|m|
Y

(i,j)2m

�i,j E

"
Xn+1 . . . Xn+`

Y

k2u

Xk

#

=
X

m�u

(�1)|m|
Y

(i,j)2m

�i,j

X

perfect matchings
m0 of u[{n+1,...,n+`}

Y

(i0,j0)2m0

�i0,j0

=
X

m([n+`])

Y

(i,j)2m

�i,j

X

m0([n])⇢m

(�1)|m
0([n])|.

Note that the second line can be rearranged into a sum over all perfect matchings of
[n + `] = {1, . . . , n + `}, which is what happens in the third line. However since the
term (�1)|m| in the second line involves only matchings of [n] = {1, . . . , n}, when we
rearrange the sums the inner summation is only over perfect matchings m0 of {1, . . . , n}
that are subsets of perfect matchings m of {1, . . . , n + `}. For the same reasons as in
the previous argument for P0 the inner summation is zero in most cases, but there is
the special case in which a perfect matching m of [n+ `] does not contain any perfect
matchings of [n]. In that case the inner sum would be identically one. However, for
` 6 n � 1 that case is impossible, because it would require matching every element
of [n] with an element in {n+ 1, . . . , n+ `}, and with ` 6 n� 1 that cannot be done
(pigenhole principle). Thus we conclude that E[Y Xn+1 . . . Xn+`] = 0, completing the
proof that Y 2 Pn.

Now we need to show that Y = ⇡n(X1 . . . Xn). Recall that ⇡n(X1 . . . Xn) is the
unique element of Pn that is orthogonal to X1 . . . Xn�⇡n(X1 . . . Xn). Since Y 2 Pn it
is enough to show that X1 . . . Xn�Y is orthogonal to Y . But this actually follows from
Y 2 Pn, since (3.9) implies that X1 . . . Xn�Y is a polynomial of degree n�2. Indeed,
the only term of degree > n � 1 in Y is X1 . . . Xn itself, corresponding to the partial
matching in which all elements are left unmatched. Thus Y satisfies the properties
required to be the projection, so by uniqueness we conclude that Y = ⇡n(X1 . . . Xn).

Finally, the decomposition formula (3.10) follows by using (3.9) and similar com-
binatorics as above. Insert (3.9) into the right hand side of (3.10) to obtain

X

m�u
of [n]

Y

(i,j)2m

�i,j ⇡|u|

 
Y

k2u

Xk

!
=
X

m�u
of [n]

X

m0�u0
of u

(�1)|m
0|
Y

(i,j)2m

�i,j

Y

(i0,j0)2m0

�i0,j0
Y

k2u0

Xk.
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Every term in the right hand side’s double summation clearly corresponds to a partial
matching of [n] = {1, . . . , n} (namely to (m [ m0) � u0) and the only term in the
summand that does not depend on this partial matching (i.e. does not depend on

m [m0 or u0) is (�1)|m
0|. Thus the right hand side can be rewritten as

X

m�u
of [n]

Y

(i,j)2m

�i,j

Y

k2u

Xk

X

m0⇢m

(�1)|m
0|.

As in the previous cases all terms in the alternating sum cancel, except for when m = ;

when it trivially gives a value of one. Thus the entire sum collapses to just one term
with m = ;, which happens i↵ all elements are unmatched, i.e. i↵ u = [n]. Thus all
that remains is X1 . . . Xn, thereby completing the proof of (3.10).
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Problems

1. Prove that if we apply the Gram-Schmidt orthogonalization procedure – in
Gauss space – to the monomials {1, x, x2, x3, . . .}, then we obtain the Hermite
polynomials H1, H2, . . . .

hex:Hermite:Taylori 2. Choose and fix an w 2 R and define f(z) = exp(wz � w2/2) for all z 2 R.
(a) Verify that f 2 D

1,2(Pn) and calculate kfk1,2.
(b) Use integration by parts to show that E[f(Z)Hk] = wk.
(c) Conclude that Hk(x) is the coe�cient of wk/k! in the Taylor series expan-

sion of w 7! exp(wx�w2/2). In other words, the Hermite polynomials are
defined uniquely via the relation,

exp

✓
wx�

w2

2

◆
=

1X

k=0

wk

k!
Hk(x).

3. Verify that Hn(0) = 0 for all odd integers n, and

Hn(0) = (�1)n�1(n� 1)!! for all even integers n,

where k!! := k ⇥ (k � 2)⇥ (k � 4)⇥ · · ·⇥ 1 for all even integers k.
4. Recall the adjoint operators Aj of (2.4). Show that for k 2 Z

n

+

Ak1

1 . . . Akn
n 1 = Hk(Z),

where A0
j is the identity operator. Show that the order of the adjoint operators

also doesn’t matter, so that if q 2 {1, . . . , n}p and if � is a permutation of
{1, 2, . . . , p} then

Aq1
. . . Aqp1 = Aq�(1)

. . . Aq�(p)
1.

5. Derive the following Hermite-function version of the binomial theorem:

Hn(a+ x) =
nX

k=0

 
n
k

!
akHn�k(x) for all a, x 2 R and n 2 Z+.

6. Use Wick’s formula (3.9) and the fact that ⇡n(Z
n) = Hn(Z) to show that the

Hermite polynomials can be written as

Hn(x) =

bn/2cX

k=0

(�1)k
n!

2kk!(n� 2k)!
xn�2k.

7. Use Wick’s formula (3.10) to show that

xn =

bn/2cX

k=0

 
n
2k

!
(2k)!
2kk!

Hn�2k(x).

Then re-verify this formula using induction and Hk+1(x) = xHk(x)�kHk�1(x).
8. (This problem requires some background in Itô calculus.)

Let B be a standard Brownian motion, and define Bn(t) :=
R

t

0
Bn�1(s) dB(s)

as an Itô integral for every integer n > 1, where B0(t) := 1 for all t > 0. These
are multiple Itô integrals; for example,

B1(t) = B(t), B2(t) =

Z
t

0

Z
s

0

dB(r) dB(s), · · ·

Bn+1(t) =

Z
t

0

Z
s1

0

· · ·

Z
sn

0

dB(sn+1) · · · dB(s2) dB(s1), · · · .
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Choose and fix some ↵ > 0, and define X(t) :=
P1

n=0 ↵
nBn(t) for all t > 0.

(a) Verify that for every T > 0, the series converges in L2(⌦), uniformly for
t 2 [0 , T ]. [Hint: Doob’s maximal L2(⌦) inequality.]

(b) Prove that X satisfies the Itô stochastic di↵erential equation, dX(t) =
↵X(t)dB(t) subject to X(0) = 1. Conclude that

X(t) = exp

✓
↵B(t)�

t↵2

2

◆
for all t > 0 a.s.

(c) Compare (b) to Problem 2 in order to conclude that

Hn(B(1)) = n!

Z
t

0

Z
s1

0

· · ·

Z
sn�1

0

dB(sn) · · · dB(s2) dB(s1) a.s.

Because B(1) has the same distribution as Z, the above gives a particular
construction of Hn(Z) using Brownian motion. This construction is part
of a deep theory of Wiener XXX and Itô XXX. The exposition is due to
McKean XXX.

9. Extend Problem 2 to Rn for all n > 1 by showing that

exp

✓
w · x�

kwk
2

2

◆
=
X

k2Zn
+

wk

k!
Hk(x) for every w, x 2 R

n,

where wk :=
Q

n

i=1 w
ki
i
.

hex:Dk,2i 10. Suppose that f 2 L2(Pn) satisfies

X

k2Zn
+

kkk2m

k!
|E(fHk)|

2 < 1 for some m 2 N.

Prove that f 2 D
m,2(Pn), using the following steps:

(a) Expand f in terms of Hermite polynomials, and let f` denote the same
sum but restricted to indices k 2 Z

n

+ that satisfy kkk 6 `. Prove that
f` 2 C1

0 (Pn) and lim`!1 f` = f in L2(Pn). Use this to deduce that it
su�ces to prove that {Di1

· · ·Dimf`}
1
`=1 is Cauchy in L2(Pn) for every

i1, . . . , im 2 {1 , . . . , n}.
(b) Now find an expression for Di1

· · ·Dimf` in terms of Hermite polynomials.
[Hint: Examine the proof of Proposition 2.4.]

11. Show that if we are working in L2(Pn) then the jth subspace/Wiener chaos Pj

has dimension  
j + n� 1
n� 1

!
.

hque:quadratic_form_Wicki 12. Suppose we are working in L2(Pn), so that Z1, . . . , Zn are iid standard normals.
As usual write Z = (Z1, . . . , Zn)

0 for the random column vector consisting of
these normals (recall 0 means transpose). Let A be an n ⇥ n matrix of real
numbers.
(a) Show that the quadratic form Z0AZ is unchanged if A is replaced by its

symmetrized version (A+A0)/2.
(b) Thus assume from now on that A = A0, i.e. A is symmetric. Show that

⇡2(Z
0AZ) = Z0AZ � tr(A), where tr(A) is the trace of the matrix A.
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(c) More generally, show that if we are working under L2(Qn) where Qn is the
measure of the Nn(0,⌃) distribution, then ⇡2(Z

0AZ) = Z0AZ � tr(A⌃).
(d) Finally, show the following higher degree version. For an integer k > 2 let

K be a k-tensor, meaning that K : [n]k ! R, and for the polynomial of
degree k given by

f =
X

q2[n]k

KqZq1
. . . Zqk

show that under L2(Pn)

⇡k(f) =
X

q2[n]k

Kq⇡k(Zq1
. . . Zqk ) =

X

q2[n]k

KqHc(q)(Z)

where c(q) = (c1(q), . . . , cn(q)) and ci(q) is the number of times that i
appears in the k-tuple q, for i 2 [n] = {1, . . . , n}. Further simplify this for-
mula by showing that every such f can be represented by the symmetrized
version K̃ of the k-tensor as

f =
X

q2[n]k

K̃qZq1
. . . Zqk

where K̃ is defined by

K̃q =
c(q)!
k!

X

�

Kq.

Here � is a permutation of {1, . . . , k} and �(q) = (q�(1), . . . , q�(k)), and the
coe�cient of the sum is the inverse of a multinomial coe�cient. Conclude
that

⇡k(f) =
X

q2[n]k

K̃qHc(q)(Z) =
X

q2[n]�k

k!
c(q)!

K̃qHc(q)(Z),

where [n]�k = [n]k/ ⇠, and ⇠ is the equivalence relation q ⇠ q0 i↵ c(q) =
c(q0), i.e. each element of [n] appears the same number of times in both q
and q0 and therefore one is just a permutation of the other.

13. Prove that the Poincaré inequality on Rn [Proposition 2.4] follows directly from
the one-dimensional case [Corollary 1.6] and induction on the value of n > 1.
This method is sometimes called “tensorization.”

14. Let f(x) := max16i6n xi for all x 2 R
n, and prove that Proposition 2.9 improves

Proposition 2.8. That is, prove that �⇤ E(kDfk2) > max16i6n Var(Xi) for the
present choice of f .

The following Problems 15–20 depend sequentially on one another. Through-
out these problems, let us choose and fix some � > 0, and let X have a Poisson
distribution with E(X) = �. Also, let µ denote the distribution of X; that
is, µ{k} = e���k/k! for k 2 Z+ and µ{k} = 0 otherwise. Finally, define
C0, C1, C2, . . . canonically as the real-valued functions on Z+ that satisfy the
following for all x = 0, 1, 2, . . . and w > �1:

e�w�(1 + w)x =
1X

k=0

wk

k!
Ck(x).

Many authors usual write C(�)
k

instead of Ck, and refers to Ck as the kth
monic Charlier polynomial with parameter �.
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hex:Poisson:1i 15. Prove that C0(x) = 1 and Ck(0) = (��)k for all x, k 2 Z+.
16. Verify that E[exp{�w�}(1 +w)X ] = 1 for all w > �1. Conclude from this that

E[Ck(X)] = 0 for all k > 1.
17. Verify that

Ck(x) =
k^xX

m=0

 
k
m

! 
x
m

!
m!(��)k�m for all x, k 2 Z+,

and conclude that every Ck is a polynomial of degree at most k on the semigroup
Z+.

18. Prove that the sequence
np

n!/�n Ck

o1

k=0
is a complete orthonormal basis for

L2(µ). Conclude that for all f, g 2 L2(µ),

Cov[f(X) , g(X)] =
1X

k=1

�k

k!
hf , CkiL2(µ)hg , CkiL2(µ).

[Hint: Consider the second moment of exp{�w�}(1 + w)X .]
hex:Poisson:n-1i 19. Define a linear operator A via the following:

(A f)(x) := xf(x� 1)� �f(x) for every f : Z+ ! R and x 2 Z+,

where f(�1) := 0. Show that A is a linear mapping from L2(µ) to L2(µ) and
whose adjoint is D , where (Df)(x) := �{f(x + 1) � f(x)} . Then proceed to
verify the following, steps which essentially show that the role of the pair (D ,A )
is the “Poisson space” analogue of the role of the pair (D ,A) in the Gauss space:
(a) Prove that Ck+1 = A Ck for all k > 0. [Hint: Start with the derivative of

w 7! e�w�(1 + w)x.]
(b) Prove that DCk+1 = (k + 1)Ck for all k 2 Z+.
(c) Prove that Var[f(X)] 6 �E(|Df)(X)|2) for every f 2 L2(µ).

hex:Poisson:ni 20. Use Problem 19 and the central limit theorem in order to find another proof of
the Poincaré inequality for P1 [Corollary 1.6].


