
Chapter 2

Calculus in Gauss Space
hch:Calc_on_Gauss_Spacei

In this section we develop the basics of calculus on the finite-dimensional Gauss space.
The di↵erences between this calculus and the “regular” calculus that we first learn
(which we call calculus on Lebesgue space) are not that stark. At the end of the
day we still compute integrals and derivatives in the same way, but there are some
modifications that must be taken into account. The most important of these is the
integration-by-parts formula, which must be modified to properly accomodate for the
Gaussian background measure. On a computational level this modification is elemen-
tary. But we shall see that it has far-reaching consequences.

1 The Gradient Operator

The n-dimensional Lebesgue space is the measurable space (En,B(En))—where E =
[0 , 1) or E = R—endowed with the Lebesgue measure, and the “calculus of functions”
on Lebesgue space is just “real and harmonic analysis.”

The n-dimensional Gauss space is the same measure space (Rn,B(Rn)) as in the
previous paragraph, but is now endowed with the Gauss measure Pn in place of the
Lebesgue measure. Since the Gauss space (Rn,B(Rn) ,Pn) is a probability space, we
can—and frequently will—think of a measurable function f : Rn

! R as a random
variable. Therefore,

P{f 2 A} = Pn{f 2 A} = Pn{x 2 R
n : f(x) 2 A},

E(f) = En(f) =

Z
f dPn =

Z
f dP,

Cov(f , g) = hf , giL2(P) =

Z
fg dP,

etc. Note, also, that f = f(Z) for all random variables f , where Z is the standard
normal random vector Z(x) := x for all x 2 R

n, as before. In particular,

E(f) = En(f) = E[f(Z)],

Var(f) = Var[f(Z)], Cov(f , g) = Cov[f(Z) , g(Z)], . . .

and so on, notation being typically obvious from context.
Let @j := @/@xj for all 1 6 j 6 n. From now on we will use the following.
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30 CHAPTER 2. CALCULUS IN GAUSS SPACE

Definition 1.1. Let Ck

0 (Pn) denote the collection of all infinitely-di↵erentiable func-
tions f : Rn

! R such that f and all of its mixed derivatives of order 6 k grow more
slowly than [�n(x)]

�" for every " > 0. We also define

C1
0 (Pn) :=

1\

k=1

Ck

0 (Pn).

It is not hard to see that f 2 Ck

0 (Pn) if and only if

lim
kxk!1

e�"kxk2
|f(x)| = lim

kxk!1
e�"kxk2

|(@i1 · · · @imf)(x)| = 0,

for all 1 6 i1, . . . , im 6 n and 1 6 m 6 k (see Problem 4).
We will frequently use the following result without explicit mention.

hlem:Ck_momentsi
Lemma 1.2. If f 2 Ck

0 (Pn), then

E (|f |p) < 1 and E (|@i1 · · · @imf |p) < 1,

for all 1 6 p < 1, 1 6 i1, . . . , im 6 n, and 1 6 m 6 k.

The proof is relegated to Problem 1.
For every f 2 C1

0 (Pn), define

kfk21,2 :=

Z
|f(x)|2 Pn(dx) +

Z
k(rf)(x)k2 Pn(dx)

= E
�
|f |2

�
+ E

�
krfk2

�
,

where r := (@1 , . . . , @n) denotes the gradient operator. Notice that k · k1,2 is a bona
fide Hilbertian norm on C1

0 (Pn) with Hilbertian inner product

hf , gi1,2 :=

Z
fg dPn +

Z
(rf) · (rg) dPn

= E[fg] + E[rf ·rg].

We will soon see that C1
0 (Pn) is not a Hilbert space with the preceding norm and inner

product because it is not complete; that is, there are Cauchy sequences in C1
0 (Pn) that

fail to in C1
0 (Pn). Thus, we are led to the following.

Definition 1.3. The Gaussian Sobolev space D1,2(Pn) is the completion of C1
0 (Pn)

in the norm k · k1,2.

In order to understand what the elements of D1,2(Pn) look like, let us consider a
function f 2 D

1,2(Pn). By definition, we can find a sequence f1, f2, . . . 2 C1
0 (Pn) such

that kf` � fk1,2 ! 0 as `! 1. Since L2(Pn) is complete, we can deduce also that

Djf := lim
`!1

@jf` exists in L2(Pn) for every 1 6 j 6 n.

It follows, by virtue of construction, that

Df = rf for all f 2 C1
0 (Pn).

Therefore, D is an extension of the gradient operator from C1
0 (Pn) to D

1,2(Pn). From
now on, we will almost always write Df in favor of rf when f 2 C1

0 (Pn). This is
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because Df can make sense even when f is not in C1
0 (Pn), as we will see in the next

few examples.

In general, we can think of elements of D1,2(Pn) as functions in L2(Pn) that
have one weak derivative in L2(Pn). We may refer to the linear operator D as the
Malliavin derivative, and the random variable Df as the [generalized] gradient of f .
We will formalize this notation further at the end of this section. For now, let us note
instead that the standard Sobolev space W 1,2(Rn) is obtained in exactly the same
way as D1,2(Pn) was, but the Lebesgue measure is used in place of Pn everywhere.
Since �n(x) = dPn(x)/dx < 1,1 it follows that the Hilbert space D1,2(Pn) is richer
than the Hilbert space W 1,2(Rn), whence the Malliavin derivative is an extension of
Sobolev’s [generalized] gradient. The extension is strict; see Problem 6.

It is a natural time to produce examples to show that the space D1,2(Pn) is strictly
larger than the space C1

0 (Pn) endowed with the norm k · k1,2.

hex:Smoothing:1iExample 1.4 (n = 1). Consider the case n = 1 and let f denote the “tent function,”
f(x) := (1� |x|)+ on R. We claim that f 2 D

1,2(P1) \ C
1
0 (P1). Moreover, we claim

�1 1

1

x

f(x) = (1� |x|)+

Figure 2.1. A tent function.
?hfig:tenti?

the P1-a.s. identity,
2

(Df)(x) = �sign(x)1[�1,1](x).

In a sense, this formula is obvious. We propose to derive it rigorously, thus emphasizing
the fact that Df should be regarded as an element of L2(Pn).

Let  1 2 C1(R) be a symmetric probability density function on R such that
 1 ⌘ a positive constant on [�1 , 1], and  1 ⌘ 0 o↵ [�2 , 2]. For every real number
r > 0, define  r(x) := r 1(rx) and fr(x) := (f ⇤ r)(x). Then sup

x
|fN (x)�f(x)| ! 0

as N ! 1 because f is uniformly continuous. In particular, kfN � fkL2(Pn) ! 0 as
N ! 1. To complete the proof it remains to verify that

lim
N!1

Z
|f 0

N (x) + sign(x)1[�1,1](x)|
2 Pn(dx) = 0. (2.1) goal:n=1

1In other words, E(|f |2) <
R
Rn |f(x)|2 dx for all f 2 L2(Rn) that are strictly positive on

a set of positive Lebesgue measure.
2It might help to recall that Df is defined as an element of the Hilbert space L2(P1) in this

case. Therefore, it does not make sense to try to compute (Df)(x) for all x 2 R. This issue
arises when one constructs any random variable on any probability space, of course. Also,
note that P1-a.s. equality is the same thing as Lebesgue-a.e. equality, since the two measures
are mutually absolutely continuous.
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By the dominated convergence theorem and integration by parts,

f 0
N (x) =

Z 1

�1
f(y) 0

N (x� y) dy

=�

Z 1

0

 N (x� y) dy +

Z 0

�1

 N (x� y) dy

:= �AN (x) +BN (x).

We now prove that AN ! 1[0,1] as N ! 1 in L2(P1); a small adaptation of this
argument will also prove that BN ! 1[�1,0] in L2(P1), from which (2.1) ensues.

By a change of variables, AN (x) =
R

Nx

N(x�1)
 1(y) dy. Because  1 is a probability

density function, it follows that AN (x) ! 1[0,1](x) as N ! 1 for P1-almost all x.
Similarly Bn(x) ! 1[�1,0](x) for P1-almost all x, and therefore f 0

N (x) = �AN (x) +
BN (x) ! �sign(x)1[�1,1](x) for P1-almost all x. Since f 0

N (x) � sign(x)1[�1,1](x) is
bounded uniformly by 2, the dominated convergence theorem implies that the conver-
gence also takes place in L2(P1). This concludes our example.

hex:Smoothing:2iExample 1.5 (n > 2). Let us consider the case that n > 2. In order to produce a
function F 2 D

1,2(Pn) \C
1
0 (Pn) we use the construction of the previous example and

set

F (x) :=
nY

j=1

f(xj) and  N (x) :=
nY

j=1

 N (xj) for all x 2 R
n and N > 1.

Then the calculations of Example 1.4 also imply that FN := F ⇤ N ! F as N ! 1

in the norm k · · · k1,2 of D1,2(Pn), FN 2 C1
0 (Pn), and F 62 C1

0 (Pn). Thus, it follows
that F 2 D

1,2(Pn) \ C
1
0 (Pn). Furthermore,

(DjF )(x) = �sign(xj)1[�1,1](xj)⇥
Y

16`6n

` 6=j

f(x`),

for every 1 6 j 6 n and Pn-almost every x 2 R
n.

hex:Lipschitz:D12iExample 1.6. The previous two examples are particular cases of a more general family
of examples. Recall that a function f : Rn

! R is Lipschitz continuous if there exists
a finite constant K such that |f(x)� f(y)| 6 Kkx� yk for all x, y 2 R

n. The smallest
such constant K is called the Lipschitz constant of f and is denoted by Lip(f). Let
f : Rn

! R be a Lipschitz function. According to Rademacher’s theorem XXX, f is
almost everywhere [equivalently, Pn-a.s.] di↵erentiable and k(rf)(x)k 6 Lip(f) a.s.
Also note that

|f(x)| 6 |f(0)|+ Lip(f)kxk for all x 2 R
n.

In particular, E(|f |k) < 1 for all k > 1. A density argument, similar to the one that
appeared in the preceding examples, shows that f 2 D

1,2(Pn) and

k(Df)(x)k 6 Lip(f) P1-almost all x.

We will appeal to this fact several times in this book.

The generalized gradient D follows more or less the same general set of rules as
does the more usual gradient operator r. And it frequently behaves as one expect it
should even when it is understood as the Gaussian extension of r; see Examples 1.4
and 1.5, for instance. The following ought to reinforce this point of view.
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hlem:ChainRulei
Lemma 1.7 (Chain Rule). For all  2 D

1,2(P1) and f 2 D
1,2(Pn),

D( � f) = [(D ) � f ]D(f) a.s.

Proof. If f and  are smooth functions, then the chain rule of calculus ensures that
[@j( � f)](x) =  0(f(x))(@jf)(x) for all x 2 R

n and 1 6 j 6 n. That is,

D(g � f) = r( � f) = ( 0
� f)(rf) = (D )(f)D(f),

where D refers to the one-dimensional Malliavin derivative of  and D(f) := Df
refers to the n-dimensional Malliavin derivative of f . The general case follows from
the smooth case and a density argument.

Here is a final example that is worthy of mention.

hex:DMiExample 1.8. Let M := max16j6n Zj and note that

M(x) = max
16j6n

xj =
nX

j=1

xj1Q(j)(x) for Pn-almost all x 2 R
n,

where Q(j) denotes the cone of all points x 2 R
n such that xj > maxi 6=j xi. We

can approximate the indicator function of Q(j) by a smooth function to see that
M 2 D

1,2(Pn) and DjM = 1Q(j) a.s. for all 1 6 j 6 n. Let

J(x) := arg max(x).

Clearly, J(x) is defined uniquely for Pn-almost every x 2 R
n. For all other values of

x, redefine J(x) := 0 to be concrete. Our computation of DjM equivalently yields

(DM)(x) = eJ(x) for Pn-almost all x 2 R
n, (2.2) eq:DM

where e1, . . . , en denote the standard basis of Rn.

Let us end this section by introducing a little more notation.
The preceding discussion constructs, for every function f 2 D

1,2(Pn), the Malliavin
derivative Df as an Rn-valued function with coordinates in L2(Pn). We will use the
following natural notations exchangeably:

(Df)(x , j) := [(Df)(x)]
j
= (Djf)(x),

for every f 2 D
1,2(Pn), x 2 R

n, and 1 6 j 6 n. In this way we may also think of Df
as a scalar-valued element of the real Hilbert space L2(Pn ⇥ �n), where

Definition 1.9. �n always denotes the counting measure on {1 , . . . , n}.

We see also that the inner product on D1,2(Pn) is

hf , gi1,2 = hf , giL2(Pn) + hDf ,DgiL2(Pn⇥�n)

= E(fg) + E (Df ·Dg) for all f, g 2 D
1,2(Pn).

Definition 1.10. The random variable Df 2 L2(Pn ⇥ �n) is called the Malliavin
derivative of the random variable f 2 D

1,2(Pn).
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2 Higher-Order Derivatives

One can define higher-order weak derivatives just as easily as we obtained the direc-
tional weak derivatives.

Choose and fix f 2 C2(Rn) and two integers 1 6 i, j 6 n. The mixed derivative of
f in direction (i , j) is the function x 7! (@2

i,jf)(x), where

@2
i,jf := @i@jf = @j@if.

The Hessian operator r
2 is defined as

r
2 :=

0

B@

@2
1,1 · · · @2

1,n

...
. . .

...
@2
n,1 · · · @2

n,n

1

CA .

With this in mind, we can define a Hilbertian inner product h · , ·i2,2 via

hf , gi2,2 :=

Z
fg dPn +

Z
(rf) · (rg) Pn(dx) +

Z
tr
⇥
(r2f)(r2g)

⇤
dPn

=

Z
f(x)g(x) Pn(dx) +

nX

i=1

Z
(@if)(x)(@ig)(x) Pn(dx)

+
nX

i,j=1

Z
(@2

i,jf)(x)(@
2
i,jg)(x) Pn(dx)

= hf , gi1,2 +

Z
(r2f) · (r2g) dPn

= E(fg) + E [rf ·rg] + E
⇥
r

2f ·r
2g
⇤

[f, g 2 C2
0 (Pn)],

where K ·M denotes the matrix—or Hilbert–Schmidt—inner product,

K ·M :=
nX

i,j=1

Ki,jMi,j = tr(K0M),

for all n⇥ n matrices K and M .
We also obtain the corresponding Hilbertian norm k · k2,2 where:

kfk22,2 = kfk2
L2(Pn) +

nX

i=1

k@ifk
2
L2(Pn) +

nX

i,j=1

��@2
i,jf

��2

L2(Pn)

= kfk21,2 +
��r2f

��2

L2(Pn⇥�2
n)

= E
�
f2�+ E

�
krfk2

�
+ E

�
kr

2fk2
�

[f 2 C2
0 (Pn)];

�2
n := �n ⇥ �n denotes the counting measure on {1 , · · · , n}2; and

kKk :=
p

K ·K =

vuut
nX

i,j=1

K2
i,j

=
p

tr(K0K)

denotes the Hilbert–Schmidt norm of any n⇥ n matrix K.

Definition 2.1. The Gaussian Sobolev space D2,2(Pn) is the completion of C2
0 (Pn)

in the norm k · k2,2.
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For every f 2 D
2,2(Pn) we can find functions f1, f2, . . . 2 C2

0 (Pn) such that kf` �
fk2,2 ! 0 as ` ! 1 Then Dif and D2

i,jf := lim`!1 @2
i,jf exist in L2(Pn) for every

1 6 i, j 6 n. Equivalently, Df = lim`!1 rf exists in L2(Pn ⇥ �n) and D2f =
lim`!1 r

2f exists in L2(Pn ⇥ �2
n).

Now we extend the definition to derivatives of order greater than two. Choose and
fix an integer k > 2. If q = (q1, . . . , qk) is a vector of k integers in {1 , . . . , n}, then

(@k

q f)(x) := (@q1 · · · @qkf)(x) [f 2 Ck(Rn), x 2 R
n].

Let r
k denote the formal k-tensor whose q-th coordinate is @k

q . We can define a
Hilbertian inner product h · , ·ik,2 inductively via

hf , gik,2 = hf , gik�1,2 +

Z
(rkf) · (rkg) dPn,

for all f, g 2 Ck

0 (Pn), where “·” denotes the Hilbert–Schmidt inner product for k-
tensors:

K ·M :=
X

q2{1 ,...,n}k
KqMq,

for all k-tensors K and M . The corresponding norm is defined via kfkk,2 := hf , fi1/2
k,2 .

Definition 2.2. The Gaussian Sobolev space Dk,2(Pn) is the completion of Ck

0 (Pn)
in the norm k · kk,2. We also define D1,2(Pn) := \k>1D

k,2(Pn).

If f 2 D
k,2(Pn) then we can find a sequence of functions f1, f2, . . . 2 Ck

0 (Pn) such
that kf` � fkk,2 ! 0 as `! 1. It then follows that

Djf := lim
`!1

r
jf` exists in L2(Pn ⇥ �j

n),

for every 1 6 j 6 k, where �j

n := �n ⇥ · · · ⇥ �n [j � 1 times] denotes the counting
measure on {1 , . . . , n}j . The operator Dk is called the kth Malliavin derivative.

It is easy to see that the Gaussian Sobolev spaces are nested; that is,

D
k,2(Pn) ⇢ D

k�1,2(Pn) for all 2 6 k 6 1.

Also, whenever f 2 Ck

0 (Pn), the kth Malliavin derivative of f is just the classically-
defined derivative r

kf , which is a k-dimensional tensor. Because every polynomial
in n variables is in C1

0 (Pn)
3, it follows immediately that D1,2(Rn) contains all n-

variable polynomials; and that all Malliavin derivatives acts as one might expect them
to. This last fact will be important for the Wiener chaos decomposition, which is a
way to write a fairly generic random variable as an infinite sum of polynomials, much
like a Taylor series does. If the required sum converges properly then the last fact says
that the Malliavin derivative acts on it as we expect it should.

More generally, we have the following.

3A function f : Rn ! R is a polynomial in n variables if it can be written as a linear

combination of monomials xd1

1 · · ·xdn
n , where each dj is a non-negative integer. The degree of

each monomial is the sum of the exponents appearing in it, and the degree of the polynomial
is the maximum degree of all monomials appearing in it. Thus, for example g(x) = x1x3

2�2x5

is a polynomial of degree 4 in 5 variables.
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?hdef:D:k,pi?
Definition 2.3. For every integer k > 1 and real p > 1, the Gaussian Sobolev spaces
D

k,p(Pn) is defined as the completion of the space C1
0 (Pn) in the norm

kfk
Dk,p(Pn) := kfkk,p :=

"
kfkp

Lp(Pn) +
kX

j=1

kDjfkp
Lp(Pn⇥�

j
n)

#1/p

.

Each Dk,p(Pn) is a Banach space in the preceding norm. Note that, as usual, these
norms are not induced by an inner product unless p = 2. Furthermore, for each fixed
k the spaces Dk,p are non-increasing in p.

3 The Adjoint Operator

Recall the canonical Gaussian probability density function �n := dPn/dx from (1.1).
Since (Dj�n)(x) = �xj�n(x), we can apply integration by parts and the product rule
to see that for every f, g 2 C1

0 (Pn),

E [Dj(f)g] =

Z

Rn
(Djf)(x)g(x)�n(x) dx

= �

Z

Rn
f(x)Dj [g(x)�n(x)] dx

= �

Z

Rn
f(x)(Djg)(x) Pn(dx) +

Z

Rn
f(x)g(x)xj Pn(dx),

for 1 6 j 6 n. Using the L2(Pn) inner product notation we can rewrite the latter
identity as the “adjoint relation,”

E [Dj(f)g] = hDjf , gi
L2(Pn) = hf ,AjgiL2(Pn) = E [fAj(g)] , (2.3) IbP

where A is the formal adjoint of D; that is,

(Ag)(x) := �(Dg)(x) + xg(x). (2.4) A:g

Note that g : Rn
! R is a real-valued function, but Ag : Rn

! R
n, and

(Ajg)(x) = �(Djg)(x) + xjg(x).

Furthermore, (2.4) is defined pointwise whenever g 2 C1
0 (Pn), but it also makes sense

as an identity in L2(Pn ⇥ �n) if, for example, g 2 D
1,2(Pn) and x 7! xg(x) is in

L2(Pn ⇥ �n).
Let us pause to emphasize that (2.3) can be stated equivalently as

E[gD(f)] = E[fA(g)], (2.5) D:delta

as n-vectors.4

If f 2 D
1,2(Pn), then we can always find functions f1, f2, . . . 2 C1

0 (Pn) such that
kf` � fk1,2 ! 0 as `! 1. Note that

����
Z

gDf` dPn �

Z
gDf dPn

���� 6 kgkL2(Pn)kDf` �DfkL2(Pn⇥�n)

6 kgkL2(Pn)kf` � fk1,2 ! 0,

(2.6) DfDf

4If ⇣ = (⇣1 , . . . , ⇣m) is a random m-vector then E(⇣) is the m-vector whose jth coordinate
is E(⇣j).
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as `! 1. Also,
����
Z

f`Ag dPn �

Z
fAg dPn

���� 6 kAgkL2(Pn⇥�n)kf` � fkL2(Pn)

6 kAgkL2(Pn⇥�n)kf` � fk1,2 ! 0,

(2.7) fDgfDg

whenever g 2 C1
0 (Pn). We can therefore combine (2.5), (2.6), and (2.7) in order to see

that (2.5) in fact holds for all f 2 D
1,2(Pn) and g 2 C1

0 (Pn).
Finally define

Dom[A] :=
�
g 2 D

1,2(Pn) : Ag 2 L2(Pn ⇥ �n)
 
. (2.8) ?Dom:A?

Since C1
0 (Pn) is dense in L2(Pn) , we may infer from (2.5) and another density argu-

ment the following.

?hpr:adjointi?
Proposition 3.1. The adjoint relation (2.5) is valid for all f 2 D

1,2(Pn) and g 2

Dom[A].

Definition 3.2. The linear operator A is the adjoint operator, and Dom[A] is called
the domain of the definition—or just domain—of A.

The linear space Dom[A] has a number of nicely-behaved subspaces. The following
records an example of such a subspace.

hpr:Subspacei
Proposition 3.3. For every 2 < p 6 1,

D
1,2(Pn) \ Lp(Pn) ⇢ Dom[A].

Proof. We apply Hölder’s inequality to see that

E
�
kZk

2[g(Z)]2
�
=

Z
kxk2[g(x)]2 Pn(dx) 6 cpkgk

2
Lp(Pn),

where

cp =
h
E
⇣
kZk

2p/(p�2)
⌘i(p�2)/(2p)

< 1.

Therefore, Zg(Z) 2 L2(Pn ⇥ �n), and we may apply (2.4) to find that

kAgkL2(Pn⇥�n) 6 kDgkL2(Pn⇥�n) + c1/2p kgkLp(Pn) 6 kgk1,2 + c1/2p kgkLp(Pn) < 1.

This proves that g 2 Dom[A].
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Problems
hpbm:Ck_momentsi

1. Prove Lemma 1.2.
2. For which values of s 2 R is m(s) := E(kZk

s) finite? When it is finite, compute
E(kZk

s) in terms of the gamma function. These constants arose earlier during
the course of the proof of Proposition 3.3.

3. Let Z : Rn
! R

n denote the usual vector of independent, standard normal
random variables, and define X := kMZk

s, where M is a nonrandom n ⇥ n
matrix and s > 0 is a non random real number. For which values of s and k is
X 2 D

k,2(Rn)?
hpbm:C^k_0i 4. Prove that f 2 Ck

0 (Pn) if and only if f is infinitely di↵erentiable in all of its
variables, and

lim
kxk!1

e�"kxk2
|f(x)| = lim

kxk!1
e�"kxk2

|(@i1 · · · @imf)(x)| = 0,

for all 1 6 i1, . . . , im 6 n and 1 6 m 6 k.
5. Show directly from integration by parts that the standard Laplace operator

� := D ·D =
nX

i=1

@2
i,i

is not self-adjoint on L2(Pn), even though it is self-adjoint on the Lebesgue space
L2(Rn). What is the adjoint of � on L2(Pn)?

hpbm:Malliavin:Sobolevi 6. Let C1
c (Rn) denote the collection of all infinitely-di↵erentiable functions of

compact support from R
n to R, and recall that the Sobolev space W 1,2(Rn)

is the completion of C1
c (Rn) in the norm kfkL2(Rn) + krfkL2(Rn) for every

f 2 C1
c (Rn). Construct an element of D1,2(Pn) that is not an element of

W 1,2(Rn).
7. Fill in the details of the derivation of the identity (2.2).
8. If G = (g1 , . . . , gn), then define �G := A ·G =

P
n

i=1 Aigi, when possible.
(a) Verify that if every gi is in C1

0 (Pn), then

(�G)(x) = �(divG)(x) + x ·G(x) in L2(Pn).

(b) Prove the following integration by parts formula,

E [G · (Df)] = E [�(G)f ] ,

for all f 2 D
1,2(Pn) and all random variables G : Rn

! R
n that satisfy

�G 2 L2(Pn).
9. Define N := max16j6n |Zj |. Prove that N 2 D

1,2(Pn) and evaluate DN .
?hpbm:MG:transformi? 10. Suppose n > 2 is an integer. A stochastic process X1, . . . , Xn is said to be

adapted ifXi is measurable with respect to the �-algebra generated by Z1, . . . , Zi

for every i = 1, . . . , n. Given an adapted process X, define a new stochastic
process M – a so-called martingale transform of Z – as follows:

M0 := 0 and Mk :=
kX

i=2

Xi�1Zi for k = 2, . . . , n.

Suppose Xi 2 D
1,2(Pn) for every i = 2, . . . , n.

(a) Prove that M is a mean-zero martingale and Mi 2 D
1,2(Pn) for every

i = 1, . . . , n.
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(b) Compute DMi for all i = 1, . . . , n.
11. The purpose of this problem is to define an extension of the Malliavin derivative

to more general, “non canonical” Gaussian spaces. Another, more standard,
extension can be found in XXXX.
Let (T, T ,Q) be a probability space that is rich enough to support countably-
many independent standard-normal random variables X1, X2 , . . . . Let us say
that a random variable Y on (T, T ,Q) is smooth and cylindrical [written Y 2

C ] if there exists an integer n > 1 and a function ' 2 C1
0 (Pn) such that

Y = '(X1 , . . . , Xn). For every smooth random variable Y of this form, define
kY k1,2 := k'k1,2, where the second norm is the one that was defined in this
chapter. Let D1,2(Q) denote the completion of C in the norm k · k1,2 thus
defined.
(a) If Y 2 C has the form Y = '(X1 , . . . , Xn) for some ' 2 C1

0 (Pn), then
define its Malliavin derivative as DY := (r')(X1 , . . . , Xn). Prove that
the linear operator D has a unique extension, which we continue to denote
by D, to D1,2(Q).

(b) Prove that, for every Y 2 D
1,2(Q), we can identify DY with a sequence

{DjY }
1
j=1 of random variables and that DjXi = 1 if i = j and 0 otherwise.

(c) Let {ai}
1
i=1 be a sequence of constants such that

P1
i=1 a

2
i < 1.

i. Verify that, if f : R! R is Lipschitz continuous, then Y :=
P1

i=1 aif(Xi)
converges almost surely and in L2(Q).

ii. Verify that Y 2 D
1,2(Q) and that DjY = ajf

0(Xj) almost surely for
every j > 1.

(d) Identify the adjoint A of D on C and write an integration by parts formula
that generalizes the adjoint relation (2.5) that was valid on a canonical
Gauss space.


