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1 Introduction

Time series are data that “arrive in time.” In other words, a time series is
a collection of random variables—or more appropriately put, a “stochastic
process”—{xt}∞t=−∞ that is indexed by a parameter t which we may think
of as “time.” It is more convenient to start time at −∞ some times. Other
times, one wants to start time at t = 0.
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Example 1 (White noise). A white noise {wt}∞t=−∞ is an i.i.d. sequence of
N(0 , σ2) random variables. I emphasize that, in this case, E(wt) = 0 and
Var(wt) = σ2 for all t. An important example is Gaussian white noise. That
is the case where the wt’s are i.i.d. and each is distributed as N(0 , σ2).

Example 2 (Moving Averages). Let w := {wt}∞t=−∞ be a white noise se-
quence. We can construct a new time series x := {xt}∞t=−∞ from w as
follows:

xt := µ+
wt−2 + wt−1 + wt

3
,

where µ is a fixed real number. This is an example of a 3-point moving-
average model. Note that, in this particular case,

E(xt) = µ and Var(xt) =
σ2

3
,

for all times t.

Example 3 (Autoregressive Models). The simplest autoregressive model x,
built from a white noise w, is a 2-point autoregressive model that is defined
as

xs − xs−1 = µ+ ws,

where µ is a fixed real number. We may add the preceding from s = 1 to
s = t, say, and telescope the sum in order to see that

xt − x0 = µt+

t∑
t=1

(xs − xs−1) = µt+

t∑
s=1

ws.

That is, {xt−x0}∞t=0 is a random walk with drift µ. Here, E(xt) = E(x0)+µt
and Var(xt) = tσ2.

For an example of a 2-point autoregressive model, we may consider a
stochastic model of the form xt = µ + xt−1 + 2xt−2 + wt. This model
has a unique and well-defined solution provided that x0 and x1 are well
defined.

Example 4 (Signal in Noise). A typical example of such a model is a
stochastic process y := {yt} that is defined, though an unknown signal x
and white noise w, as follows: yt = µ+ xt + wt.
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1.1 The Autocorrelation Function

If {xt}∞t=−∞ is a time series, then its autocovariance function is

γ(s , t) := Cov(xs , xt) = E [(xs − µ(s))(xt − µ(t))] ,

where
µ(t) := E(xt)

denotes the mean function of x. Clearly, γ is a symmetric function. That
is,

γ(s , t) = γ(t , s).

Sometimes we may write µx and γx in order to emphasize that µx and γx
are respectively the mean and autocovariance functions of the time series x.

The autocorrelation function [ACF] of x is

ρ(s , t) :=
γ(s , t)√

γ(s , s)γ(t , t)
.

As we did with the mean and the autocovariance function, we may add a
subscript x to ρ, as ρx, in order to emphasize that this ρx is indeed the ACF
of x.

The autocovariance and the autocorrelation functions of x describe the
dependence/correlation structure of the time series x. As such, we can learn
about the time evolution of x from γ and/or ρ.

Example 5 (White noise). If w is a white noise with variance σ2, then

γ(s , t) = E(wswt) =

{
σ2 if s = t,

0 if s 6= t.

In other words, γ(s , t) = σ2I{s = t}, whence ρ(s , t) = I{s = t}.

Example 6 (Moving Averages). Let w denote a variance-σ2 white noise
and x the centered three-point moving average,

xt :=
wt−2 + wt−1 + wt

3
.

Then, µt := E(xt) = 0 [i.e., x is “centered”] and

γ(t , t) =
1

9
E
[
(wt−2 + wt−1 + wt)

2
]

=
σ2

3
.
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Also,

γ(t− 1 , t) =
1

9
E [(wt−3 + wt−2 + wt−1) (wt−2 + wt−1 + wt)] =

2σ2

9
,

and

γ(t− 2 , t) =
1

9
E [(wt−4 + wt−3 + wt−2) (wt−2 + wt−1 + wt)] =

σ2

9
.

For all other pairs (s , t), γ(s , t) = 0. In such models, it is helpful to consider
γ in terms of a new variable |t − s|—this is the socalled lag variable—as
follows: γ(s , t) = (σ2/9) × max{0 , 3 − |t − s|)}. In this case, we also have
ρ(s , t) = γ(s , t)/(σ2/3) = (1/3) max{0 , 3− |t− s|}.

Example 7 (Autoregression). Consider the autoregressive [random walk]
example,

xt = xt−1 + wt (t > 1), x0 = 0.

In this case, xt =
∑t

s=1ws, and therefore,

γ(s , t) = E

(
t∑

r=1

wr ×
s∑

u=1

wu

)
= E

∣∣∣∣∣∣
min(s,t)∑
r=1

wr

∣∣∣∣∣∣
2 = σ2 ×min(s , t).

Note that the preceding cannot be described in terms of lag alone. [This
is an example of “non-stationarity.”] Furthermore, ρ(s , t) = min(s , t)/

√
st,

which can be written as

ρ(s , t) =

√
min(s , t)

max(s , t)
,

for all times s, t > 1.

Note that ρ is a unit-free function. The following shows the range of
that function.

Proposition 8 (The Cauchy–Schwarz Inequality). For all s, t,

|γ(s , t)| 6
√
γ(s , s) · γ(t , t).

Equivalently, −1 6 ρ(s , t) 6 1.
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Proof. The inequality for the γ’s is equivalent to |ρ(s , t)| 6 1, which is the
stated inequality for ρ. Therefore, it suffices to establish the inequality for
the γ’s only.

First, let us consider the case that γ(s , s) = Var(xs) > 0, and write

0 6 Var(axs − xt) = a2γ(s , s) + γ(t , t)− 2aγ(s , t) := f(a).

The minimum of f must therefore be nonnegative. That minimum can be
found by using calculus: f ′(a) = 2aγ(s , s)−2γ(s , t) and f ′′(a) = 2γ(s , s) =
var(xs) > 0. Therefore, f is minimized at amin = γ(s , t)/γ(s , s), and the
minimum of f is

0 6 f(amin) =
|γ(s , t)|2

γ(s , s)
+ γ(t , t)− 2

|γ(s , t)|2

γ(s , s)
= γ(t , t)− |γ(s , t)|2

γ(s , s)
.

Solve to deduce the inequality, |γ(s , t)|2 6 γ(s , s) · γ(t , t); this is another
way to state the Cauchy–Schwarz inequality. Because γ(s , t) = γ(t , s),
there is symmetry in the variables. In other words, the Cauchy–Schwarz
inequality also holds when γ(t , t) = Var(xt) > 0. It remains to consider the
case that γ(s , s) and γ(t , t) are both zero. But in that case, xs = E(xs) and
xt = E(xt), whence we have γ(s , t) = 0 =

√
γ(s , s) · γ(t , t).

1.2 Cross-Covariance and Cross-Correlation

If x := {xt} and y := {yt} are two time series, then their cross covariance
is the function

γx,y(s , t) := Cov(xs , yt) = E [(xs − µx(s)) (yt − µy(t))] .

The corresponding cross correlation is the function

ρx,y(s , t) :=
γx,y(s , t)√

γx(s , s) · γy(t , t)
.

The following is a small generalization of the previous Cauchy–Schwarz
inequality, and is proved by similar methods.

Proposition 9 (The Cauchy–Schwarz Inequality). The function ρx,y is
unit-free and takes values in [−1 , 1].
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1.3 Stationarity

Definition 10. We say that x := {xt} is weakly stationary if γx(s , t) de-
pends only on the lag variable |t − s|. We say that x is stationary if the
joint distribution of (xt1 , . . . , xtn) is the same as the joint distribution of
(xt1+h , . . . , xtn+h) for all t1, . . . , tn and h.

It is easy to see that stationarity implies weak stationarity. There are
examples that show that the converse is not true.

Proposition 11 (Simple Properties of Stationary Time Series). If x is
weakly stationary, then:

1. µ is a constant and γ(0) = Var(xt) for all t;

2. γ(s , t) = γ(0 , |t − s|), therefore, we will frequently write γ(t − s) in
place of γ(s , t). In this notation, γ(h) = γ(−h) for all h ∈ R;

3. ρ(s , t) = γ(|t − s|)/γ(0) also depends only on the lag variable |t − s|.
Therefore, we frequently write ρ(t − s) instead, and note that ρ(h) =
ρ(−h) for all h ∈ R.

2 Exploratory Data Analysis

In general, we prefer to study stationary time series. For such time series, for
example, one can use “averaging principles.” What can be done if the data is
not stationary? Two standard methods are “detrending” and “differencing.”

2.1 Detrending

If the data exhibits “linear trends,” then it cannot be stationary. In such
cases, one can try to limit the effect on stationarity by fitting a straight line
of the form β0 + β1t (for t = 1, . . . , n, say) to the data, using x1, . . . , xn. In
other words, we posit the model,

xt = β0 + β1t+ wt,

where {wt} is white noise. In other words, we are supposing that the observ-
able time series x is a linear perturbation of a time series w that is white, and
hence has no linear trends. The preceding is a standard regression model
and the least squares estimators of β0 and β1 are

β̂1 =

∑n
t=1(xt − x̄)(t− t̄)∑n

t=1(t− t̄)2
and β̂0 = x̄− β̂1t̄,
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where x̄ := n−1
∑n

t=1 xt and t̄ := n−1
∑b

t=1 t = (n + 1)/2 the respective
averages of x1, . . . , xn and 1 , . . . , n. The “residuals,”

ŵt := xt − β̂0 − β̂1t

form a detrended series, and ought to be more or less free of linear trend.

2.2 Differencing

“Differencing” is an alternative EDA method to detrending. It is best to
start with an example first.

Example 12 (A linear filter). We can try the “linear filter,”

(∇x)t := xt − xt−1.

The “operator” ∇ is called a “linear filter” because: (i) It is linear [∇(ax+
by) = a∇x+ b∇y]; and (ii) If we feed into ∇ a time series x, then we obtain
a new time series ∇x.

The filter ∇ removes linear trends. Here is why: Suppose xt = β0+β1t+
wt, where w is a stationary [resp. weakly stationary] series. Then,

(∇x)t = β1 + (∇w)t

is also a stationary [resp. weakly stationary] series.

To see how the linear filter ∇ works, consider atmospheric data by
Uhse, Schmnidt, and Levin (http://cdiac.ornl.gov/ftp/trends/co2/
westerland.co2). This time series is plotted in Figure 1 below.

The data describes a rather extensive time series of atmospheric CO2

concentrations [in ppmv] that were gathered in Westerland, Germany during
the years 1972–1997. In words, Figure 1 shows you a plot of all points of the
form (t , xt), where xt := the concentration of CO2 at time t. Now consider
Figure 2 which is the plot of the linear filter of the previous example, applied
to our atmospheric data.

Figure 2 shows you all points of the form (t , (∇x)t)). Do you see how
the filter ∇ removed the linear trends from the original time series? This
suggests that the original atmospheric data has the form

xt = β0 + β1t+ wt,

where w is a stationary time series. [In fact, w is likely to be white noise in
this case, but I have not run a test of independence.]
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Figure 1: The actual CO2 concentration data [ppmv against time]
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Figure 2: The CO2 concentration data after an application of the difference
filter ∇ [ppmv against time]

2.3 Higher-Order Differencing

Differencing methods can be used to also remove higher-order trends in time
series.
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Example 13. Consider the “quadratic filter” ∇2 that is defined as follows:

(∇2x)t := (∇ (∇x))t
= (∇x)t − (∇x)t−1

= (xt − xt−1)− (xt−1 − xt−2)
= xt − 2xt−1 + xt−2.

We can also think of ∇2 as the following “difference operator”:

(∇2x)t = 2

(
xt + xt−2

2
− xt−1

)
.

Now suppose x is quadratic trends; i.e., that there exists a stationary series
w [e.g., a white noise series] and numbers β0, β1 β2 such that

xt = β0 + β1t+ β2t
2 + wt.

In order to compute ∇2x, let us first note that

(∇x)t =
[
β0 + β1t+ β2t

2 + wt
]
−
[
β0 + β1(t− 1) + β2(t− 1)2 + wt−1

]
= β1 + β2(2t− 1) + (∇w)t.

Therefore,

(∇2x)t = [β1 + β2(2t− 1) + (∇w)t]− [β1 + β2(2(t− 1)− 1) + (∇w)t−1]

= 2β2 + (∇w)t − (∇w)t−1

= 2β2 + (∇2w)t.

Since w is stationary, the series ∇2w is stationary too. Therefore, ∇2x is
stationary also.

Example 14. One can even apply higher-order difference operators, thanks
to the recursive definition,(

∇k+1x
)
t

:=
(
∇
(
∇kx

))
t
.

Induction shows that whenever

xt = β0 + β1t+ · · ·+ βk+1t
k+1 + wt,

then (
∇k+1x

)
t

= (k + 1)!βk+1 +
(
∇k+1w

)
t
.

That is, ∇k+1 acts as a discrete (k + 1)st derivative-type operator. [if you
apply it to a (k + 1)st degree polynomial, then you obtain (k + 1)! times
the leading coefficient of that polynomial.] When w is, additionally, white
noise, then ∇k+1w is stationary, and therefore so is ∇k+1x.
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2.4 Other Useful Transformations of Data

Occasionally, people transform data in other useful ways, depending on the
trends of the underlying time series. Two popular transformations are

yt := lnxt, and zt :=
xεt − 1

ε
,

for ε > 0, when x is a positive time series. These transformations [nonlinear
filters] remove the effect of large distributional tails of the x’s: Even when
xt is large with reasonable probabilty, then yt is typically not large. And
zt ≈ yt for ε ≈ 0. Indeed, limε→0 zt = yt, because this assertion is another
way to state that dxεt/dε = lnxt, which is an elementary fact from calculus.

3 Stationary Time Series

An important problem in time series analysis is to estimate efficiently the
mean fucnction µ(t) and the autocorrelation function ρ(s , t).

3.1 Moment Analysis

Recall that, when x is a stationary time series., µ := E(xt) does not depend
on t. Therefore, it might be natural to have hopes for estimating µ, as long
as we get the chance to observe x1, . . . , xn for a large enough time n. The
most natural estimator of µ is, of course, the sample running average:

x̄n :=
1

n

n∑
t=1

xt.

Proposition 15. If x is stationary, then

E(x̄n) = µ and Var(x̄n) =
1

n

n−1∑
h=−n+1

(
1− |h|

n

)
γ(h).

Proof. Linearity of expectations shows that E(x̄n) = µ; that is, x̄n is an
unbiased estimator of µ. Next we compute the variance of x̄n.

Clearly,

Var(x̄n) =
1

n2

n∑
s=1

n∑
t=1

E [(xs − µ)(xt − µ)]

=
1

n2

n∑
s=1

n∑
t=1

γ(t− s).
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We split up the double sum according to the three cases that can arise:
Either t > s; or s > t; or s = t. In other words, we write

Var(x̄n) =
1

n2

n−1∑
s=1

n∑
t=s+1

γ(t− s) +
1

n2

n∑
s=2

s−1∑
t=1

γ(t− s) +
1

n2

n∑
s=1

γ(0)

=
2

n2

n−1∑
s=1

n∑
t=s+1

γ(t− s) +
γ(0)

n
,

since γ(t− s) = γ(s− t). Next we observe that

2

n2

n−1∑
s=1

n∑
t=s+1

γ(t− s) =
2

n2

n−1∑
s=1

n−s∑
h=1

γ(h)

=
2

n2

n−1∑
h=1

n−h∑
s=1

γ(h)

=
2

n2

n−1∑
h=1

(n− h)γ(h)

=
2

n

n−1∑
h=1

(
1− h

n

)
γ(h).

Therefore,

Var(x̄n) =
2

n

n−1∑
h=1

(
1− h

n

)
γ(h) +

γ(0)

n
,

which is another way to state the proposition, since γ(h) = γ(−h).

The preceding result might suggest that different sorts of dependence
structures can arise when we study time series:

1. If x is white noise, then γ(u) = 0 when u 6= 0; therefore, Var(x̄n) =
1/n → 0 as n → ∞. This and Chebyshev’s inequality together imply
the following law of large numbers, which you know already:

x̄n
P−→ µ as n→∞. (1)

2. If
∞∑

h=−∞
|γ(h)| <∞, (2)
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then

Var(x̄n) ≈ 1

n

∞∑
h=−∞

γ(h), (3)

and so (1) hold, as it did in the uncorrelated case. Condition (2)
is called the condition of “short-range dependence.” Note that the
variance of x̄n still goes to zero as constant over n. Therefore, the rate
of convergence in (1) is as in the white noise case.

3. The analysis of “long-range dependence” case is quite a bit more in-
volved. Suppose, for the sake of concreteness, that

γ(h) ≈ C

|h|α
as |h| → ∞, (4)

where C,α > 0.1 We are interested in the “long-range dependent”
case; that is, when

∑∞
h=−∞ |γ(h)| = ∞. This means that α 6 1. Let

us consider the case that 0 < α < 1. We will return to the case that
α = 1 in the next example. In this case, we have

Var(x̄n) =
2

n

n−1∑
h=1

(
1− h

n

)
γ(h) +

γ(0)

n

≈ 2

n

n−1∑
h=K

(
1− h

n

)
γ(h) +

γ(0)

n
as n→∞,

where K is an arbitrary [but fixed] positive integer. If K is large
enough, however, then γ(h) ≈ C/hα for all h > K. Therefore, for any
such choice of K,

Var(x̄n) ≈ 2C

n

n−1∑
h=K

(
1− h

n

)
h−α +

γ(0)

n

=
2C

nα
· 1

n

n−1∑
h=K

(
1− h

n

)(
h

n

)−α
+
γ(0)

n

≈ 2C

nα
· 1

n

n−1∑
h=1

(
1− h

n

)(
h

n

)−α
+
γ(0)

n
.

1To put this condition in somewhat more precise terms, we are assuming that
lim|h|→∞ |h|αγ(h) = C.
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Now, n−1
∑n−1

h=1 G(h/n) ≈
∫ 1
0 G(y) dy by the very definition of the

Riemann integral. Apply this with G(y) := (1− y)y−α in order to see
that

Var(x̄n) ≈ 2C

nα
·
∫ 1

0
(1− y)y−α dy +

γ(0)

n

≈ 2C

nα
·
∫ 1

0
(1− y)y−α dy,

since 0 < α < 1. Recall that the beta integral

B(a , b) :=

∫ 1

0
ya−1(1− y)b−1 dy

satisfies

B(a , b) =
Γ(a)Γ(b)

Γ(a+ b)
, where Γ(τ) :=

∫ ∞
0

yτ−1e−y dy

denotes the Gamma function. Thus,

Var(x̄n) ≈ 2C

nα
· B(1− α , 2)

=
2C

nα
· Γ(1− α)Γ(2)

Γ(3− α)

=
2CΓ(1− α)

Γ(3− α)
· n−α as n→∞.

So, once again, the consistency assertion (1) holds, but this conver-
gence is slower than it was in the short-range dependence case.

4. Finally, let us consider the α = 1 case. In that case, we still have∑∞
h=−∞ |γ(h)| = ∞. However, the variance computations are differ-

ent:

Var(x̄n) ≈ 2C

n

n−1∑
h=1

(
1− h

n

)
1

h
+
γ(0)

n

≈ 2C

n

n−1∑
h=1

1

h
+
γ(0)

n

≈ 2C lnn

n
as n→∞.

Once again, we have the law of large numbers (1), but convergence is
faster than in the α < 1 case, though it is slower than in the short-
range dependence case.

13



3.2 Gaussian Time Series

Suppose x = {xt} is a stationary time series that is also assumed to be
Gaussian [or a Gaussian process, in the sense that we have seen already:
For all t1, . . . , tn, (xt1 , . . . , xtn) has a multivariate normal distribution].

Since x is a stationary Gaussian series, it follows that

x̄n ∼ N (0 ,Var(x̄n)) = N

(
0 ,

1

n

n−1∑
h=−n+1

(
1− |h|

n

)
γ(h)

)
for all n.

Therefore, if we had a nice sequence vn and some constant C > 0 such that
Var(x̄n) ≈ Cvn, then we have the central limit theorem,

x̄n − µ√
vn

d−→ N (0 , C) as n→∞.

Let us return to the preceding four examples, and use the preceding in
order to study the convergence rates of the law of large numbers (1), in this
Gaussian setting.

1. If x is Gaussian white noise with variance σ2, then

√
n (x̄n − µ) ∼ N(0 , σ2) for all n.

2. In the short-range dependent case where
∑∞

h=−∞ |γ(h)| <∞, we have
seen that Var(x̄n) ≈ n−1

∑∞
h=−∞ γ(h). Therefore,

√
n (x̄n − µ)

d−→ N

(
0 ,

∞∑
h=−∞

γ(h)

)
as n→∞.

3. In the long-range dependent setting where γ(h) ≈ C/|h|α as |h| → ∞,
where 0 < α < 1, then

nα/2 (x̄n − µ)
d−→ N

(
0 ,

Γ(3− α)

2CΓ(1− α)

)
as n→∞.

4. Finally, in the long-range dependent setting where γ(h) ≈ C/|h| as
|h| → ∞, we have√

n

lnn
(x̄n − µ)

d−→ N

(
0 ,

1

2C

)
as n→∞.
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3.3 Sampling Distribution of the Sample Mean

There are instances where x is a non-Gaussian time series, and yet one can
still establish the asymptotic normality of x̄n. Here, we study a special case
of a well-known result of this general type.

Let us consider a linear process of the form,

xt = µ+

∞∑
j=−∞

Ψjwt−j ,

where w denotes a white noise sequence with variance σ2, and the Ψj ’s form
a non-random sequence that is absolutely summable; that is,

S :=
∞∑

j=−∞
|Ψj | <∞.

Since µx(t) = µ for all t, it follows readily that

γx(s , t) = E [(xt − µx(t))(xs − µx(s))]

= E

 ∞∑
j=−∞

Ψjwt−j ·
∞∑

i=−∞
Ψiws−i


=

∞∑
j=−∞

∞∑
i=−∞

ΨiΨjγw(t− j , s− i).

But γw(t−j , s−i) = 0 unless t−j = s−i, in which case γw(t−j , s−i) = σ2.
Because t− j = s− i if and only if i = j − (t− s), it follows that

γx(s , t) = σ2
∞∑

j=−∞
Ψj−(t−s)Ψj = σ2

∞∑
j=−∞

Ψj−(t−s)Ψj .

Note that the preceding shows that x is weakly stationary, and therefore,

γ(h) = σ2
∞∑

j=−∞
Ψj+hΨj for all h = 0,±1,±2, . . .. (5)

Lemma 16. x is short-range dependent, therefore, x̄n
P→ µ as n → ∞.

Moreover,

∞∑
h=−∞

γ(h) = σ2

 ∞∑
j=−∞

Ψj

2

.
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Proof. We apply the triangle inequality for sums in order to deduce the
following:

∞∑
h=−∞

|γ(h)| 6 σ2
∞∑

h=−∞

∞∑
j=−∞

|Ψj+h| · |Ψj |

= σ2

( ∞∑
k=−∞

|Ψk|

)2

= σ2S 2 <∞.

This proves short-range dependence, and the law of large numbers ensues,
since we have seen already that Var(x̄n) ≈ C/n in the short-range depen-
dence case; see (3) above. The formula for

∑∞
h=−∞ γ(h) is derived by going

through the displayed computation above.

Theorem 17 (Asymptotic Normality). If
∑∞

j=−∞Ψj 6= 0, then

√
n (x̄n − µ)

d−→ N

0 , σ2

 ∞∑
j=−∞

Ψj

2 .

Sketch of Proof. For every integer N > 1, define a new time series

xNt := µ+
N∑

j=−N
Ψjwt−j .

Note that xN is itself a linear process; it is defined as x was, but instead
of Ψj , we use ΨjI{|j| 6 N}. Moreover, x − xN is also a linear process,
but we use µ ≡ 0 and Ψj gets replaced by Ψ̃j := ΨjI{|j| > N}. Since∑∞

j=−∞ |Ψ̃j | =
∑
|j|>N |Ψj | 6

∑∞
j=−∞ |Ψj | < ∞, we may apply (5) in this

case as well, and find that for every h := t− s = 0,±1,±2 . . .,

Cov
(
xt − xNt , xs − xNs

)
= σ2

∞∑
j=−∞

Ψ̃j+(t−s)Ψ̃j .

We may therefore average from t = 1 to t = n and s = 1 to s = n in order

16



to find that

E
(∣∣x̄n − x̄Nn ∣∣2) = Var

(
x̄n − x̄Nn

)
=

1

n2

n∑
t=1

n∑
s=1

Cov
(
xt − xNt , xs − xNs

)
=
σ2

n2

n∑
t=1

n∑
s=1

∞∑
j=−∞

Ψ̃j+(t−s)Ψ̃j

6
σ2

n2

n∑
t=1

n∑
s=1

∑
|j|>N

|Ψj+(t−s)| · |Ψj |.

In order to understand the behavior of this triple sum we rearrange the
sum by first adding over s and t, and then adding over j. Here is the first
computation that we will need in order to carry out this program: For every
integer j,

n∑
t=1

n∑
s=1

|Ψj+(t−s)| =
n∑
t=1

j+t−n∑
k=j+t−1

|Ψk|

6 n
∞∑

k=−∞
|Ψk| = nS .

Therefore,

E
(∣∣x̄n − x̄Nn ∣∣2) 6

σ2S

n

∑
|j|>N

|Ψj |.

In other words,

lim
n→∞

E
(∣∣√n [x̄n − x̄Nn ]∣∣2) 6 σ2S 2 ·

∑
|j|>N

|Ψj |,

which can be made to be as small as we wish, since N can be made to be
very very large, even though it is fixed and does not go to∞ with n. It turns
out that such an approximation reduces the problem to one about showing
that x̄Nn is asymptotically normal.

Now, it it true that x̄Nn is not the average of n independent random
variables. But it is the average of “2N -dependent” random variables in the
following sense: Because

xNt = µ+
∑
|j|6N

Ψjwt−j

17



depends only on wt−N , . . . , wt+N , it follows that xt and xs are independent
whenever |t− s| > 2N . The remainder of the theorem follows fairly readily
from an application of a central limit theorem for 2N -dependent sequences.
I will state that CLT next, and sketch its proof.

We say that X1, X2, . . . is an L-dependent sequence when (X1 , . . . , XL),
(XL+1, · · · , X2L), (X2L+1, . . . , X3L), . . . are i.i.d. L-dimensional random vec-
tors.

Theorem 18 (CLT for L-dependent sequences). Suppose X1, X2, . . . is a
stationary L-dependent sequence with E(Xi) = 0, E(X2

i ) = 1, and

Cov(Xi , Xj) =

{
γ(|j − i|) if |j − i| 6 L,

0 otherwise.

Then,

X1 + · · ·+Xn√
n

d−→ N

(
0 ,

L∑
u=−L

γ(u)

)
as n→∞.

Sketch of Proof. The idea is to “block.” If n and m are two positive integers
such that n� m� L, then we write

X1 + · · ·+Xnm := Z1 + · · ·+ Zn,

where

Z1 := X1 + · · ·+Xm,

Z2 := Xm+1 + · · ·+X2m,

...

Zn := X(n−1)m+1 + · · ·+Xnm.

Since X is L-dependent and stationary, and because m > L, it follows that
the Zi’s are i.i.d. Moreover,

E(Z1) = 0,

Var(X1) = Var (X1 + · · ·+Xm)

=

m∑
i=1

m∑
j=1

γ(i− j)

=
m∑

u=−m
(m− |u|) γ(u),

18



as we have seen before. The classical CLT can be applied to Z1, . . . , Zn in
order to deduce that

X1 + · · ·+Xnm√
n

d−→ N

(
0 ,

m∑
u=−m

(m− |u|) γ(m)

)
as n→∞.

Equivalently,

X1 + · · ·+Xnm√
nm

d−→ N

(
0 ,

m∑
u=−m

(
1− |u|

m

)
γ(u)

)
as n→∞.

So far, I have shown you all of the steps of the proof completely. Now we
have to rescale by setting k := nm and then finally sending m → ∞ [this
part needs some care] in order to see that

X1 + · · ·+Xk√
k

d−→ N

(
0 ,

∞∑
u=−∞

γ(u)

)
as n→∞.

This will prove the result, since
∑∞

u=−∞ γ(u) =
∑L

u=−L γ(u), by the very
construction of γ.

3.4 Sampling Distribution of the Sample ACF

Let us continue to examine the linear process of the previous subsection,
subject to the short-range dependency condition that S < ∞. Since x is
a stationary time series, we might expect to estimate γ(h) by the sample
autocovariance function,

γ̂n(h) :=
1

n

n∑
t=1

(xt+h − x̄n)(xt − x̄n).

Theorem 19. Suppose E(|w0|4) := ησ4 < ∞ and
∑∞

j=−∞Ψj 6= 0. Then
for each h = 0,±1,±2, · · · ,

√
n (γ̂n(h)− γ(h))

d−→ N

(
0 , (η − 3)σ4|γ(h)|2 +

∞∑
k=−∞

υk

)
,

as n→∞, where υk := |γ(k)|2 + γ(k + h)γ(k − h).
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The proof is difficult, and requires laborious computations. Therefore, I
will only sketch only enough of the ideas behind the proof so that you can
see why the preceding theorem is true.

We wish to analyze the estimator γ̂n(h), but as it turns out, it is helpful
to introduce another random sequence first. Recall that µ(t) = µ does not
depend on time because x is stationary. Therefore, we may define

γ̃n(h) :=
1

n

n∑
t=1

(xt+h − µ)(xt − µ).

The following shows that many of the interesting asymptotic properties
of γ̂ and γ̃ are equivalent, and reduces the proof of Theorem 19 to one about
the asymptotic normality of γ̃n(h).

Lemma 20. For every h = 0,±1,±2, . . .,
√
n (γ̂n(h)− γ̃n(h))

P−→ 0 as n→∞.

Proof. We simply expand both quantities:

γ̂n(h) =
1

n

n∑
t=1

(
xt+hxt − x̄n (xt+h + xt) + (x̄n)2

)
=

1

n

n∑
t=1

xt+hxt −
x̄n
n

n∑
t=1

xt+h,

and

γ̃n(h)
1

n

n∑
t=1

(
xt+hxt − µ (xt+h + xt) + µ2

)
=

1

n

n∑
t=1

xt+hxt −
µ

n

n∑
t=1

xt+h − µx̄n + µ2.

Consequently,

γ̂n(h)− γ̃n(h) = −(x̄n − µ) · 1

n

n∑
t=1

xt+h − µ (x̄n − µ)

= − (x̄n − µ)

[
1

n

n∑
t=1

(xt+h − µ)

]
.

We have seen already that
√
n(x̄n−µ) converges in distribution, as n→∞,

to N(0 , (
∑

j Ψj)
2). Also, n−1

∑n
t=1(xt+h − µ) converges to zero in proba-

bility, as a result of short-range dependence. Therefore, the lemma follows
from Slutsky’s theorem.
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Now we analyze γ̃n(h), in hopes that it is asymptotically normal. First,
we may note that γ̃n(h) is an unbiased estimator of γ(h):

E (γ̃n(h)) =
1

n

n∑
t=1

E [(xt+h − µ)(xt − µ)] = γ(h).

Next, we write

|γ̃n(h)|2 =
1

n2

n∑
t=1

n∑
s=1

(xt+h − µ)(xs+h − µ)(xt − µ)(xs − µ),

and use the relation xr−µ =
∑

j Ψjwr−j to simplify the preceding expression
to the following:

|γ̃n(h)|2

=
1

n2

n∑
t=1

n∑
s=1

∞∑
i−=∞

∞∑
j=−∞

∞∑
k=−∞

∞∑
`=−∞

ΨiΨjΨkΨ`wt+h−iws+h−jwt−kws−`.

Then we compute directly the expectation of the preceding, in terms of the
quantities

E (wt+h−iws+h−jwt−kws−`) ,

and after many messy computations, that yields the asymptotic formula,

Var (γ̃n(h)) ≈ 1

n

[
(η − 3)σ4|γ(h)|2 +

∞∑
`=−∞

υ`

]
as n→∞.

Then one has to appeal to a suitable central limit theorem “for dependent
sequences,” in order to establish Theorem 19.

Theorem 19 and Slutsky’s theorem together yield the following asymp-
totic normality result for the ACF:

Theorem 21. Under the conditions of Theorem 19,

√
n (ρ̂n(h)− ρ(h))

d−→ N
(
0 , τ2

)
as n→∞,

where

τ2 :=
∞∑
u=1

[ρ(u+ h) + ρ(u− h)− 2ρ(u)ρ(h)]2 .
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