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1 Probabilities

Let F be a collection of sets. A probability P is a function, on F, that has the
following properties:

1. P(@) =0 and P(Q) = 1;

2. If A C B then P(A) < P(B);

3. (Finite additivity). If A and B are disjoint then P(AUB) = P(A) + P(B);
4. Forall A, B € F, P(AU B) = P(A) + P(B) — P(AN B);
)

. (Countable Additivity). If Ay, Ag,... € F are disjoint, then P(U2,4;) =
Zz?il P(A;).

2 Distribution Functions

Let X denote a random variable. It distribution function is the function
F(z) =P{X <z}, (1)
defined for all real numbers x. It has the following properties:
1. limg o F(z) = 0;
2. limg oo F(z) = 15
3. F is right-continuous; i.e., lim,, F(z) = F(y), for all real y;

4. F has left-limits; i.e., F((y—) := limgqy F'(z) exists for all real y. In fact,
Fy—) = P{X <y}

5. F is non-decreasing; i.e., F'(z) < F(y) whenever = < y.

Tt is possible to prove that (1)—(5) are always valid for all what random variables
X. There is also a converse. If F' is a function that satisfies (1)—(5), then there
exists a random variable X whose distribution function is F.



2.1 Discrete Random Variables

We will mostly study two classes of random variables: discrete, and continuous.
We say that X is a discrete random variable if its possible values form a count-
able or finite set. In other words, X is discrete if and only if there exist x1, o, . ..
such that: P{X = z; for some ¢ > 1} = 1. In this case, we are interested in the
mass function of X, defined as the function p such that

ple) =P{X =z} (i>1). (2)

Implicitly, this means that p(z) = 0 if ¢ # x; for some i. By countable additivity,
Soeyp(z;) = >, p(z) = 1. By countable additivity, the distribution function
of F' can be computed via the following: For all x,

F(z) =Y p(y) (3)

y<z

Occasionally, there are several random variables around and we identify the
mass function of X by px to make the structure clear.

2.2 Continuous Random Variables

A random variable is said to be (absolutely) continuous if there exists a non-
negative function f such that P{X € A} = [, f(x)dzx for all A. The function
f is said to be the density function of X, and has the properties that:

1. f(x) >0 for all x;
2. ffooo f(z)dx = 1.

The distribution function of F' can be computed via the following: For all z,

ﬂ@:/mﬂw@~ (4)

By the fundamental theorem of calculus,

dF
o o)
Occasionally, there are several random variables around and we identify the
density function of X by fx to make the structure clear.
Continuous random variables have the peculiar property that P{X =z} =0
for all x. Equivalently, F(z) = F(x—), so that F' is continuous (not just right-
continuous with left-limits).



3 Expectations

The (mathematical) expectation of a discrete random variable X is defined as
EX = Z xp(x), (6)
xT

where p is the mass function. Of course, this is well defined only if ) _ |z|p(z) <
oo. In this case, we say that X is integrable. Occasionally, EX is also called the
moment, first moment, or the mean of X.

Proposition 1. For all functions g,
Eg(X) = g(x)p(), (7)
x

provided that g(X) is integrable, and/or Y |g(x)|p(z) < co.

This is not a trivial result if you read things carefully, which you should.
Indeed, the definition of expectation implies that

Eg(X) =Y yP{g(X) =y} = > ypeix)(v)- (8)

The (mathematical) ezpectation of a continuous random variable X is defined
as

EX — /_oo of (@) de, )

where f is the density function. This is well defined when [*_|z|f(z)dz is
finite. In this case, we say that X is integrable. Some times, we write E[X]
and/or E{X} and/or E(X) in place of EX.

Proposition 2. For all functions g,
(oo}
Bg(X) = [ gla)f(e) da, (10)
provided that g(X) is integrable, and/or [ _|g(x)|f(z)dx < oo.

As was the case in the discrete setting, this is not a trivial result if you read
things carefully. Indeed, the definition of expectation implies that

Bg(x) = [ " yhe0 ) dy. (11)

Here is a result that is sometimes useful, and not so well-known to students
of probability:

Proposition 3. Let X be a non-negative integrable random variable with dis-
tribution function F. Then,

EX = /000(1 — F())dz. (12)



Proof. Let us prove it for continuous random variables. The discrete case is
proved similarly. We have

/000(1 — F(z))dz = /OOO P{X > z}dr = /OOO (/:o f(y) dy) dr.  (13)

Change the order of integration to find that

/Ooo(l_F(m))da:/Ooo (/Oy dx) f(y)dy:/oooyf(y)dy. (14)

Because f(y) = 0 for all y < 0, this proves the result. O

It is possible to prove that for all integrable random variables X and Y, and
for all reals a and b,
E[aX +bY] = aEX + DEY. (15)

This justifies the buzz-phrase, “expectation is a linear operation.”

3.1 Moments

Note that any random variable X is integrable if and only if E|X| < co. For all
r > 0, the rth moment of X is E{X"}, provided that the rth absolute moment
E{|X|"} is finite.

In the discrete case,

E[X"] =) a"p(a), (16)

and in the continuous case,

E[X"] = /OO 2" f(X)dx. (17)

—0o0
When it makes sense, we can consider negative moments as well. For instance,
if X > 0, then E[X"] makes sense for r < 0 as well, but it may be infinite.
Proposition 4. Ifr > 0 and X is a non-negative random variable with E[X"] <
oo, then

E[X"] = 7‘/000 "1 - F(x))da. (18)

Proof. When r = 1 this is Proposition 3. The proof works similarly. For
instance, when X is continuous,

E[X"] —/Oooxrf(x)dx—/ooo <T/Owyrldy> f(x)dzx
:r/oooyrl (/yoof(x)dz> dy = r/oooyrlP{X >y} dy.

(19)



This verifies the proposition in the continuous case. O
A quantity of interest to us is the variance of X. If is defined as
VarX = E {(X - EX)2] , (20)

and is equal to
VarX = E[X?] — (EX)>. (21)

Variance is finite if and only if X has two finite moments.

3.2 A (Very) Partial List of Discrete Distributions

You are expected to be familar with the following discrete distributions:

1. Binomial (n,p). Here, 0 <p <1 and n=1,2,... are fixed, and the mass
function is

p(z) = (Z);ﬂ(l P itz =0,...,n. (22)

e EX =np and VarX = np(1 — p).

e The binomial (1,p) distribution is also known as Bernoulli (p).

2. Poisson (A). Here, A > 0 is fixed, and the mass function is:

A\«
p(z) = < xﬁ 2=0,1,2,.... (23)

e EX = )\ and VarX = \.

3. Negative binomial (n,p). Here, 0 <p <1 and n =1,2,... are fixed, and
the mass function is:

p(z) = <2:1>p”(1p)mn r=nn+1,.... (24)

e EX =n/p and VarX = n(1 — p)/p?.

3.3 A (Very) Partial List of Continuous Distributions

You are expected to be familar with the following continuous distributions:

1. Uniform (a,b). Here, —co < a < b < oo are fixed, and the density function
is 1

e EX = (a+0b)/2 and VarX = (b —a)?/12.



2. Gamma («, 8). Here, , 8 > 0 are fixed, and the density function is

flx) = b g e P —oo <z < oo (26)

Here, (o) = [, t*"'e~"dt is the (Euler) gamma function. It is defined
for all & > 0, and has the property that I'(14+«) = al'(«). Also, I'(14n) =
n! for all integers n > 0, whereas I'(1/2) = /7.

e EX = /B and VarX = a/B%

e Gamma (1, /) is also known as Exp (8). [The Ezponential distribu-
tion.]

e When n > 1 is an integer, Gamma (n/2,1/2) is also known as x?(n).
[The chi-squared distribution with n degrees of freedom.]

3. N(u,0?). [The normal distribution] Here, —0o < u < oo and ¢ > 0 are
fixed, and the density function is:

1
flz) = e T/ (2% —00 < < 00. (27)

oV2w

e EX =y and VarX = o2,
e N(0,1) is called the standard normal distribution.

e We have the distributional identity, u+oN(0,1) = N(u,0?). Equiv-
alently,

N(“+2)_“ = N(0,1). (28)

e The distribution function of a N(0,1) is an important object, and is
always denoted by ®. That is, for all —co < a < oo,

B(a) 1= \/12?/_ 12 . (29)

4 Random Vectors

Let Xi,...,X, be random variables. Then, X := (Xi,...,X,,) is a random
vector.

4.1 Distribution Functions

Let X = (X1,...,X,) be an N-dimensional random vector. Its distribution
function is defined by

F(xl,...,xn):P{Xlgxl,...,Xngxn}, (30)

valid for all real numbers x4, ..., x,.



If X4,...,X, are all discrete, then we say that X is discrete. On the other
hand, we say that X is (absolutely) continuous when there exists a non-negative
function f, of n variables, such that for all n-dimensional sets A,

P{XGA}:/u-/f(xl,...,xn)dxl c.odTy,. (31)
A

The function f is called the density function of X. It is also called the joint
density function of X1,..., X,.
Note, in particular, that

F(:v1,...,xn):/ / ’f(ul,...,un)dun - duy. (32)

By the fundamental theorem of calculus,
O"F

83:18932 N 8$n - f (33)

4.2 Expectations

If g is a real-valued function of n variables, then

Eg(Xl,...,Xn):/ / gz, .., xn)f(x1, ... xn)dey . day,. (34)

An important special case is when n = 2 and g(x1,x2) = x122. In this case, we
obtain

E[X; X5 = /00 /OC uyug f (ug , ug) duy dus. (35)
The covariance between X, an:iooX27§ defined as
Cov(X1,Xz) := E[(X1 — EXy) (X2 — EXo)]. (36)
It turns out that
Cov(X;,Xs) = E[X1Xs] — E[X1]E[X3]. (37)

This is well defined if both X; and X5 have two finite moments. In this case,
the correlation between X; and Xs is
COV(Xl 5 XQ)

VVarX; - VarXs
provided that 0 < VarX;, Var X5 < oo.

The ezpectation of X = (X,...,X,,) is defined as the vector EX whose jth
coordinate is EXj;.

Given a random vector X = (Xy,...,X,,), its covariance matriz is defined
as C = (Cyj)1<i,j<n, where C;; := Cov(X; X;). This makes sense provided that
the X;’s have two finite moments.

p(X1 ,XQ) = (38)

Lemma 5. Fvery covariance matrixz C is positive semi-definite. That is, x'Cx >
0 for all T € R™. Conversely, every positive semi-definite (n X n) matriz is the
covariance matriz of some random vector.



4.3 Multivariate Normals

Let g = (g1, - - -, ftr,) be an n-dimensional vector, and C an (n X n)-dimensional
matrix that is positive definite. The latter means that ’Cx > 0 for all non-zero
vectors € = (x1,...,2,). This implies, for instance, that C is invertible, and
the inverse is also positive definite.

We say that X = (Xi,...,X,) has the multivariate normal distribution
N,(p,C) if the density function of X is

1
yn) = T o ——=
) (2m)"/2y/det C

for all x = (z1,...,2,) € R".

f(z,... e~ F@W O @), (39)

e EX = p and Cov(X) =C.

e X ~ N,(p,C) if and only if there exists a positive definite matrix A, and
n i.i.d. standard normals Z1, ..., Z, such that X = u+ AZ. In addition,
AA =C.

When n = 2, a multivariate normal is called a bivariate normal.
Warning. Suppose X and Y are each normally distributed. Then it is not

true in general that (X ,Y) is bivariate normal. A similar caveat holds for the
n-dimensional case.

5 Independence
Random variables X1, ..., X, are (statistically) independent if

P{Xi€A1,.... Xn€A}=P{X; € A1} x---xP{X, € A,},  (40)

for all one-dimensional sets Aq,...,A,. It can be shown that X4,...,X,, are
independent if and only if for all real numbers z1, ..., z,,
P{Xl Sl’l,,Xn Sl’n}:P{Xl le} Xoee XP{Xn Sl’n} (41)

That is, the coordinates of X = (Xi,...,X,) are independent if and only
if Fx(x1,...,2n) = Fx,(x1) - Fx, (). Another equivalent formulation of
independence is this: For all functions ¢y, ..., g, such that g;(X;) is integrable,

Eg(X1) x ... x g(Xn)] = E[gi(X1)] x - -+ X E[gn(Xn)]. (42)

A ready consequence is this: If X; and X5 are independent, then they are
uncorrelated provided that their correlation exists. Uncorrelated means that
p(X1,X2) = 0. This is equivalent to Cov(X;,X3) = 0.

If X,...,X, are (pairwise) uncorrelated with two finite moments, then

Var(X; + -+ X,) = VarX; + -+ - + VarX,,. (43)



Significantly, this is true when the X;’s are independent. In general, the formula
is messier:

Var (f: Xi> = zn:VarXi +2 ZZ Cov(X;, X;). (44)
i=1 i=1 1<i<j<n

In general, uncorrelated random variables are not independent. An exception
is made for multivariate normals.

Theorem 6. Suppose (X ,Y) ~ N, (p,C), where X and'Y are respectively
n-dimensional and k-dimensional random vectors. Then:

1. X is multivariate normal.
2.'Y is multivariate normal.
3. IfEX;Y; =0 for alli,j, then X andY are independent.

For example, suppose (X ,Y) is bivariate normal. Then, X and Y are nor-
mally distributed. If, in addition, Cov(X ,Y) = 0 then X and Y are indepen-
dent.

6 Convergence Criteria

Let X1, X5, ... be a countably-infinite sequence of random variables. There are
several ways to make sense of the statement that X,, — X for a random variable
X. We need a few of these criteria.

6.1 Convergence in Distribution

We say that X,, converges to X in distribution if

Fx, () = Fx(x), (45)

for all x € R at which Fx is continuous. We write this as X, i X.
Very often, F'x is continuous. In such cases, X, 4 X ifand only if Fx, (z) —
Fx(z) for all . Note that if X, 4 X and X has a continuous distribution then

also
P{a < X, <b} - P{a < X < b}, (46)

for all a < b.
Similarly, we say that the random vectors X7, Xs, ... converge in distribu-
tion to the random vector X when Fx, (a) — Fx(a) for all a at which Fx is

continuous. This convergence is also denoted by X, 4 X,

10



6.2 Convergence in Probability
We say that X, converges to X in probability if for all € > 0,

P{|X, — X|>e} = 0. (47)

We denote this by X, 5 x.

It is the case that if X, 2 X then X 4 x , but the converse is patently
false. There is one exception to this rule.

d . P
Lemma 7. Suppose X,, — ¢ where ¢ is a non-random constant. Then, X,, — c.

Proof. Fix ¢ > 0. Then,
P{X,—¢<e}>P{c—e< X, <c+e}=Fx, (cte)—Fx, (c—¢€). (48)

But F.(x) =0if z < ¢, and F.(z) = 1 if > ¢. Therefore, F, is continuous at
¢t e, whence we have Fx (c+¢€)— Fx, (c—¢€) = F.(c+¢€) — F.(c—¢€) = 1. This
proves that P{| X, — ¢| < e} — 1, which is another way to write the lemma. O

Similar considerations lead us to the following.

Theorem 8 (Slutsky’s theorem). Suppose X, L X and Y, 4 for a constant

c. If g is a continuous function of two variables, then g(X, ,Yx) LS g9(X ,0).
[For instance, try g(x,y) = ax + by, g(z,y) = zye®, ete.]

When c is a random variable this is no longer valid in general.

7 Moment Generating Functions

We say that X has a moment generating function if there exists to > 0 such
that
M(t) := Mx (t) = E[e!™] is finite for all t € [t ,to]. (49)

If this condition is met, then M is the moment generating function of X.
If and when it exists, the moment generating function of X determines its
entire distribution. Here is a more precise statement.

Theorem 9 (Uniqueness). Suppose X and Y have moment generating func-
tions, and Mx (t) = My (t) for allt sufficiently close to 0. Then, X andY have
the same distribution.

7.1 Some Examples

1. Binomial (n,p). Then, M(t) exists for all —oco < ¢ < 0o, and

M(t)=(1—p+pe)". (50)

11



2. Poisson (\). Then, M (t) exists for all —co < ¢ < 0o, and
M(t) = N1, (51)

3. Negative Binomial (n,p). Then, M(t) exists if and only if —co < t <
|log(1 — p)|. In that case, we have also that

t

M(t) = (1_(11’6_]@&)". (52)

4. Uniform (a,b). Then, M(t) exists for all —co < ¢t < oo, and

etb _ eta

M) ==

(53)

5. Gamma («, ). Then, M(t) exists if and only if —co < ¢t < 8. In that

case, we have also that
_(_ B\
M(t)_(ﬂt . (54)

Set @ = 1 to find the moment generating function of an exponential (3).
Set « = n/2 and 8 = 1/2—for a positive integer n—to obtain the moment
generating function of a chi-squared (n).

6. N(p,0?). The moment generating function exists for all —oco < t < oo.
Moreover,

M(t) = exp (ut + U?) : (55)

7.2 Properties

Beside the uniqueness theorem, moment generating functions have two more
properties that are of interest in mathematical statistics.

Theorem 10 (Convergence Theorem). Suppose X1, Xo,... is a sequence of
random variables whose moment generating functions all exists in an interval
[—to ,to] around the origin. Suppose also that for all t € [—tg,to], Mx, (t) —
Mx(t) as n — oo, where M is the moment generating function of a random

variable X. Then, X, $ X.

Example 11 (Law of Rare Events). Let X,, have the Bin(n, A\/n) distribution,
where A > 0 is independent of n. Then, for all —co < t < o0,

Mx, (t) = <1 - % + zet>n. (56)

12



We claim that for all real numbers ¢,
C n
(1+7> — ef as n — o0. (57)
n
Let us take this for granted for the time being. Then, it follows at once that
Mx, (t) = exp (=X + Ae') = e D), (58)

That is,
Bin (n,A/n) % Poisson (N). (59)

This is Poisson’s “law of rare events” (also known as “the law of small numbers”).

Now we wrap up this example by verifying (57). Let f(z) = (1 + x)™, and
Taylor-expand it to find that f(z) =14 nx + %n(n —1)a® + ---. Replace x by
¢/n, and compute to find that

(1+%)n:1+c+(n;1 —>Zj,7 (60)

and this is the Taylor-series expansion of e¢. [There is a little bit more one has
to do to justify the limiting procedure.]

The second property of moment generating functions is that if and when
it exists for a random variable X, then all moments of X exist, and can be
computed from Mx.

Theorem 12 (Moment-Generating Property). Suppose X has a finite moment
generating function in a neighborhood of the origin. Then, E(|X|™) exists for all
n, and M (0) = E[X"], where f")(z) denotes the nth derivative of function
f atx.

Example 13. Let X bea N(u, 1) random variable. Then we know that M (t) =
exp(pt + %tz). Consequently,

M/(t) = (u+ t)eut+(t2/2)7 and M”(t) _ [1 + (1 —|—t)2] elbt+(t2/2) (61)
Set t = 0 to find that EX = M’(0) = p and E[X?] = M"(0) = 1 + 2, so that
VarX = E[X?] — (EX)? =
8 Characteristic Functions
The characteristic function of a random variable X is the function
o(t) :=E [e"X] —00 <t < 00. (62)

Here, the “i” refers to the complex unit, ¢ = v/—1. We may write ¢ as ¢x, for
example, when there are several random variables around.

13



In practice, you often treat e®®X as if it were a real exponential. However, the

correct way to think of this definition is via the Euler formula, e? = cos #+i sin 6
for all real numbers 6. Thus,

¢(t) = E[cos(tX)] + iE[sin(tX)]. (63)

If X has a moment generating function M, then it can be shown that M (it) =
@(t). [This uses the technique of “analytic continuation” from complex analysis.]
In other words, the naive replacement of ¢ by it does what one may guess it
would. However, one advantage of working with ¢ is that it is always well-
defined. The reason is that |cos(tX)| < 1 and |sin(¢X)| < 1, so that the
expectations in (63) exist. In addition to having this advantage, ¢ shares most
of the properties of M as well! For example,

Theorem 14. The following hold:

1. (Uniqueness Theorem) Suppose there exists tg > 0 such that for all
t € (—to,to), ¢x(t) = ¢y (t). Then X andY have the same distribution.

2. (Convergence Theorem) If ¢x (t) — ¢x(t) for allt € (—to,10), then
X, 4 X. Conversely, if X, A X, then ¢x,, (t) = ¢x(t) for all t.

8.1 Some Examples

1. Binomial (n,p). Then,
$(t) = M(it) = (1 —p+pe)". (64)

2. Poisson (A). Then, _
$(t) = M(it) = N1, (65)

3. Negative Binomial (n,p). Then,

o(t) = M(it) = (M) : (66)
4. Uniform (a,b). Then,
eitb _ eita
o) = M(it) = =)

5. Gamma («, ). Then,

o) = M = (522 (65)

6. N(u,0?). Then, because (it)? = —t2,
o*t?
@(t) = M(it) = exp (zﬂt - 2) . (69)

14



9 C(Classical Limit Theorems

9.1 The Central Limit Theorem

Theorem 15 (The CLT). Let X1, Xs,... be i.i.d. random variables with two
finite moments. Let pn := EX; and 02 = VarX,. Then,

Z?:l Xj —np
ov/n

Elementary probability texts prove this by appealing to the convergence the-
orem for moment generating functions. This approach does not work if we know
only that X; has two finite moments, however. However, by using characteristic
functions, we can relax the assumptions to the finite mean and variance case,
as stated.

4 N(0,1). (70)

Proof of the CLT. Define

T, : z?—la)\j% (71)
Then,
¢r. () =E ﬁexp (it <X; _n’“L))
= | (72)
1o ( (350

thanks to independence; see (42) on page 8. Let Y; := (X, — p)/o denote the
standardization of X;. Then, it follows that

n

H (t/vn) = [ow, (t/vR)]", (73)

because the Yj’s are i.i.d. Recall the Taylor expansion, e = 144z — §x + -

and write <z§y1( ) as E[e"™1] = 1 +itEY; — L2E[Y?] 4+ =1- 32+ Thub
or=1- Ly ] e (74)
T, m (& .

See (57) on page 12. Because e~t*/2 is the characteristic function of N(0,1),

this and the convergence theorem (Theorem 15 on page 14) together prove the
CLT. O

The CLT has a multidimensional counterpart as well. Here is the statement.

15



Theorem 16. Let X1, Xo,... be i.i.d. k-dimensional random vectors with mean
vector p := EX1 and covariance matriz Q := CovX. If Q is non-singular, then

Jn
9.2 (Weak) Law of Large Numbers

Theorem 17 (Law of Large Numbers). Suppose X1, Xo,... are i.i.d. and have
a finite first moment. Let y:= EX;. Then,

= Sy
n

4 N,(0,Q). (75)

(76)

Proof. We will prove this in case there is also a finite variance. The general case
is beyond the scope of these notes. Thanks to the CLT (Theorem 15, page 14),
(X1 + -+ X,,)/n converges in distribution to p. Slutsky’s theorem (Theorem
8, page 10) proves that convergence holds also in probability. O

9.3 Variance Stabilization

Let X1, X5, ... beiid. with p = EX; and 02 = VarX; both defined and finite.
Define the partial sums,
S, =X1+--+X,. (77)

d
We know that: (i) S, ~ nu in probability; and (ii) (S, — nu) =~ N(0,no?).
Now use Taylor expansions: For any smooth function h,

B/ =~ 1) + (52 = ) 1), (79)

in probability. By the CLT, (S, /n) — u 2 N(0,0%/n). Therefore, Slutsky’s
theorem (Theorem 8, page 10) proves that

Vit |1 (22) =m0 G0 F) (79)

[Technical conditions: h’ should be continuously-differentiable in a neighbor-
hood of 1.]

9.4 Refinements to the CLT

There are many refinements to the CLT. Here are 2 particularly well-known
ones. The first gives a description of the farthest the distribution function of
normalized sums is from the normal.
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Theorem 18 (Berry-Esseen). If p := E{|X1]*} < oo, then

ovn

max (80)

—oo<a<oo

< a} — ®(a)

The second is a one-term example of a family is results that are called “Edge-
worth expansions.”

Theorem 19 (Edgeworth). Suppose [*_|Eexp(itX;)|dt < oo and E(|X;[°) <
oo for some p > 3, then we can write

Yo X —np k1(1 —a?)
P = < =P n )
{ LI <0 = a(0) + 000 + Rala)
where:

1. ¢(a) == (2n)~ Y2 exp(—a?/2) denotes the standard normal density;

2. k1 := o0 3E[(X1 — p)3] denotes the skewness of the distribution of Xi;

8. MaX_socq<oo |Rn(a)| < const-n~t.

Remark 20. The condition [ _|Eexp(itX1)|dt < oo holds roughly when X
has a nice pdf.

Remark 21. Under further restrictions, one can in fact write an asymptotic
expansion of the form

Dim Xi —np — ri;jH;(a)
P {10\/7; < a} = ®(a) + ; qu(a) + Rnr(a),

for every [fized] positive integer r, where k;’s are finite constants, each Hj is a
certain polynomial of degree j [Hermite polynomials], and the remainder is very
small in the sense that MaxX_oo<q<oo |Rn,r(a)] < const - n=(r+1)/2,

10 Conditional Expectations

Let us begin by recalling some basic notions of conditioning from elementary
probability. Throughout this section, X denotes a random variable and Y :=
(Y1,...,Y,) an n-dimensional random vector.

10.1 Conditional Probabilities and Densities

If X,Y1,...,Y, are all discrete random variables, then the conditional mass

function of X, given that Y =y, is

P{X:$7YI :yla"'7Yn :yn}
P{Yl :ylv"'vyn:yn}

]9X|Y(C1C ly) =
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provided that P{Y = y} > 0. This is a bona fide mass function [as a function
of the variable x| for every fixed choice of y. [It doesn’t make sense to worry
about its behavior in the variables y1,...,¥ns.]

Similarly, if the distribution of (X , Y7 ,...,Y},) is absolutely continuous, then
the conditional density function of X, given that Y =y, is

Fwlaly) = DT Seti] (52)

provided that the observed value y is such that the joint density fx,y of the
random vector (X ,Y) satisfies

fy(yi,...,yn) > 0. (83)

Note that (83) is entirely possible, though P{Y = y} = 0 simply because Y
has an absolutely continuous distribution. Condition (83) is quite natural in
the following sense: Let B denote the collection of all n-dimensional vectors y
such that fy (y1,...,Yn) = 0. Then,

In other words, we do not have to worry about defining fx|y (x|y) when y is
not in B.

10.2 Conditional Expectations

If we have observed that Y =y, for a known vector y = (y1,...,Yn), then the
best linear predictor of X is the [classical] conditional expectation

Y 2P{X =2]Y =y} if (X,Y) is discrete,

85
7 afxy(@|y)de if (X,Y) has a joint pdf. (85)

E(X|Y =y) ::{

The preceding assumes tacitly that the sum/integral converges absolutely. More
generally, we have for any nice function ¢,

Yo p@)P{X =2|Y =y} if discrete,

86
2 e@) fxy (x| y) de if joint pdf exists, (86)

E@@X)]Y =y) = {

provided that the sum/integral converges absolutely. The preceding is in fact
a theorem, but a careful statement requires writing too many technical details
from integration theory.

10.3 An Intuitive Interpretation

The basic use of conditional expectations is this: If we observe that Y = y, then
we predict X, based only on our observation that Y =y, as E(X |Y = y).
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Example 22. We perform 10 independent Bernoulli trials [p := probability of
success per trial]. Let X denote the total number of successes. We know that
X has a Bin(10, p) distribution. If Y := the total number of successes in the
first 5 trials, then you should check that E(X |Y = 0) = 5p. More generally,
EX|Y=y)=y+5bpfloralye{0,...,5}.

The previous example shows you that it is frequently more convenient to use
a slightly different form of conditional expectations: We write E(X |Y") for the
random variable whose value is E(X | Y = y) when we observe that Y = y. In
the previous example, this definition translates to the following computation:
E(X|Y) =Y +5p. This ought to make very good sense to you, before you read
on!

The classical Bayes’ formula for conditional probabilities has an analogue for
conditional expectations. Suppose (X ,Y’) has a joint density function fx y.
Then,

E(X) = /Oo zfx(z)dx

— 00

:/ ’I( fX,Y(xayla"'vyn)dy) dx
— o0 R
[ ([ reve i) ds

. (57)
[ ([ aravielwic) s ay
- [ EXIY =)y
—E{E(X|Y)}.
This is always true. That is, we always have
B(X) = B{B(X|Y)}, (59)

provided that E|X| < co.
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