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1 Probabilities

Let F be a collection of sets. A probability P is a function, on F , that has the
following properties:

1. P(∅) = 0 and P(Ω) = 1;

2. If A ⊂ B then P(A) ≤ P(B);

3. (Finite additivity). If A and B are disjoint then P(A∪B) = P(A)+P (B);

4. For all A,B ∈ F , P(A ∪B) = P(A) + P(B)− P(A ∩B);

5. (Countable Additivity). If A1, A2, . . . ∈ F are disjoint, then P(∪∞i=1Ai) =∑∞
i=1 P(Ai).

2 Distribution Functions

Let X denote a random variable. It distribution function is the function

F (x) = P{X ≤ x}, (1)

defined for all real numbers x. It has the following properties:

1. limx→−∞ F (x) = 0;

2. limx→∞ F (x) = 1;

3. F is right-continuous; i.e., limx↓y F (x) = F (y), for all real y;

4. F has left-limits; i.e., F (y−) := limx↑y F (x) exists for all real y. In fact,
F (y−) = P{X < y};

5. F is non-decreasing; i.e., F (x) ≤ F (y) whenever x ≤ y.

It is possible to prove that (1)–(5) are always valid for all what random variables
X. There is also a converse. If F is a function that satisfies (1)–(5), then there
exists a random variable X whose distribution function is F .
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2.1 Discrete Random Variables

We will mostly study two classes of random variables: discrete, and continuous.
We say that X is a discrete random variable if its possible values form a count-
able or finite set. In other words, X is discrete if and only if there exist x1, x2, . . .
such that: P{X = xi for some i ≥ 1} = 1. In this case, we are interested in the
mass function of X, defined as the function p such that

p(xi) = P{X = xi} (i ≥ 1). (2)

Implicitly, this means that p(x) = 0 if x 6= xi for some i. By countable additivity,∑∞
i=1 p(xi) =

∑
x p(x) = 1. By countable additivity, the distribution function

of F can be computed via the following: For all x,

F (x) =
∑
y≤x

p(y). (3)

Occasionally, there are several random variables around and we identify the
mass function of X by pX to make the structure clear.

2.2 Continuous Random Variables

A random variable is said to be (absolutely) continuous if there exists a non-
negative function f such that P{X ∈ A} =

∫
A
f(x) dx for all A. The function

f is said to be the density function of X, and has the properties that:

1. f(x) ≥ 0 for all x;

2.
∫∞
−∞ f(x) dx = 1.

The distribution function of F can be computed via the following: For all x,

F (x) =

∫ x

∞
f(y) dy. (4)

By the fundamental theorem of calculus,

dF

dx
= f. (5)

Occasionally, there are several random variables around and we identify the
density function of X by fX to make the structure clear.

Continuous random variables have the peculiar property that P{X = x} = 0
for all x. Equivalently, F (x) = F (x−), so that F is continuous (not just right-
continuous with left-limits).
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3 Expectations

The (mathematical) expectation of a discrete random variable X is defined as

EX =
∑
x

xp(x), (6)

where p is the mass function. Of course, this is well defined only if
∑
x |x|p(x) <

∞. In this case, we say that X is integrable. Occasionally, EX is also called the
moment, first moment, or the mean of X.

Proposition 1. For all functions g,

Eg(X) =
∑
x

g(x)p(x), (7)

provided that g(X) is integrable, and/or
∑
x |g(x)|p(x) <∞.

This is not a trivial result if you read things carefully, which you should.
Indeed, the definition of expectation implies that

Eg(X) =
∑
y

yP{g(X) = y} =
∑
y

ypg(X)(y). (8)

The (mathematical) expectation of a continuous random variableX is defined
as

EX =

∫ ∞
−∞

xf(x) dx, (9)

where f is the density function. This is well defined when
∫∞
−∞ |x|f(x) dx is

finite. In this case, we say that X is integrable. Some times, we write E[X]
and/or E{X} and/or E(X) in place of EX.

Proposition 2. For all functions g,

Eg(X) =

∫ ∞
−∞

g(x)f(x) dx, (10)

provided that g(X) is integrable, and/or
∫∞
−∞ |g(x)|f(x) dx <∞.

As was the case in the discrete setting, this is not a trivial result if you read
things carefully. Indeed, the definition of expectation implies that

Eg(X) =

∫ ∞
−∞

yfg(X)(y) dy. (11)

Here is a result that is sometimes useful, and not so well-known to students
of probability:

Proposition 3. Let X be a non-negative integrable random variable with dis-
tribution function F . Then,

EX =

∫ ∞
0

(1− F (x)) dx. (12)
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Proof. Let us prove it for continuous random variables. The discrete case is
proved similarly. We have∫ ∞

0

(1− F (x)) dx =

∫ ∞
0

P{X > x} dx =

∫ ∞
0

(∫ ∞
x

f(y) dy

)
dx. (13)

Change the order of integration to find that∫ ∞
0

(1− F (x)) dx =

∫ ∞
0

(∫ y

0

dx

)
f(y) dy =

∫ ∞
0

yf(y) dy. (14)

Because f(y) = 0 for all y < 0, this proves the result. �

It is possible to prove that for all integrable random variables X and Y , and
for all reals a and b,

E[aX + bY ] = aEX + bEY. (15)

This justifies the buzz-phrase, “expectation is a linear operation.”

3.1 Moments

Note that any random variable X is integrable if and only if E|X| <∞. For all
r > 0, the rth moment of X is E{Xr}, provided that the rth absolute moment
E{|X|r} is finite.

In the discrete case,

E[Xr] =
∑
x

xrp(x), (16)

and in the continuous case,

E[Xr] =

∫ ∞
−∞

xrf(X) dx. (17)

When it makes sense, we can consider negative moments as well. For instance,
if X ≥ 0, then E[Xr] makes sense for r < 0 as well, but it may be infinite.

Proposition 4. If r > 0 and X is a non-negative random variable with E[Xr] <
∞, then

E[Xr] = r

∫ ∞
0

xr−1(1− F (x)) dx. (18)

Proof. When r = 1 this is Proposition 3. The proof works similarly. For
instance, when X is continuous,

E[Xr] =

∫ ∞
0

xrf(x) dx =

∫ ∞
0

(
r

∫ x

0

yr−1 dy

)
f(x) dx

= r

∫ ∞
0

yr−1
(∫ ∞

y

f(x) dx

)
dy = r

∫ ∞
0

yr−1P{X > y} dy.
(19)
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This verifies the proposition in the continuous case. �

A quantity of interest to us is the variance of X. If is defined as

VarX = E
[
(X − EX)

2
]
, (20)

and is equal to
VarX = E[X2]− (EX)

2
. (21)

Variance is finite if and only if X has two finite moments.

3.2 A (Very) Partial List of Discrete Distributions

You are expected to be familar with the following discrete distributions:

1. Binomial (n , p). Here, 0 < p < 1 and n = 1, 2, . . . are fixed, and the mass
function is

p(x) =

(
n

x

)
px(1− p)n−x if x = 0, . . . , n. (22)

• EX = np and VarX = np(1− p).
• The binomial (1 , p) distribution is also known as Bernoulli (p).

2. Poisson (λ). Here, λ > 0 is fixed, and the mass function is:

p(x) =
e−λλx

x!
x = 0, 1, 2, . . . . (23)

• EX = λ and VarX = λ.

3. Negative binomial (n , p). Here, 0 < p < 1 and n = 1, 2, . . . are fixed, and
the mass function is:

p(x) =

(
x− 1

n− 1

)
pn(1− p)x−n x = n, n+ 1, . . . . (24)

• EX = n/p and VarX = n(1− p)/p2.

3.3 A (Very) Partial List of Continuous Distributions

You are expected to be familar with the following continuous distributions:

1. Uniform (a , b). Here, −∞ < a < b <∞ are fixed, and the density function
is

f(x) =
1

b− a
if a ≤ x ≤ b. (25)

• EX = (a+ b)/2 and VarX = (b− a)2/12.
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2. Gamma (α , β). Here, α, β > 0 are fixed, and the density function is

f(x) =
βα

Γ(α)
xα−1e−βx −∞ < x <∞. (26)

Here, Γ(α) =
∫∞
0
tα−1e−t dt is the (Euler) gamma function. It is defined

for all α > 0, and has the property that Γ(1+α) = αΓ(α). Also, Γ(1+n) =
n! for all integers n ≥ 0, whereas Γ(1/2) =

√
π.

• EX = α/β and VarX = α/β2.

• Gamma (1 , β) is also known as Exp (β). [The Exponential distribu-
tion.]

• When n ≥ 1 is an integer, Gamma (n/2 , 1/2) is also known as χ2(n).
[The chi-squared distribution with n degrees of freedom.]

3. N(µ , σ2). [The normal distribution] Here, −∞ < µ < ∞ and σ > 0 are
fixed, and the density function is:

f(x) =
1

σ
√

2π
e−(x−µ)

2/(2σ2) −∞ < x <∞. (27)

• EX = µ and VarX = σ2.

• N(0 , 1) is called the standard normal distribution.

• We have the distributional identity, µ+σN(0 , 1) = N(µ , σ2). Equiv-
alently,

N(µ , σ2)− µ
σ

= N(0 , 1). (28)

• The distribution function of a N(0 , 1) is an important object, and is
always denoted by Φ. That is, for all −∞ < a <∞,

Φ(a) :=
1√
2π

∫ a

−∞
e−x

2/2 dx. (29)

4 Random Vectors

Let X1, . . . , Xn be random variables. Then, X := (X1, . . . , Xn) is a random
vector.

4.1 Distribution Functions

Let X = (X1, . . . , Xn) be an N -dimensional random vector. Its distribution
function is defined by

F (x1, . . . , xn) = P {X1 ≤ x1 , . . . , Xn ≤ xn} , (30)

valid for all real numbers x1, . . . , xn.
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If X1, . . . , Xn are all discrete, then we say that X is discrete. On the other
hand, we say thatX is (absolutely) continuous when there exists a non-negative
function f , of n variables, such that for all n-dimensional sets A,

P{X ∈ A} =

∫
· · ·
∫

A

f(x1, . . . , xn) dx1 . . . dxn. (31)

The function f is called the density function of X. It is also called the joint
density function of X1, . . . , Xn.

Note, in particular, that

F (x1, . . . , xn) =

∫ x1

−∞
· · ·
∫ xn

−∞
f(u1, . . . , un) dun · · · du1. (32)

By the fundamental theorem of calculus,

∂nF

∂x1∂x2 . . . ∂xn
= f. (33)

4.2 Expectations

If g is a real-valued function of n variables, then

Eg(X1, . . . , Xn) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, . . . , xn)f(x1, . . . , xn) dx1 . . . dxn. (34)

An important special case is when n = 2 and g(x1, x2) = x1x2. In this case, we
obtain

E[X1X2] =

∫ ∞
−∞

∫ ∞
−∞

u1u2f(u1 , u2) du1 du2. (35)

The covariance between X1 and X2 is defined as

Cov(X1 , X2) := E [(X1 − EX1) (X2 − EX2)] . (36)

It turns out that

Cov(X1 , X2) = E[X1X2]− E[X1]E[X2]. (37)

This is well defined if both X1 and X2 have two finite moments. In this case,
the correlation between X1 and X2 is

ρ(X1 , X2) :=
Cov(X1 , X2)√
VarX1 ·VarX2

, (38)

provided that 0 < VarX1,VarX2 <∞.
The expectation of X = (X1, . . . , Xn) is defined as the vector EX whose jth

coordinate is EXj .
Given a random vector X = (X1, . . . , Xn), its covariance matrix is defined

as C = (Cij)1≤i,j≤n, where Cij := Cov(XiXj). This makes sense provided that
the Xi’s have two finite moments.

Lemma 5. Every covariance matrix C is positive semi-definite. That is, x′Cx ≥
0 for all x ∈ Rn. Conversely, every positive semi-definite (n× n) matrix is the
covariance matrix of some random vector.
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4.3 Multivariate Normals

Let µ = (µ1, . . . , µn) be an n-dimensional vector, and C an (n×n)-dimensional
matrix that is positive definite. The latter means that x′Cx > 0 for all non-zero
vectors x = (x1, . . . , xn). This implies, for instance, that C is invertible, and
the inverse is also positive definite.

We say that X = (X1, . . . , Xn) has the multivariate normal distribution
Nn(µ ,C) if the density function of X is

f(x1, . . . , xn) =
1

(2π)n/2
√

detC
e−

1
2 (x−µ)

′C−1(x−µ), (39)

for all x = (x1, . . . , xn) ∈ Rn.

• EX = µ and Cov(X) = C.

• X ∼ Nn(µ ,C) if and only if there exists a positive definite matrix A, and
n i.i.d. standard normals Z1, . . . , Zn such that X = µ+AZ. In addition,
AA′ = C.

When n = 2, a multivariate normal is called a bivariate normal.

Warning. Suppose X and Y are each normally distributed. Then it is not
true in general that (X ,Y ) is bivariate normal. A similar caveat holds for the
n-dimensional case.

5 Independence

Random variables X1, . . . , Xn are (statistically) independent if

P {X1 ∈ A1 , . . . , Xn ∈ An} = P {X1 ∈ A1} × · · · × P {Xn ∈ An} , (40)

for all one-dimensional sets A1, . . . , An. It can be shown that X1, . . . , Xn are
independent if and only if for all real numbers x1, . . . , xn,

P {X1 ≤ x1 , . . . , Xn ≤ xn} = P {X1 ≤ x1} × · · · × P {Xn ≤ xn} . (41)

That is, the coordinates of X = (X1, . . . , Xn) are independent if and only
if FX(x1, . . . , xn) = FX1(x1) · · ·FXn(xn). Another equivalent formulation of
independence is this: For all functions g1, . . . , gn such that gi(Xi) is integrable,

E [g(X1)× . . .× g(Xn)] = E[g1(X1)]× · · · × E[gn(Xn)]. (42)

A ready consequence is this: If X1 and X2 are independent, then they are
uncorrelated provided that their correlation exists. Uncorrelated means that
ρ(X1 , X2) = 0. This is equivalent to Cov(X1 , X2) = 0.

If X1, . . . , Xn are (pairwise) uncorrelated with two finite moments, then

Var(X1 + · · ·+Xn) = VarX1 + · · ·+ VarXn. (43)
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Significantly, this is true when the Xi’s are independent. In general, the formula
is messier:

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

VarXi + 2
∑∑
1≤i<j≤n

Cov(Xi , Xj). (44)

In general, uncorrelated random variables are not independent. An exception
is made for multivariate normals.

Theorem 6. Suppose (X ,Y ) ∼ Nn+k(µ ,C), where X and Y are respectively
n-dimensional and k-dimensional random vectors. Then:

1. X is multivariate normal.

2. Y is multivariate normal.

3. If EXiYj = 0 for all i, j, then X and Y are independent.

For example, suppose (X ,Y ) is bivariate normal. Then, X and Y are nor-
mally distributed. If, in addition, Cov(X ,Y ) = 0 then X and Y are indepen-
dent.

6 Convergence Criteria

Let X1, X2, . . . be a countably-infinite sequence of random variables. There are
several ways to make sense of the statement that Xn → X for a random variable
X. We need a few of these criteria.

6.1 Convergence in Distribution

We say that Xn converges to X in distribution if

FXn
(x)→ FX(x), (45)

for all x ∈ R at which FX is continuous. We write this as Xn
d→ X.

Very often, FX is continuous. In such cases, Xn
d→ X if and only if FXn

(x)→
FX(x) for all x. Note that if Xn

d→ X and X has a continuous distribution then
also

P{a ≤ Xn ≤ b} → P{a ≤ X ≤ b}, (46)

for all a < b.
Similarly, we say that the random vectors X1,X2, . . . converge in distribu-

tion to the random vector X when FXn
(a) → FX(a) for all a at which FX is

continuous. This convergence is also denoted by Xn
d→X.
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6.2 Convergence in Probability

We say that Xn converges to X in probability if for all ε > 0,

P {|Xn −X| > ε} → 0. (47)

We denote this by Xn
P→ X.

It is the case that if Xn
P→ X then Xn

d→ X, but the converse is patently
false. There is one exception to this rule.

Lemma 7. Suppose Xn
d→ c where c is a non-random constant. Then, Xn

P→ c.

Proof. Fix ε > 0. Then,

P{|Xn − c| ≤ ε} ≥ P{c− ε < Xn ≤ c+ ε} = FXn
(c+ ε)− FXn

(c− ε). (48)

But Fc(x) = 0 if x < c, and Fc(x) = 1 if x ≥ c. Therefore, Fc is continuous at
c± ε, whence we have FXn

(c+ ε)−FXn
(c− ε)→ Fc(c+ ε)−Fc(c− ε) = 1. This

proves that P{|Xn − c| ≤ ε} → 1, which is another way to write the lemma. �

Similar considerations lead us to the following.

Theorem 8 (Slutsky’s theorem). Suppose Xn
d→ X and Yn

d→ c for a constant

c. If g is a continuous function of two variables, then g(Xn , Yn)
d→ g(X , c).

[For instance, try g(x , y) = ax+ by, g(x , y) = xyex, etc.]

When c is a random variable this is no longer valid in general.

7 Moment Generating Functions

We say that X has a moment generating function if there exists t0 > 0 such
that

M(t) := MX(t) = E[etX ] is finite for all t ∈ [−t0 , t0]. (49)

If this condition is met, then M is the moment generating function of X.
If and when it exists, the moment generating function of X determines its

entire distribution. Here is a more precise statement.

Theorem 9 (Uniqueness). Suppose X and Y have moment generating func-
tions, and MX(t) = MY (t) for all t sufficiently close to 0. Then, X and Y have
the same distribution.

7.1 Some Examples

1. Binomial (n , p). Then, M(t) exists for all −∞ < t <∞, and

M(t) =
(
1− p+ pet

)n
. (50)
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2. Poisson (λ). Then, M(t) exists for all −∞ < t <∞, and

M(t) = eλ(e
t−1). (51)

3. Negative Binomial (n , p). Then, M(t) exists if and only if −∞ < t <
| log(1− p)|. In that case, we have also that

M(t) =

(
pet

1− (1− p)et

)n
. (52)

4. Uniform (a , b). Then, M(t) exists for all −∞ < t <∞, and

M(t) =
etb − eta

t(b− a)
. (53)

5. Gamma (α , β). Then, M(t) exists if and only if −∞ < t < β. In that
case, we have also that

M(t) =

(
β

β − t

)α
. (54)

Set α = 1 to find the moment generating function of an exponential (β).
Set α = n/2 and β = 1/2—for a positive integer n—to obtain the moment
generating function of a chi-squared (n).

6. N(µ , σ2). The moment generating function exists for all −∞ < t < ∞.
Moreover,

M(t) = exp

(
µt+

σ2t2

2

)
. (55)

7.2 Properties

Beside the uniqueness theorem, moment generating functions have two more
properties that are of interest in mathematical statistics.

Theorem 10 (Convergence Theorem). Suppose X1, X2, . . . is a sequence of
random variables whose moment generating functions all exists in an interval
[−t0 , t0] around the origin. Suppose also that for all t ∈ [−t0 , t0], MXn(t) →
MX(t) as n → ∞, where M is the moment generating function of a random

variable X. Then, Xn
d→ X.

Example 11 (Law of Rare Events). Let Xn have the Bin(n , λ/n) distribution,
where λ > 0 is independent of n. Then, for all −∞ < t <∞,

MXn(t) =

(
1− λ

n
+
λ

n
et
)n

. (56)
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We claim that for all real numbers c,(
1 +

c

n

)n
→ ec as n→∞. (57)

Let us take this for granted for the time being. Then, it follows at once that

MXn(t)→ exp
(
−λ+ λet

)
= eλ(e

t−1). (58)

That is,

Bin (n , λ/n)
d→ Poisson (λ). (59)

This is Poisson’s “law of rare events” (also known as “the law of small numbers”).
Now we wrap up this example by verifying (57). Let f(x) = (1 + x)n, and

Taylor-expand it to find that f(x) = 1 + nx+ 1
2n(n− 1)x2 + · · · . Replace x by

c/n, and compute to find that

(
1 +

c

n

)n
= 1 + c+

(n− 1)c2

2n
+ · · · →

∞∑
j=0

cj

j!
, (60)

and this is the Taylor-series expansion of ec. [There is a little bit more one has
to do to justify the limiting procedure.]

The second property of moment generating functions is that if and when
it exists for a random variable X, then all moments of X exist, and can be
computed from MX .

Theorem 12 (Moment-Generating Property). Suppose X has a finite moment
generating function in a neighborhood of the origin. Then, E(|X|n) exists for all
n, and M (n)(0) = E[Xn], where f (n)(x) denotes the nth derivative of function
f at x.

Example 13. Let X be a N(µ , 1) random variable. Then we know that M(t) =
exp(µt+ 1

2 t
2). Consequently,

M ′(t) = (µ+ t)eµt+(t2/2), and M ′′(t) =
[
1 + (µ+ t)2

]
eµt+(t2/2) (61)

Set t = 0 to find that EX = M ′(0) = µ and E[X2] = M ′′(0) = 1 + µ2, so that
VarX = E[X2]− (EX)2 = 1.

8 Characteristic Functions

The characteristic function of a random variable X is the function

φ(t) := E
[
eitX

]
−∞ < t <∞. (62)

Here, the “i” refers to the complex unit, i =
√
−1. We may write φ as φX , for

example, when there are several random variables around.
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In practice, you often treat eitX as if it were a real exponential. However, the
correct way to think of this definition is via the Euler formula, eiθ = cos θ+i sin θ
for all real numbers θ. Thus,

φ(t) = E[cos(tX)] + iE[sin(tX)]. (63)

IfX has a moment generating functionM , then it can be shown thatM(it) =
φ(t). [This uses the technique of “analytic continuation” from complex analysis.]
In other words, the naive replacement of t by it does what one may guess it
would. However, one advantage of working with φ is that it is always well-
defined. The reason is that | cos(tX)| ≤ 1 and | sin(tX)| ≤ 1, so that the
expectations in (63) exist. In addition to having this advantage, φ shares most
of the properties of M as well! For example,

Theorem 14. The following hold:

1. (Uniqueness Theorem) Suppose there exists t0 > 0 such that for all
t ∈ (−t0 , t0), φX(t) = φY (t). Then X and Y have the same distribution.

2. (Convergence Theorem) If φXn(t) → φX(t) for all t ∈ (−t0 , t0), then

Xn
d→ X. Conversely, if Xn

d→ X, then φXn
(t)→ φX(t) for all t.

8.1 Some Examples

1. Binomial (n , p). Then,

φ(t) = M(it) =
(
1− p+ peit

)n
. (64)

2. Poisson (λ). Then,

φ(t) = M(it) = eλ(e
it−1). (65)

3. Negative Binomial (n , p). Then,

φ(t) = M(it) =

(
peit

1− (1− p)eit

)n
. (66)

4. Uniform (a , b). Then,

φ(t) = M(it) =
eitb − eita

t(b− a)
. (67)

5. Gamma (α , β). Then,

φ(t) = M(it) =

(
β

β − it

)α
. (68)

6. N(µ , σ2). Then, because (it)2 = −t2,

φ(t) = M(it) = exp

(
iµt− σ2t2

2

)
. (69)
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9 Classical Limit Theorems

9.1 The Central Limit Theorem

Theorem 15 (The CLT). Let X1, X2, . . . be i.i.d. random variables with two
finite moments. Let µ := EX1 and σ2 = VarX1. Then,∑n

j=1Xj − nµ
σ
√
n

d→ N(0 , 1). (70)

Elementary probability texts prove this by appealing to the convergence the-
orem for moment generating functions. This approach does not work if we know
only that X1 has two finite moments, however. However, by using characteristic
functions, we can relax the assumptions to the finite mean and variance case,
as stated.

Proof of the CLT. Define

Tn :=

∑n
j=1Xj − nµ
σ
√
n

. (71)

Then,

φTn
(t) = E

 n∏
j=1

exp

(
it

(
Xj − µ
σ
√
n

))
=

n∏
j=1

E

[
exp

(
it

(
Xj − µ
σ
√
n

))]
,

(72)

thanks to independence; see (42) on page 8. Let Yj := (Xj − µ)/σ denote the
standardization of Xj . Then, it follows that

φTn
(t) =

n∏
j=1

φYj

(
t/
√
n
)

=
[
φY1

(
t/
√
n
)]n

, (73)

because the Yj ’s are i.i.d. Recall the Taylor expansion, eix = 1 + ix− 1
2x

2 + · · · ,
and write φY1

(s) as E[eitY1 ] = 1 + itEY1− 1
2 t

2E[Y 2
1 ] + · · · = 1− 1

2 t
2 + · · · . Thus,

φTn
(t) =

[
1− t2

2n
+ · · ·

]n
→ e−t

2/2. (74)

See (57) on page 12. Because e−t
2/2 is the characteristic function of N(0 , 1),

this and the convergence theorem (Theorem 15 on page 14) together prove the
CLT. �

The CLT has a multidimensional counterpart as well. Here is the statement.
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Theorem 16. Let X1,X2, . . . be i.i.d. k-dimensional random vectors with mean
vector µ := EX1 and covariance matrix Q := CovX. If Q is non-singular, then∑n

j=1Xj − nµ√
n

d→ Nk(0 ,Q). (75)

9.2 (Weak) Law of Large Numbers

Theorem 17 (Law of Large Numbers). Suppose X1, X2, . . . are i.i.d. and have
a finite first moment. Let µ := EX1. Then,∑n

j=1Xj

n

P→ µ. (76)

Proof. We will prove this in case there is also a finite variance. The general case
is beyond the scope of these notes. Thanks to the CLT (Theorem 15, page 14),
(X1 + · · ·+Xn)/n converges in distribution to µ. Slutsky’s theorem (Theorem
8, page 10) proves that convergence holds also in probability. �

9.3 Variance Stabilization

Let X1, X2, . . . be i.i.d. with µ = EX1 and σ2 = VarX1 both defined and finite.
Define the partial sums,

Sn := X1 + · · ·+Xn. (77)

We know that: (i) Sn ≈ nµ in probability; and (ii) (Sn − nµ)
d
≈ N(0 , nσ2).

Now use Taylor expansions: For any smooth function h,

h(Sn/n) ≈ h(µ) +

(
Sn
n
− µ

)
h′(µ), (78)

in probability. By the CLT, (Sn/n) − µ
d
≈ N(0 , σ2/n). Therefore, Slutsky’s

theorem (Theorem 8, page 10) proves that

√
n

[
h

(
Sn
n

)
− h(µ)

]
d→ N

(
0 , σ2|h′(µ)|2

)
. (79)

[Technical conditions: h′ should be continuously-differentiable in a neighbor-
hood of µ.]

9.4 Refinements to the CLT

There are many refinements to the CLT. Here are 2 particularly well-known
ones. The first gives a description of the farthest the distribution function of
normalized sums is from the normal.
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Theorem 18 (Berry–Esseen). If ρ := E{|X1|3} <∞, then

max
−∞<a<∞

∣∣∣∣P{∑n
i=1Xi − nµ
σ
√
n

≤ a
}
− Φ(a)

∣∣∣∣ ≤ 3ρ

σ3
√
n
. (80)

The second is a one-term example of a family is results that are called “Edge-
worth expansions.”

Theorem 19 (Edgeworth). Suppose
∫∞
−∞ |E exp(itX1)|dt <∞ and E(|X1|ρ) <

∞ for some ρ > 3, then we can write

P

{∑n
i=1Xi − nµ
σ
√
n

≤ a
}

= Φ(a) +
κ1(1− a2)

6
√
n

φ(a) +Rn(a),

where:

1. φ(a) := (2π)−1/2 exp(−a2/2) denotes the standard normal density;

2. κ1 := σ−3E[(X1 − µ)3] denotes the skewness of the distribution of X1;

3. max−∞<a<∞ |Rn(a)| ≤ const · n−1.

Remark 20. The condition
∫∞
−∞ |E exp(itX1)|dt < ∞ holds roughly when X1

has a nice pdf.

Remark 21. Under further restrictions, one can in fact write an asymptotic
expansion of the form

P

{∑n
i=1Xi − nµ
σ
√
n

≤ a
}

= Φ(a) +

r∑
j=1

κjHj(a)

nj/2
φ(a) +Rn,r(a),

for every [fixed] positive integer r, where κj’s are finite constants, each Hj is a
certain polynomial of degree j [Hermite polynomials], and the remainder is very
small in the sense that max−∞<a<∞ |Rn,r(a)| ≤ const · n−(r+1)/2.

10 Conditional Expectations

Let us begin by recalling some basic notions of conditioning from elementary
probability. Throughout this section, X denotes a random variable and Y :=
(Y1 , . . . , Yn) an n-dimensional random vector.

10.1 Conditional Probabilities and Densities

If X,Y1, . . . , Yn are all discrete random variables, then the conditional mass
function of X, given that Y = y, is

pX|Y (x |y) :=
P{X = x , Y1 = y1 , . . . , Yn = yn}

P{Y1 = y1 , . . . , Yn = yn}
, (81)
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provided that P{Y = y} > 0. This is a bona fide mass function [as a function
of the variable x] for every fixed choice of y. [It doesn’t make sense to worry
about its behavior in the variables y1, . . . , yn.]

Similarly, if the distribution of (X ,Y1 , . . . , Yn) is absolutely continuous, then
the conditional density function of X, given that Y = y, is

fX|Y (x |y) :=
fX,Y (x , y1 , . . . , yn)

fY (y1 , . . . , yn)
, (82)

provided that the observed value y is such that the joint density fX,Y of the
random vector (X ,Y ) satisfies

fY (y1 , . . . , yn) > 0. (83)

Note that (83) is entirely possible, though P{Y = y} = 0 simply because Y
has an absolutely continuous distribution. Condition (83) is quite natural in
the following sense: Let B denote the collection of all n-dimensional vectors y
such that fY (y1 , . . . , yn) = 0. Then,

P{Y ∈ B} =

∫
B
fY (y1 , . . . , yn) dy1 · · · dyn = 0. (84)

In other words, we do not have to worry about defining fX|Y (x |y) when y is
not in B.

10.2 Conditional Expectations

If we have observed that Y = y, for a known vector y = (y1 , . . . , yn), then the
best linear predictor of X is the [classical] conditional expectation

E(X |Y = y) :=

{∑
x xP{X = x |Y = y} if (X ,Y ) is discrete,∫∞
−∞ xfX|Y (x |y) dx if (X ,Y ) has a joint pdf.

(85)

The preceding assumes tacitly that the sum/integral converges absolutely. More
generally, we have for any nice function ϕ,

E(ϕ(X) |Y = y) :=

{∑
x ϕ(x)P{X = x |Y = y} if discrete,∫∞
−∞ ϕ(x)fX|Y (x |y) dx if joint pdf exists,

(86)

provided that the sum/integral converges absolutely. The preceding is in fact
a theorem, but a careful statement requires writing too many technical details
from integration theory.

10.3 An Intuitive Interpretation

The basic use of conditional expectations is this: If we observe that Y = y, then
we predict X, based only on our observation that Y = y, as E(X |Y = y).
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Example 22. We perform 10 independent Bernoulli trials [p := probability of
success per trial]. Let X denote the total number of successes. We know that
X has a Bin(10 , p) distribution. If Y := the total number of successes in the
first 5 trials, then you should check that E(X |Y = 0) = 5p. More generally,
E(X |Y = y) = y + 5p for all y ∈ {0 , . . . , 5}.

The previous example shows you that it is frequently more convenient to use
a slightly different form of conditional expectations: We write E(X |Y ) for the
random variable whose value is E(X |Y = y) when we observe that Y = y. In
the previous example, this definition translates to the following computation:
E(X |Y ) = Y +5p. This ought to make very good sense to you, before you read
on!

The classical Bayes’ formula for conditional probabilities has an analogue for
conditional expectations. Suppose (X ,Y ) has a joint density function fX,Y .
Then,

E(X) =

∫ ∞
−∞

xfX(x) dx

=

∫ ∞
−∞

x

(∫
Rn

fX,Y (x , y1 , . . . , yn) dy

)
dx

=

∫ ∞
−∞

x

(∫
Rn

fX|Y (x |y)fY (y) dy

)
dx

=

∫
Rn

(∫ ∞
−∞

xfX|Y (x |y) dx

)
fY (y) dy

=

∫
Rn

E(X |Y = y)fY (y) dy

= E {E(X |Y )} .

(87)

This is always true. That is, we always have

E(X) = E {E(X |Y )} , (88)

provided that E|X| <∞.
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