Math 6070-1, Spring 2014; Partial Solutions to Assignment #6

2. Let X_1, \ldots, X_n be a random sample from a population with a continuous strictly increasing CDF F, and define \hat{F}_n to be the empirical CDF. Suppose F is continuously differentiable with derivative f, which is of course the PDF of the X_j 's. Define

$$\bar{D}_n := \int_{-\infty}^{\infty} \left[\hat{F}_n(x) - F(x) \right]^2 f(x) \, \mathrm{d}x$$

(a) Prove that \overline{D}_n is finite, as well as distribution free. Solution. Since $\hat{F}_n(x) + F(x) \leq 2$, it follows that

$$\bar{D}_n \le 4 \int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 4$$

This shows that \overline{D}_n is finite. To show that \overline{D}_n is distribution free we change variables with y = F(x). Since dy = f(x) dx,

$$\bar{D}_n = \int_0^1 \left[\hat{F}_n \left(F^{-1}(y) \right) - y \right]^2 \mathrm{d}y$$
$$= \int_{-\infty}^\infty \left[\hat{F}_n \left(F^{-1}(y) \right) - F_{\mathrm{unif}}(y) \right]^2 f_{\mathrm{unif}}(y) \mathrm{d}y,$$

where F_{unif} denotes the Unif(0,1) cdf and $f_{\text{unif}} := F'_{\text{unif}}$ the corresponding pdf. Finally, recall that $\hat{F}_n(F^{-1}(y))$ is the empirical cdf of $F(X_1), \ldots, F(X_n)$, which are i.i.d. Unif(0,1)'s. This proves that \bar{D}_n is distribution free.

(b) In the case that the X_i's are Unif(0,1), express D
n explicitly in terms of the order statistics X{1:n},..., X_{n:n}.
Solution. Let X_{0:n} := 0 and X_{n+1:n} := 1 in order to see that, in

this particular case,

$$\bar{D}_n = \int_0^1 \left[\hat{F}_n(x) - x \right]^2 dx$$

= $\sum_{j=1}^{n+1} \int_{X_{j-1:n}}^{X_{j:n}} \left[\frac{j-1}{n} - x \right]^2 dx$
= $\sum_{j=1}^{n+1} \int_{X_{j-1:n}-(j-1)/n}^{X_{j:n}-(j-1)/n} z^2 dz$
= $\frac{1}{3} \sum_{j=1}^{n+1} \left\{ \left(X_{j:n} - \frac{j-1}{n} \right)^3 - \left(X_{j-1:n} - \frac{j-1}{n} \right)^3 \right\}.$

(c) Prove that $\overline{D}_n \xrightarrow{P} 0$ as $n \to \infty$ in two different ways:

- i. Do this by appealing to the Glivenko-Cantelli theorem. Solution. Clearly, $\bar{D}_n \leq D_n^2 \int_{-\infty}^{\infty} f(x) dx = D_n^2$, which goes to zero, as $n \to \infty$, in probability thanks to the Glivenko-Cantelli theorem.
- ii. Do this by first computing the mean of \overline{D}_n .

Solution. By the distribution-free property, we need to only consider the Unif(0, 1) case.

In that case, $E\hat{F}_n(x) = x$ and $Var(\hat{F}_n(x)) = x(1-x)/n$ for $0 \le x \le 1$. It is easy to see from calculus that g(x) = x(1-x) attains its maximum at x = 1/2 and g(1/2) = 1/4. Therefore,

$$\mathcal{E}(\bar{D}_n) = \int_0^1 \operatorname{Var}(\hat{F}_n(x)) \, \mathrm{d}x \le \frac{1}{4n} \to 0 \quad \text{as } n \to \infty.$$

Since $\bar{D}_n \ge 0$, this and the Markov inequality together show that $\bar{D}_n \xrightarrow{P} 0$ as $n \to \infty$.

- 3. Let X_1, \ldots, X_n be a random sample from a CDF F and Y_1, \ldots, Y_n an independent random sample from a CDF G. We wish to test $H_0: F = G$ versus the two-sided alternative, $H_1: F \neq G$. Let \hat{F}_n and \hat{G}_n denote the respective empirical CDFs of the X_i 's and the Y_i 's.
 - (a) Describe a condition on F and/or G under which

$$\Delta_n := \max_{x} |\hat{F}_n(x) - \hat{G}_n(x)|$$

is distribution free; you need to justify your assertions. Solution. Let us assume that F^{-1} exists. Under H_0 , so does $G^{-1} [= F^{-1}!]$. Now

$$\Delta_n = \max_{0 < y < 1} \left| \hat{F}_n \left(F^{-1}(y) \right) - \hat{G}_n \left(F^{-1}(y) \right) \right|$$
$$= \max_{0 < y < 1} \left| \hat{F}_n \left(F^{-1}(y) \right) - \hat{G}_n \left(G^{-1}(y) \right) \right|,$$

the last line holding under H_0 . We always have $\hat{F}_n(F^{-1}(y) = \text{em-pirical cdf of i.i.d. Unif}(0, 1)$ random variables, $F(X_1), \ldots, F(X_n)$; and $\hat{G}_n(G^{-1}(x) = \text{empirical cdf of i.i.d. Unif}(0, 1)$ random variables, $G(Y_1), \ldots, G(Y_n)$. Therefore, under H_0 , the distribution of Δ_n is the same as the distribution of $\max_{0 < y < 1} |\hat{U}_n(y) - \hat{V}_n(y)|$, where \hat{U}_n and \hat{V}_n are the empirical cdfs of two independent samples from Unif(0, 1). This shows that Δ_n is distribution free under H_0 .