Math 6070-1, Spring 2014; Assignment #6

Due: Wednesday April 2, 2014

- Complete reading Sections 1 and 2 of the module on empirical processes at http://www.math.utah.edu/~davar/math6070/2014/Kolmogorov-Smirnov. pdf. Also, read Section 3.1.
- 2. Let X_1, \ldots, X_n be a random sample from a population with a continuous strictly increasing CDF F, and define \hat{F}_n to be the empirical CDF. Suppose F is continuously differentiable with derivative f, which is of course the PDF of the X_j 's. Define

$$\bar{D}_n := \int_{-\infty}^{\infty} \left[\hat{F}_n(x) - F(x) \right]^2 f(x) \, \mathrm{d}x$$

- (a) Prove that \overline{D}_n is finite, as well as distribution free.
- (b) In the case that the X_i 's are Unif(0, 1), express \overline{D}_n explicitly in terms of the order statistics $X_{1:n}, \ldots, X_{n:n}$.
- (c) Prove that $\bar{D}_n \xrightarrow{P} 0$ as $n \to \infty$ in two different ways:
 - i. Do this by appealing to the Glivenko–Cantelli theorem.
 - ii. Do this by first computing the variance of \overline{D}_n . [You may not use the Glivenko–Cantelli theorem for this part.]
- 3. Let X_1, \ldots, X_n be a random sample from a CDF F and Y_1, \ldots, Y_m an independent random sample from a CDF G. We wish to test $H_0: F = G$ versus the two-sided alternative, $H_1: F \neq G$. Let \hat{F}_n and \hat{G}_n denote the respective empirical CDFs of the X_i 's and the Y_j 's.
 - (a) Describe a condition on F and/or G under which

$$\Delta_n := \max |\hat{F}_n(x) - \hat{G}_n(x)|$$

is distribution free; you need to justify your assertions.

(b) Compute, numerically, $P\{\Delta_{40} \leq x\}$ for x = 0.09, 0.1, 0.11, 0.12. Describe your algorithm and justify why it works. Make detailed comments on how accurate your computations are.