Math 6070-1, Spring 2014; Partial Solutions to Assignment #2

- 1. Suppose X_1, \ldots, X_n is a random [that is, i.i.d.] sample from a Uniform $(\theta, 2\theta)$ distribution, where $\theta > 0$ is an unknown parameter.
 - (a) Find the maximum likelihood estimator for θ .

Solution. The likelihood function is

$$L(\theta) = \prod_{j=1}^{n} \theta^{-1} \mathbf{I} \left\{ \theta < X_j < 2\theta \right\} = \theta^{-n} \mathbf{I} \left\{ \frac{X_{n:n}}{2} \le \theta \le X_{1:n} \right\},$$

where $X_{j:n}$ denotes the *j*th order statistic of $\{X_1, \ldots, X_n\}$. Because the function $h(\theta) := \theta^{-n}$ is decreasing, it follows that the MLE is

$$\hat{\theta} = \frac{X_{n:n}}{2}$$
 provided that $\frac{X_{n:n}}{2} \le X_{1:n}$.

It remains to check that we always have $X_{n:n}/2 \leq X_{1:n}$, so that the MLE is always uniquely equal to $X_{n:n}/2$. [This follows simply because $X_{n:n} \leq 2\theta$ therefore, $X_{n:n}/2 \leq \theta$, whereas $X_{1:n} \geq \theta$.]

(b) Prove that the MLE is consistent.

Solution. Recall that $\hat{\theta} = X_{n:n}/2$. If x > 0, then

$$P\{\hat{\theta}/\theta \le x\} = (P\{X_1 \le 2\theta x\})^n.$$

[If x < 0 then $P\{\hat{\theta}/\theta \le x\} = 0$, vacuously.] The last displayed probability is equal to one if $2\theta x \ge 2\theta$ [i.e., $x \ge 1$] and zero if $2\theta x \le \theta$ [i.e., $x \le 1/2$]. On the other hand, if $\frac{1}{2} < x < 1$, then it follows that

$$\mathrm{P}\{\hat{\theta}/\theta \le x\} = \left(\int_{\theta}^{2\theta x} \theta^{-1} \,\mathrm{d}y\right)^n = (2x-1)^n.$$

In conclusion, the pdf of $\hat{\theta}/\theta$ is

$$f_{\hat{\theta}/\theta}(x) = \begin{cases} 2n(2x-1)^{n-1} & \text{if } \frac{1}{2} < x < 1, \\ 0 & \text{otherwise.} \end{cases}$$

We can use this to compute

$$E[\hat{\theta}/\theta] = 2n \int_{1/2}^{1} x(2x-1)^{n-1} dx$$

= $n \int_{0}^{1} \left(\frac{y+1}{2}\right) y^{n-1} dy$ [$y := 2x-1$]
= $\frac{n}{2} \left[\int_{0}^{1} y^{n} dy + \int_{0}^{1} y^{n-1} dy \right]$
= $\frac{n}{2} \left(\frac{1}{n+1} + \frac{1}{n} \right) = 1 - \frac{1}{2(n+1)}.$ (1)

Also,

$$\begin{split} \operatorname{E}\left(|\hat{\theta}/\theta|^{2}\right) &= 2n \int_{1/2}^{1} x^{2} (2x-1)^{n-1} \, \mathrm{d}x \\ &= n \int_{0}^{1} \left(\frac{y+1}{2}\right)^{2} y^{n-1} \, \mathrm{d}y \qquad [y := 2x-1] \\ &= \frac{n}{4} \int_{0}^{1} (y^{2}+2y+1) y^{n-1} \, \mathrm{d}y \\ &= \frac{n}{4} \left[\int_{0}^{1} y^{n+1} \, \mathrm{d}y + 2 \int_{0}^{1} y^{n} \, \mathrm{d}y + \int_{0}^{1} y^{n-1} \, \mathrm{d}y\right] \\ &= \frac{n}{4} \left[\frac{1}{n+2} + \frac{2}{n+1} + \frac{1}{n}\right]. \end{split}$$

Note that $(n+1)^{-1} = n^{-1} - a_n$ where $a_n \approx n^{-2}$ as $n \to \infty$. Similarly, $(n+2)^{-1} = n^{-1} - b_n$ where $b_n \approx 2n^{-2}$ as $n \to \infty$. Therefore,

$$\operatorname{E}\left(\left|\hat{\theta}/\theta\right|^{2}\right) = \frac{n}{4}\left[\frac{4}{n} - a_{n} - b_{n}\right] = 1 - c_{n},$$

where $c_n = \frac{1}{4}\{na_n + nb_n\} \approx 3/(4n) \to 0$ as $n \to \infty$. This fact and (1) together yield

$$Var(\hat{\theta}/\theta) = 1 - c_n - \left[1 - \frac{1}{2(n+1)}\right]^2$$
$$= -c_n + \frac{1}{n+1} - \frac{1}{4(n+1)^2} \to 0,$$

as $n \to \infty$. Therefore, the Chebyshev inequality yields

$$\frac{\hat{\theta}}{\theta} - \mathbf{E}\left[\frac{\hat{\theta}}{\theta}\right] \xrightarrow{\mathbf{P}} 0 \quad \text{as } n \to \infty.$$

One more application of (1) shows that $\hat{\theta}/\theta \xrightarrow{\mathrm{P}} 1$ as $n \to \infty$. This is equivalent to the desired consistency of $\hat{\theta}$.

(c) Calculate the bias of the MLE. Use your computation to verify that the MLE is asymptotically unbiased [that is, show that $bias(\hat{\theta}) \to 0$ as $n \to \infty$].

Solution. We saw earlier in (1) that $E(\hat{\theta}/\theta) = 1 - \{2(n+1)\}^{-1}$. Therefore,

$$\operatorname{Bias}(\hat{\theta}) = \theta - \operatorname{E}(\hat{\theta}) = \frac{\theta}{2(n+1)}.$$

Clearly, this quantity converges to zero as $n \to \infty.$