
Math 6070-1, Spring 2014

Partial Solutions to Assignment #1

1. Let X denote a random variable with a socalled “double exponential”
density function,

f(x) = 1
2e−|x| (−∞ < x <∞).

(a) Compute the moment generating function and the characteristic func-
tion of X.

Solution. The moment generating function is M(t) =
∫∞
−∞ etxf(x) dx.

Therefore, we may write

M(t) =
1

2

∫ 0

−∞
e(1+t)x dx+

1

2

∫ ∞
0

e(t−1)x dx

=
1

2

∫ ∞
0

e−(1+t)x dx+
1

2

∫ ∞
0

e(t−1)x dx.

If t ≥ 1, then the second integral diverges, whereas the first diverges if
t ≤ −1. Therefore,

M(t) =∞ if |t| ≥ 1.

On the other hand, if |t| < 1, then both of the said integrals converge, and

M(t) =
1

2(1 + t)
+

1

2(1− t) =
2

1− t2 if |t| < 1.

The characteristic function is computed by formally setting C(t) = M(it);

we obtain C(t) = 2(1+ t2)−1 for all real numbers t. [Why not just |t| ≤ 1?]

(b) Use your computations to evaluate E(Xn) for every integer n ≥ 1.
Justify your method.

Solution. Since M (n) exists in (−1 , 1), it follows that E(Xn) = M (n)(0).
Thus, for example,

E(X) =
d

dt

(
2

1− t2

) ∣∣∣∣∣
t=0

= 0.
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It is not so easy to compute M (n) directly. But the moments are not hard
to find:

E(Xn) = 1
2

∫ ∞
−∞

xne−|x| dx.

We are integrating an odd function when n is an odd integer. There-
fore, E(Xn) = 0 when n is odd. When n is even, however, we obtain by
symmetry,

E(Xn) =

∫ ∞
0

xne−x dx = Γ(n+ 1) = n!.

2. Prove that if X1, X2, . . . , Xn form an i.i.d. sample from a Uniform(0 , 1)

distribution, then
∏n

j=1 X
1/n
j converges to 1/e in probability as n→∞.

Solution. Since 0 < Xj < 1 for all j ≥ 1, we can define unambiguously
Yj := lnXj . Then the Yj ’s are i.i.d., negative, and

FY1(x) = P{Y1 ≤ x} = P{X1 ≤ ex} = ex for all x ≤ 0.

That is, the pdf of Y1 is fY1(x) = exI{x ≤ 0}, which tells us that the −Yj ’s are
i.i.d. Exponential(1) random variables. Since E(Y1) = −1, it follows that

n∏
j=1

X
1/n
j = eȲn P−→ e−1 as n→∞,

thanks to the law of large numbers.

3. Suppose X1, X2, . . . are i.i.d. random variables, selected from a Poisson(1)
distribution. Define Sn := X1 + · · ·+ Xn for every n ≥ 1.

(a) Compute the distribution of Sn for every n ≥ 1.

Solution. The MGF of X1 is MX1(t) = exp{et−1}. Therefore, the MGF
of Sn is

MSn(t) =

n∏
j=1

MXj (t) = exp
{
n
(
et − 1

)}
.

This is the MGF of a Poisson(n); therefore, Sn ∼ Poisson(n).

(b) Use the central limit theorem to approximate P{S100 ≤ 120}.

Solution. Because µ = E(X1) = 1 and σ2 = Var(X1) = 1, the central
limit theorem states that P{Sn ≤ n+ x

√
n} ≈ P{N(n , n) ≤ n+ x

√
n} =

Φ(x) for every x, as long as n is large. Set x = 2 to see that

P {S100 ≤ 120} ≈ Φ(2) ≈ 0.9772,

provided that n = 100 is large enough to allow an appeal to the CLT.
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