Math 6070-1, Spring 2014 Partial Solutions to Assignment #1

1. Let X denote a random variable with a so-called "double exponential" density function,

$$f(x) = \frac{1}{2} e^{-|x|}$$
 $(-\infty < x < \infty).$

(a) Compute the moment generating function and the characteristic function of X.

Solution. The moment generating function is $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$. Therefore, we may write

$$M(t) = \frac{1}{2} \int_{-\infty}^{0} e^{(1+t)x} dx + \frac{1}{2} \int_{0}^{\infty} e^{(t-1)x} dx$$
$$= \frac{1}{2} \int_{0}^{\infty} e^{-(1+t)x} dx + \frac{1}{2} \int_{0}^{\infty} e^{(t-1)x} dx.$$

If $t \geq 1$, then the second integral diverges, whereas the first diverges if $t \leq -1$. Therefore,

$$M(t) = \infty \quad \text{if } |t| \ge 1.$$

On the other hand, if |t| < 1, then both of the said integrals converge, and

$$M(t) = \frac{1}{2(1+t)} + \frac{1}{2(1-t)} = \frac{2}{1-t^2} \quad \text{if } |t| < 1.$$

The characteristic function is computed by formally setting C(t) = M(it); we obtain $C(t) = 2(1+t^2)^{-1}$ for all real numbers t. [Why not just $|t| \le 1$?]

(b) Use your computations to evaluate $E(X^n)$ for every integer $n \ge 1$. Justify your method.

Solution. Since $M^{(n)}$ exists in (-1, 1), it follows that $E(X^n) = M^{(n)}(0)$. Thus, for example,

$$\mathbf{E}(X) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{2}{1-t^2} \right) \bigg|_{t=0} = 0.$$

It is not so easy to compute $M^{(n)}$ directly. But the moments are not hard to find:

$$\mathcal{E}(X^n) = \frac{1}{2} \int_{-\infty}^{\infty} x^n \mathrm{e}^{-|x|} \,\mathrm{d}x.$$

We are integrating an odd function when n is an odd integer. Therefore, $E(X^n) = 0$ when n is odd. When n is even, however, we obtain by symmetry,

$$\mathbf{E}(X^n) = \int_0^\infty x^n \mathrm{e}^{-x} \, \mathrm{dx} = \Gamma(n+1) = n!.$$

2. Prove that if X_1, X_2, \ldots, X_n form an i.i.d. sample from a Uniform(0, 1) distribution, then $\prod_{j=1}^n X_j^{1/n}$ converges to 1/e in probability as $n \to \infty$.

Solution. Since $0 < X_j < 1$ for all $j \ge 1$, we can define unambiguously $Y_j := \ln X_j$. Then the Y_j 's are i.i.d., negative, and

$$F_{Y_1}(x) = P\{Y_1 \le x\} = P\{X_1 \le e^x\} = e^x$$
 for all $x \le 0$.

That is, the pdf of Y_1 is $f_{Y_1}(x) = e^x I\{x \le 0\}$, which tells us that the $-Y_j$'s are i.i.d. Exponential(1) random variables. Since $E(Y_1) = -1$, it follows that

$$\prod_{j=1}^{n} X_{j}^{1/n} = e^{\bar{Y}_{n}} \xrightarrow{P} e^{-1} \quad \text{as } n \to \infty,$$

thanks to the law of large numbers.

- **3.** Suppose X_1, X_2, \ldots are i.i.d. random variables, selected from a Poisson(1) distribution. Define $S_n := X_1 + \cdots + X_n$ for every $n \ge 1$.
 - (a) Compute the distribution of S_n for every $n \ge 1$.

Solution. The MGF of X_1 is $M_{X_1}(t) = \exp\{e^t - 1\}$. Therefore, the MGF of S_n is

$$M_{S_n}(t) = \prod_{j=1}^n M_{X_j}(t) = \exp\{n(e^t - 1)\}.$$

This is the MGF of a Poisson(n); therefore, $S_n \sim \text{Poisson}(n)$.

(b) Use the central limit theorem to approximate $P\{S_{100} \le 120\}$.

Solution. Because $\mu = E(X_1) = 1$ and $\sigma^2 = Var(X_1) = 1$, the central limit theorem states that $P\{S_n \le n + x\sqrt{n}\} \approx P\{N(n,n) \le n + x\sqrt{n}\} = \Phi(x)$ for every x, as long as n is large. Set x = 2 to see that

$$P \{S_{100} \le 120\} \approx \Phi(2) \approx 0.9772,$$

provided that n = 100 is large enough to allow an appeal to the CLT.