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1 Introduction

The basic problem in density estimation is this: Suppose X1, . . . , Xn is an
independent sample from a density function f that is unknown. In many cases,
f is unknown only because it depends on unknown parameter(s). In such cases,
we proceed by using methods that we have discussed earlier in Math 5080–5090.
For example, if X1, . . . , Xn ∼ N(µ , σ2), then the density is

f(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
.

And we estimate f by

f̂(x) =
1

σ̂
√

2π
exp

(
− (x− µ̂)2

2σ̂2

)
,

where µ̂ = X̄n and σ̂2 = (1/n)
∑n
i=1(Xi − X̄n)2 are the usual MLEs for µ and

σ [or you can use S2 in place of σ̂2, as well]. This method is a kind of “plug-in”
technique; it is a density estimation method, but a rather simple one.

Here, we are studying the more interesting case that f is unknown. In this
more general case, there are several different approaches to density estimation.
We shall concentrate our efforts on the socalled “kernel density estimators.”
But for now, let us begin with a commonly-used first approach: The histogram.

1.1 The Histogram

A standard histogram of data X1, . . . , Xn starts with agreeing on a point x0—
called the origin—and a positive number h—called bandwidth. Then, we define
bins Bj for all integers j = 0,±1,±2, . . . as follows:

Bj := [x0 + jh , x0 + (j + 1)h] .

The ensuing histogram is the plot of the density estimator,

f̂(x) :=
1

nh

n∑
j=1

I {Xj is in the same bin as x} .

Note that for all x ∈ Bk, f̂(x) is equal to (1/h) times the fraction of the data
that falls in bin k. The bandwidth h is a “smoothing parameter.” As h is
increased, the plot of f̂ becomes “smoother,” and conversely as h is decreased,
f̂ starts to look “rougher.” Fine-tuning h is generally something that one does
manually. This is a skill that is honed by being thoughtful and after some
experimentation.

Warnings.

1. Generally the graph of f̂ is also very sensitive to our choice of x0.
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2. The resulting picture/histogram is jagged by design. More often than not,
density estimation is needed to decide on the “shape” of f . In such cases,
it is more helpful to have a “smooth” function estimator.

3. There are estimators of f that have better mathematical properties than
the histogram.

Example 1. Consider the following hypothetical data set:

1, 1, 2, 3, 4, 4, 4, 2, 1.5, 1.4, 2.3, 4.8.

Here, n = 12. Suppose we set x0 := 0 and h := 1.5. Then, the bins of interest
are

[0 , 1.5), [1.5 , 3), [3 , 4.5), [4.5 , 6).

Therefore,

f̂(x) =
1

18
×


3 if 0 ≤ x < 1.5,

4 if 1.5 ≤ x < 3,

4, if 3 ≤ x < 4.5,

1, if 4.5 ≤ x < 6,

=


1/6 if 0 ≤ x < 1.5,
2/9 if 1.5 ≤ x < 3,
2/9, if 3 ≤ x < 4.5,
1/18, if 4.5 ≤ x < 6.

In order to see how changing x0 can change the picture consider instead x0 = 1.
Then,

f̂(x) =
1

18
×


7 if 1 ≤ x < 2.5,

4, if 2.5 ≤ x < 4,

1, if 4 ≤ x < 5.5.

The preceding example showcases the problem with the choice of the origin:
By changing x0 even a little bit we can change the entire shape of f̂ . Neverthe-
less, the histogram can be a useful (i.e., fast) starting-point for the data analyst.
For instance, in R, you first type the expression
“X = c(1,1,2,3,4,4,4,2,1.5,1.4,2.3,4.8)”
to get X to denote the data vector of the previous example. Then, you type
“hist(X)” to produce Figure 1. The R command hist has several parameters
that you can use to fine-tune your histogram plotting. For instance, the com-
mand “hist(X,breaks=6)” produces Figure 2. [Figure 1 can be produced also
with “hist(X,breaks=3).”]
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Figure 1: Histogram of the data of Example 1.
Three breaks (automatic).
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Figure 2: Histogram of the data of Example 1.
Six breaks (manual).
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1.2 The Kernel Density Estimator

Kernel density estimators are smooth substitutes for histograms. We start with
a heuristic argument: If h is a small number, and if f is continuous at x, then

f(x) ≈ 1

2h
P{x− h < X < x+ h}.

Here, X ∼ f , of course. On the other hand, by the law of large numbers, if n is
large then with very high probability,

P{x− h < X < x+ h} ≈ 1

n

n∑
j=1

I {x− h < Xj < x+ h} .

Therefore, we can consider the density estimator

f̂(x) :=
1

2nh

n∑
j=1

I {x− h < Xj < x+ h} ,

=
1

n

n∑
j=1

I{|Xj − x| ≤ h}
2h

=
1

n

n∑
j=1

1

h
W

(
x−Xj

h

)
,

where W is the “kernel,”

W (x) :=
1

2
I{|x| ≤ 1}.

This definition of f̂(x) yields a variant of the histogram. In order to obtain a
smoother estimator, note that if h is small then

Wh(x) :=
1

h
W

(
x−Xj

h

)
is approximately a “delta function at Xj .” That is: (1) Wh is highly peaked at
Xj , and (2) the area under Wh is fixed to be one. Our strategy is to replace the
role of W by a smoother function so that a smoother delta function is obtained.

Consider next a “kernel” K. For the time being, a kernel K is simply a
function such that K(x) ≥ 0 and

∫∞
−∞K(x) dx = 1. Then, define

f̂(x) :=
1

nh

n∑
j=1

K

(
x−Xj

h

)
for all ∞ < x <∞.

The parameter h is used to tune the estimator. It is alternatively called the
window width, the bandwidth, and/or the smoothing/tuning parameter. Roughly
speaking, the kernel desnity estimator puts a smooth but concentrated “bump
function” over each observation, and then averages over the bumps.
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1.3 The Nearest-Neighborhood Density Estimator

Let us choose and fix some integer k with the property that k � n [usually,
k ≈
√
n]. Then, we define ρ1(t) ≤ ρ2(t) ≤ · · · ≤ ρn(t) to be the ordered distances

from t to the samples X1, . . . , Xn.1 The nearest-neighbor density estimator is
the random function

f̂(x) :=
k − 1

2nρk(x)
. (1)

This is also known as the “NN density estimator.”
In order to see why this can be a sensible choice, note that if f is continuous

at x and r is sufficiently small, then

E

 n∑
j=1

I {x− r < Xj < x+ r}

 = nP {x− r < X1 < x+ r} ≈ 2rnf(x).

Therefore, by the law of large numbers, if n is large the one might expect that

n∑
j=1

I {x− r < Xj < x+ r} ≈ 2rnf(x),

in probability. Thus, one might expect also that if n is large and r is small, then
[in the right regime], the following holds with high probability:

n∑
j=1

I {x− ρk(x) < Xj < x+ ρk(x)} ≈ 2ρk(x)nf(x).

[This is not obvious, since ρk(x) is random; we are making non-rigorous, heuris-
tic remarks here.] Because

n∑
j=1

I {x− ρk(x) < Xj < x+ ρk(x)} = k − 1.

this leads us to our NN density estimator in (1).
NN density estimators suffer from some well-known setbacks. Here are two:

1. f̂ is not smooth. Typically this setback can be addressed by replacing f̂
with the following:

f̃(x) :=
1

nρk(x)

n∑
j=1

K

(
x−Xj

ρk(x)

)
.

This estimator performs somewhere between the NN estimator and the
kernel estimator.

1For instance, if X1 = 1, X2 = 0, and X3 = 2, then ρ1(0.6) = 0.4, ρ2(0.6) = 0.6 and
ρ3(0.6) = 1.4.
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2. f̂ is a better estimator of f “locally.” For instance, this is a better method
for estimating f when we are interested in the values/shape of f near a
given point x. The global behavior of NN estimators are sometimes bad.
For instance, f̂ is not itself a pdf:∫ ∞

−∞
f̂(x) dx =

k − 1

2n

∫ ∞
−∞

dx

ρk(x)
=∞;

since ρk(x) ∼ |x| as |x| → ∞.

1.4 Variable Kernel Density Estimation

Let K denote a nice kernel, and choose and fix a positive integer k ≥ 2. Define
δj,k to be the distance between Xj and the kth-nearest point in {X1 , . . . , Xn} \
{Xk}. Then we may consider the variable kernel density estimator,

f̂(x) :=
1

n

n∑
j=1

1

jδj,k
K

(
x−Xj

hδj,k

)
.

The “window width” h determines the degree of smoothing, and k determines
how strongly the window wisth responds to “local details.”

1.5 The Orthogonal Series Method

Suppose f is a nice pdf on [0 , 1), and define

φ0(x) := 1,

φ1(x) :=
√

2 cos(2πx),

φ2(x) :=
√

2 sin(2πx),

...

φ2j−1(x) :=
√

2 cos(2πjx),

φ2j(x) :=
√

2 sin(2πjx),

... .

The theory of Fourier series tells us that

f(x) ∼
∞∑
j=0

fjφj(x), where fj :=

∫ 1

0

f(x)φj(x) dx,

and f ∼
∑∞
j=1 fjφj” means that “the infinite sum converges in L 2([0 , 1]) to

f .” Stated more succintly, we have

lim
N→∞

∫ 1

0

∣∣∣∣∣∣f(x)−
N∑
j=0

fjφj(x)

∣∣∣∣∣∣
2

dx = 0.
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Now suppose X has pdf f . In this case, fj is nothing but Eφj(X), and we are
led to the law-of-large-numbers estimator

f̂j :=
1

n

n∑
`=1

φj(X`).

This, in turn, leads us to the orthogonal-series density estimator,

f̂(x) :=

N∑
j=0

f̂jφj(x),

where N is a large and fixed constant. This estimator is better used for local
purposes. Globally, it is not a pdf. In fact f̂(x) is not in general even non
negative everywhere!

1.6 Maximum Penalized Likelihood Estimation

Let X1, . . . , Xn be iid with unknown common density f . The “likelihood” of g
[as a potential pdf] is

L (g) := L (g |X1 , . . . , Xn) :=

n∏
j=1

g(Xj).

We can now try to find a probability density function g that maximizes L (g).

Unfortunately, this enterprise is doomed to fail. Indeed, let g(x) := f̂(x)
denote the histogram with origin x0 := 0 and bandwidth h > 0. Then, it is
evident that f̂ is a pdf that satisfies f̂(Xi) ≥ (nh)−1, whence

max
g a pdf

L (g) ≥
n∏
i=1

f̂(Xi) ≥ (nh)−n.

The left-most quantity is independent of h. Therefore, we may send h → 0 in
the right-most quantity in order to see that the maximum likelihood estimator
of f is always infinity!

Although the preceding attempt failed, it is not without its merits. The
reason that our first attempt failed was that we are maximizing the likelihood
L (g) over too many pdfs g. Therefore, we may try to restrict the class of g’s
over which the maximization is taken.

Maximum penalized likelihood estimation [MPLE] is one such possible ap-
proach to fixing the mentioned problem with the maximum likelihood density
estimator. The idea is to maximize a penalized log-likelihood of the form

`(g) :=

n∑
i=1

ln g(Xi)− λF (g),

8



where λ > 0 is a smoothing parameter, and F (g) measures the roughness of g
(say!).2 The statistics

∑n
i=1 ln g(Xi) corresponds to the goodness of fit; F (g) to

smoothness; and λ to how much of each we opt for.
Two major drawbacks of this method are: (i) The method depends critically

on our choice of the penalization scheme F ; and (ii) the method can be very
hard to implement efficiently.

2An example to bear in mind is F (g) :=
∫∞
−∞[g′′(x)]2 dx.
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2 Kernel Density Estimation in One Dimension

Recall that X1, . . . , Xn are i.i.d. with density function f . We choose and fix a
probability density function K and a bandwidth h, and then define our kernel
density estimate as

f̂(x) :=
1

nh

n∑
j=1

K

(
x−Xj

h

)
, −∞ < x <∞.

Before we start our analysis, let us see how kernel density estimators looks
for a certain data set whose variable I call “GD.” In order to have a reasonable
starting point, I have drawn up the histogram of the data. This appears in
Figure 3. The number of breaks was 30. This number was obtained after a

Histogram of GD
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Figure 3: Histogram of the variable “GD”.
Thirty breaks.

little experimentation.
Figures 4, 5, and 6 depict three different kernel density estimates of the

unknown density f . They are all based on the same dataset.

1. Figure 4 shows the kernel density estimator of “GD” with bandwidth
h := 0.5 and K := the double-exponential density; i.e., K(x) = 1

2e−|x|.
The density K is plotted in Figure 7.

2. Figure 5 shows the kernel density estimator for the same bandwidth (h =
0.5), but now K(x) := (2π)−1/2 exp(−x2/2) is the N(0 , 1) density. The
density K is plotted in Figure 8 for the purposes of comparison.

3. Figure 6 shows the kernel density estimator for the smaller bandwidth
h = 0.1, but still K is still the N(0 , 1) density.
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Figure 4: Kernel density estimate using DE
(h = 0.5).
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Figure 5: Kernel density estimate using N(0 , 1)
(h = 0.5).
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Figure 6: Kernel density estimate using N(0 , 1)
(h = 0.1).

Before we analyse kernel density estimators in some depth, let us try and under-
stand the general notion of “smoothing,” which translates to the mathematical
“convolution.” In actual practice, you raise h in order to obtain a smoother
kernel density estimator; you lower h to obtain a rougher one. Figures 5 and 6
show this principle for the variable “GD.”

2.1 Convolutions

If f and g are two non-negative functions on R, then their convolution is defined
as

(f ∗ g)(x) :=

∫ ∞
−∞

f(y)g(x− y) dy,

provided that the integral exists, of course. A change of variables shows that
f ∗ g = g ∗ f , so that convolution is a symmetric operation. You have seen
convolutions in undergraduate probability [Math 5010] already: If X and Y are
independent random variables with respective densities f and g, then X + Y is
a continuous random variable also, and its density is exactly f ∗ g.

Quite generally, if f and g are probability densities then so is f ∗ g. Indeed,
(f ∗ g)(x) ≥ 0 and∫ ∞

−∞
(f ∗ g)(x) dx =

∫ ∞
−∞

∫ ∞
−∞

f(y)g(x− y) dy dx

=

∫ ∞
−∞

(∫ ∞
−∞

g(x− y) dx

)
f(y) dy

= 1,

after a change of the order of integration.
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Quite generally, convolution is a “smoothing operation.” One way to make
this precise is this: Suppose f and g are probability densities; g is continuously
differentiable with a bounded derivative. Then, f ∗ g is also differentiable and

(f ∗ g)′(x) =

∫ ∞
−∞

f(y)g′(x− y) dx.

The continuity and boundedness of g′ ensure that we can differentiate under
the integral sign. Similar remarks apply to the higher derivatives of f ∗ g, etc.

In other words, if we start with a generic density function f and a smooth
one g, then f ∗ g is in general not less smooth than g. By symmetry, it follows
that f ∗ g is at least as smooth as the smoother one of f and g.

2.2 Approximation to the Identity

Let K be a real-valued function on R such that K(x) ≥ 0 for all x ∈ R, and∫∞
−∞K(x) dx = 1. That is, K is a density function itself. But it is one that we

choose according to taste, experience, etc. Define for all h > 0,

Kh(x) :=
1

h
K
(x
h

)
.

For example, if K is the standard-normal density, then Kh is the N(0 , h2)
density. In this case, Kh concentrates more and more around 0 as h ↓ 0. This
property is valid more generally; e.g., if K “looks” like a normal, Cauchy, etc.

Recall that K is a density function. This implies that Kh is a density also.
Indeed, Kh(x) ≥ 0, and∫ ∞

−∞
Kh(x) dx =

1

h

∫ ∞
−∞

K
(x
h

)
dx =

∫ ∞
−∞

K(y) dy = 1,

after a change of variables. The collection {Kh}h>0 of functions is sometimes
called an approximation to the identity. The following justifies this terminology.

Theorem 2. Let f be a density function. Suppose that either:

1. f is bounded; i.e., there exists B such that |f(x)| ≤ B for all x; or

2. K vanishes at infinity; that is, limz→±∞K(z) = 0.

Then, whenever f is continuous in an open neighborhood of x ∈ R,

lim
h→0

(Kh ∗ f)(x) = f(x).

Proof (of Part 1 only). Choose and fix an x such that f is continuous in an
open neighborhood of x. Now let us choose and fix an arbitrary ε > 0. There
exists δ > 0, sufficiently small, such that

max
y∈(x−δ,x+δ)

|f(y)− f(x)| ≤ ε. (2)

13



Now we holds these constants ε and δ fixed.
We can write

f(x) =

∫ ∞
−∞

K(y)f(x) dy.

Therefore,

(Kh ∗ f)(x)− f(x) =

∫ ∞
−∞

Kh(y) [f(x− y)− f(y)] dy

=
1

h

∫ ∞
−∞

K(y/h) [f(x− y)− f(y)] dy

=

∫ ∞
−∞

K(z) [f(x− hz)− f(x)] dz.

The triangle inequality for integral [Jensen’s inequality] implies that

|(Kh ∗ f)(x)− f(x)| ≤
∫ ∞
−∞

K(z) |f(x− zh)− f(x)|dz

=

∫
|zh|≤δ

K(z) |f(x− zh)− f(x)|dz

+

∫
|zh|>δ

K(z) |f(x− zh)− f(x)|dz.

Because |f(x− zh)− f(x)| ≤ 2B,∫
|zh|>δ

K(z) |f(x− zh)− f(x)|dz ≤ 2B

∫
|z|>δ/h

K(z) dz.

And thanks to (2),∫
|zh|≤δ

K(z) |f(x− zh)− f(x)|dz ≤ ε
∫ ∞
−∞

K(z) dz = ε.

Because K is a pdf,
∫
|z|>δ/hK(z) dz → 0 as h→ 0. Therefore,

lim
h→0
|(Kh ∗ f)(x)− f(x)| ≤ ε.

Because ε is arbitrary and the left-hand side is independent of ε, the left-hand
side must be zero. This proves the result.

In many applications, our kernel K is infinitely differentiable and vanishes
at infinity. The preceding then proves that f can be approximated, at all its
“continuity points,” by an infinitely-differentiable function.

Theorem 2 really requires some form of smoothness on the part of f . How-
ever, there are versions of this theorem that require nothing more than the fact
that f is a density. Here is one such version. Roughly speaking, it states that
for “most” values of x ∈ R, (Kh ∗ f)(x) ≈ f(x) as h→ 0. The proof is similar
to that of Theorem 2.
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Theorem 3. Suppose f and K are density functions that satisfy the conditions
of Theorem 2. Then,

lim
h→0

∫ ∞
−∞
|(Kh ∗ f) (x)− f(x)| dx = 0.

There is also a “uniform” version of this. Recall that f is uniformly contin-
uous if

lim
ε→0

max
x
|f(x+ ε)− f(x)| = 0.

Then, the following can also be proved along the lines of Theorem 2.

Theorem 4. Suppose f and K are density functions as in Theorem 2, and f
is uniformly continuous. Then, limh→0Kh ∗ f = f uniformly; i.e.,

lim
h→0

max
x
|(Kh ∗ f) (x)− f(x)| = 0.

2.3 The Kernel Density Estimator

Now suppose X1, . . . , Xn are i.i.d. with density f . Choose and fix a bandwidth
h > 0 (small), and define

f̂(x) :=
1

nh

n∑
j=1

K

(
x−Xj

h

)

=
1

n

n∑
j=1

Kh(x−Xj).

We can easily compute the mean and variance of f̂(x), viz.,

E[f̂(x)] = E [Kh(x−X1)]

=

∫ ∞
−∞

Kh(x− y)f(y) dy = (Kh ∗ f)(x);

Var f̂(x) =
1

n
Var (Kh(x−X1))

=
1

nh2

∫ ∞
−∞

∣∣∣∣K (x− yh
)∣∣∣∣2 f(y) dy − 1

n
|(Kh ∗ f)(x)|2

=
1

n

[
(K2

h ∗ f)(x)− (Kh ∗ f)2(x)
]
,

where

K2
h(z) := |Kh(z)|2 =

1

h2

∣∣∣K ( z
h

)∣∣∣2 .
Now recall the mean-squared error :

MSE(f̂(x)) := E

[∣∣∣f̂(x)− f(x)
∣∣∣2] = Var (f̂(x)) +

∣∣∣Bias(f̂(x))
∣∣∣2 .
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The bias is

Bias(f̂(x)) = f(x)− E[f̂(x)] = f(x)− (Kh ∗ f)(x).

Thus, we note that for a relatively nice kernel K:

1. Var (f̂(x))→ 0 as n→∞; whereas

2. Bias(f̂(x))→ 0 as h→ 0; see Theorem 2.

The question arises: Can we let h = hn → 0 and n → ∞ in such a way that
MSE(f̂(x))→ 0 as n→∞? We have seen that, in one form or another, all stan-
dard density estimators have a sort of “bandwidth” parameter. Optimal choice
of the bandwidth is the single-most important question in density estimation,
and there are no absolute answers! We will study two concrete cases next.
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3 Asymptotically-Optimal Bandwidth Selection

Suppose the unknown density f is smooth (three bounded and continuous
derivatives, say!). Suppose also that K is symmetric [i.e., K(a) = K(−a)] and
vanishes at infinity. Then it turns out that we can “find” the asymptotically-best
value of the bandwidth h = hn.

Several times in the future, we will appeal to Taylor’s formula in the following
form: When h small,

f(x− zh) ≈ f(x)− zhf ′(x) +
z2h2

2
f ′′(x). (3)

3.1 Local Estimation

Suppose we are interested in estimating f “locally.” Say, we wish to know f(x)
for a fixed, given value of x.

We have seen already that

−Bias(f̂(x)) = (Kh ∗ f)(x)− f(x)

=
1

h

∫ ∞
−∞

K

(
x− u
h

)
f(u) du− f(x)

=

∫ ∞
−∞

K(z)f(x− zh) dz − f(x).

Therefore, by (3),

−Bias(f̂(x)) ≈
∫ ∞
−∞

K(z)

{
f(x)− zhf ′(x) +

z2h2

2
f ′′(x)

}
dz − f(x)

= f(x)

=1, since K is a pdf︷ ︸︸ ︷∫ ∞
−∞

K(z) dz −hf ′(x)

=0, by symmetry︷ ︸︸ ︷∫ ∞
−∞

zK(z) dz

+
h2

2
f ′′(x)

∫ ∞
−∞

z2K(z) dz − f(x).

Simplify to obtain

−Bias(f̂(x)) ≈ h2

2
f ′′(x)

∫ ∞
−∞

z2K(z) dz

:=
h2

2
f ′′(x)σ2

K .

(4)

Now we turn our attention to the variance of f̂(x). Recall that Var (f̂(x)) =

17



(K2
h ∗ f)(x)− (Kh ∗ f)2(x). We begin by estimating the first term.

(
K2
h ∗ f

)
(x) =

1

h2

∫ ∞
−∞

∣∣∣∣K (x− uh
)∣∣∣∣2 f(u) du

=
1

h

∫ ∞
−∞

K2(z)f(x− zh) dz

≈ 1

h

∫ ∞
−∞

K2(z)

{
f(x)− zhf ′(x) +

z2h2

2
f ′′(x)

}
dz

=
1

h
f(x)

∫ ∞
−∞

K2(z) dz − f ′(x)

∫ ∞
−∞

zK2(z) dz

+
h

2
f ′′(x)

∫ ∞
−∞

z2K2(z) dz

≈ 1

h
f(x)

∫ ∞
−∞

K2(z) dz [the other terms are bounded]

:=
1

h
f(x)‖K‖22.

Because (Kh ∗ f)(x) ≈ f(x) (Theorem 2), this yields the following:3

Var (f̂(x)) ≈ 1

nh
f(x)‖K‖22.

Consequently, as h = hn → 0 and n→∞,

MSE(f̂(x)) ≈ 1

nh
f(x)‖K‖22 +

h4

4
|f ′′(x)|2 σ4

K . (5)

Thus, we can choose h = hn as the solution to the minimization problem:

min
h

[
1

nh
f(x)‖K‖22 +

h4

4
|f ′′(x)|2 σ4

K

]
.

Let ψ(h) denote the terms in brackets. Then,

ψ′(h) = − 1

nh2
f(x)‖K‖22 + h3 |f ′′(x)|2 σ4

K .

Set ψ′ ≡ 0 to find the asymptotically-optimal value of h:

hn :=
αfβK
n1/5

,

where

αf :=
(f(x))

1/5

(f ′′(x))
2/5

, and βK :=
‖K‖2/52

σ
4/5
K

=

(∫∞
−∞K2(z) dz

)1/5
(∫∞
−∞ z2K(z) dz

)2/5 . (6)

3We are writing ‖g‖22 :=
∫∞
−∞ g2(z) dz and σ2

g :=
∫∞
−∞ z2g(z) dz for all nice functions g.

18



The asymptotically optimal MSE is obtained upon plugging in this hn into (5).
That is,

MSEopt(f̂(x)) ≈ 1

nhn
f(x)‖K‖22 +

h4n
4
|f ′′(x)|2σ4

K

=
1

n4/5

[
f(x)‖K‖22
αfβK

+
1

4
α4
fβ

4
K |f ′′(x)|2σ4

K

]
=
‖K‖8/52 σ

4/5
K

n4/5

[
f(x)

αf
+
α4
f |f ′′(x)|2

4

]
.

Example 5. A commonly-used kernel is the double exponential density. It is
described by

K(x) :=
1

2
e−|x|.

See Figure 7 for a plot.
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Figure 7: A plot of the double-exponential density.

By symmetry,

σ2
K =

∫ ∞
0

x2e−x dx = 2, ‖K‖22 =
1

2

∫ ∞
0

e−2x dx =
1

4
, βK =

4−1/5

22/5
=

1

24/5
.

Therefore,

hn =
C

n1/5
where C =

αf
24/5

.

Similarly,

MSEopt(f̂(x)) ≈ D

n4/5
where D =

1

21/5

[
f(x)

αf
+
|f ′′(x)|2α4

f

8

]
.
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Example 6. Let τ > 0 be fixed. Then, the N(0 , τ2) density is another
commonly-used example; i.e.,

K(x) =
1

τ
√

2π
e−x

2/(2τ2).

See Figure 8.
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Figure 8: A plot of the N(0 , 1) density.

In this case, σ2
K =

∫∞
−∞ z2K(z) dz = τ2, and

‖K‖22 =
1

2πτ2

∫ ∞
−∞

e−x
2/τ2

dx =
1

2πτ
×
√
π =

1

2τ
√
π
.

Consequently,

βK =
1

(2τ
√
π)

1/5
. (7)

This yields,

hn =
C

n1/5
, where C =

αf

(2τ
√
π)

1/5
.

Similarly,

MSEopt(f̂(x)) ≈ D

n4/5
where D =

1

(2τ
√
π)

4/5

[
f(x)

αf
+
τ4α4

f |f ′′(x)|2

4

]
.

3.2 Global Estimation

If we are interested in estimating f “globally,” then we need a more global
notion of mean-squared error. A useful and easy-to-use notion is the “mean-
integrated-squared error” or “MISE.” It is defined as

MISE(f̂) := E

[∫ ∞
−∞
|f̂(x)− f(x)|2 dx

]
.

20



It is easy to see that

MISE f̂ =

∫ ∞
−∞

MSE (f̂(x)) dx.

Therefore, under the present smoothness assumptions,

MISE f̂ ≈ 1

nh

∫ ∞
−∞

K2(z) dz +
h4

4

∫ ∞
−∞
|f ′′(x)|2 dx ·

(∫ ∞
−∞

z2K(z) dz

)2

:=
1

nh
‖K‖22 +

h4

4
‖f ′′‖22σ4

K . (8)

See (5). Set

ψ(h) :=
1

nh
‖K‖22 +

h4

4
‖f ′′‖22σ4

K ,

so that

ψ′(h) = − 1

nh2
‖K‖22 + h3‖f ′′‖22σ4

K .

Set ψ′ ≡ 0 to find the asymptotically optimal bandwidth size for the minimum-
MISE:

hn :=
C

n1/5
where C =

βK

‖f ′′‖2/52

. (9)

See (6) for the notation on βK . The asymptotically optimal MISE is obtained
upon plugging in this hn into (8). That is,

MISEopt f̂(x) ≈ 1

nhn
‖K‖22 +

h4n
4
‖f ′′‖22σ4

K

=
D

n4/5
where D =

5

4
‖f ′′‖2/52 ‖K‖

8/5
2 σ

4/5
K .

(10)

Example 7 (Example 5, Continued). In the special case where K is the double-
exponential density,

hn =
C

n1/5
where C =

1

24/5‖f ′′‖2/52

. (11)

Also,

MISEopt f̂(x) ≈ D

n4/5
where D =

5

216/5
‖f ′′‖2/52 . (12)

Example 8 (Example 6, Continued). In the special case whereK is the N(0 , τ2)
density,

hn =
C

n1/5
where C =

1

(2τ
√
π)

1/5 ‖f ′′‖2/52

. (13)

Also,

MISEopt f̂(x) ≈ D

n4/5
where D =

5

214/5π2/5
‖f ′′‖2/52 . (14)
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4 Problems and Remedies

A major drawback of the preceding computations is that hn depends on f .
Typically, one picks a related value of h where the dependence on f is replaced
by a similar dependency, but on a known family of densities. But there are
other available methods as well. I will address some of them next.4

1. The Subjective Method: Choose various “sensible” values of h (e.g., set
h = cn−1/5 and vary c). Plot the resulting density estimators, and choose
the one whose general shape matches up best with your prior belief. This
can be an effective way to obtain a density estimate some times.

2. Making References to Another Density: To be concrete, consider hn for the

global estimate. Thus, the optimal h has the form, hn = βK‖f ′′‖−2/52 n−1/5.

Now replace ‖f ′′‖2/52 by ‖g′′‖2/52 for a nice density function g. A commonly-
used example is g := N(0 , τ2) density. Let

ϕ(x) =
1√
2π

e−x
2/2

denote the standard-normal density. Note that g(x) = τ−1ϕ(x/τ). There-
fore, g′′(x) = τ−3ϕ′′(x/τ), whence it follows that

‖g‖22 =
1

τ6

∫ ∞
−∞

[
ϕ′′
(x
τ

)]2
dx

=
1

τ5

∫ ∞
−∞

[ϕ′′(y)]
2

dy

=
1

2πτ5

∫ ∞
−∞

e−y
2 (
y2 − 1

)2
dy

=
3

8τ5
√
π
.

This is about 0.2115/τ5. So we can choose the bandwidth

h := βK‖g′′‖−2/52 n−1/5; that is,

h =
81/5π1/10

31/5
· τβK
n1/5

.

In order for us to actually be able to use this, we need to know τ . But
our replacement of f by g tacitly assumes that the variance of the date is
τ2; i.e., that τ2 =

∫∞
−∞ x2 f(x) dx− (

∫∞
−∞ xf(x) dx)2. So we can estimate

τ2 by traditional methods, plug, and proceed to use the resulting h. If f
is truly normal, then this method works very well. Of course, you should

4We may note that by choosing K correctly, we can ensure that ‖K‖22 is small. In this way

we can reduce the size of MISEoptf̂ , for instance. But the stated problem with the bandwidth
is much more serious.
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also a normal density K as well in such cases. However, if f is “far”
from normal, then ‖f ′′‖2 tends to be a lot larger than ‖g′′‖2. Therefore,
our h is much larger than the asymptotically optimal hn. This results in
oversmoothing.

3. Plug-in estimates: Consider the case where our asymptotically-optimal

bandwidth has the form h = C(n ,K)/‖f ′′‖2/52 where C(n ,K) is known
[e.g., see Example 8 on page 21]. One can just find some sort of “plug-
in estimator” of ‖f ′′‖2 and plug that in to obtain an estimated h. One
reasonable possibility is to estimate ‖f ′′‖2 by ‖f̃ ′′h ‖2, where f̃h denotes the
kernel density estimator of f that uses some prior estimator of h in place
of h. [For example, use one of the preceding crude methods to start the

process]. In general, we will want h that satisfies h = C(n ,K)/‖f̃ ′′h ‖
2/5
2 ,

which can sometimes be computed numerically.

4. Bootstrap: We will discuss bootstrapping later on, and in a slightly differ-
ent context. But there are ways to incorporate a version of the bootstrap
in order to find good choices of h; see Jones et al [JASA 91(433), 1996],
for instance.

5. Cross validation: There are computationally-efficient cross-validation meth-
ods for choosing h as well. See Chapter 32 of Das Gupta’s comprehensive
book, Asymptotic Theory of Statistics and Probability [Springer, 2008].
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5 Bias Reduction via Signed Estimators

One of the attractive features of kernel density estimators is the property that
they are themselves probability densities. In particular, they have the positivity
property, f̂(x) ≥ 0 for all x. If we did not need this to hold, then we can get
better results. In such a case the end-result needs to be examined with extra
care, but could still be useful.

So now we suppose that the kernel K has the following properties:

• [Symmetry ] K(x) = K(−x) for all x;

•
∫∞
−∞K(x) dx = 1;

• µ2(K) = 0, where µ`(K) :=
∫∞
−∞ x`K(x) dx;

• µ4(K) 6= 0.

Then, we proceed with a four-term Taylor series expansion: If h is small then
we would expect that

f(x− ha) ≈ f(x)− haf ′(x) +
h2a2

2
f ′′(x)− h3a3

6
f ′′′(x) +

h4a4

24
f (iv)(x).

Therefore,

Bias(f̂(x)) = (Kh ∗ f)(x)− f(x)

=

∫ ∞
−∞

1

h
K

(
x− u
h

)
f(u) du− f(x)

=

∫ ∞
−∞

K(a)f(x− ah) da− f(x)

≈
∫ ∞
−∞

K(a)

[
f(x)− haf ′(x) +

h2a2

2
f ′′(x)− h3a3

6
f ′′′(x) +

h4a4

24
f (iv)(x)

]
da− f(x)

= µ4(K)
h4

24
f (iv)(x).

Thus, the bias is of the order h4. This is a substantial gain from before when
we insisted that K be a density function. In that case, the bias was of the order
h2; see (4).

We continue as before and compute the asymptotic variance, as well:

(
K2
h ∗ f

)
(x) =

1

h2

∫ ∞
−∞

K2

(
x− u
h

)
f(u) du

=
1

h

∫ ∞
−∞

K2(a)f(x− ah) da.
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Then, we apply a Taylor expansion,(
K2
h ∗ f

)
(x) ≈ 1

h

∫ ∞
−∞

K2(a)

[
f(x)− haf ′(x) +

h2a2

2
f ′′(x)

]
da

=
1

h
f(x)

∫ ∞
−∞

K2(a) da

=
‖K‖22f(x)

h
,

as before. Thus, as before,

Var (f̂(x)) =
1

n

[(
K2
h ∗ f

)
(x)− (Kh ∗ f)

2
(x)
]
≈ ‖K‖

2
2f(x)

nh
.

Therefore,

MSE(f̂(x)) ≈ ‖K‖
2
2f(x)

nh
+ µ2

4(K)
h8

576

[
f (iv)(x)

]2
. (15)

Write this, as before, as ψ(h), and compute

ψ′(h) = −‖K‖
2
2f(x)

nh2
+ µ2

4(K)
h7

72

[
f (iv)(x)

]2
.

Set ψ′(h) ≡ 0 to find that there exist constants C, D, and E, such that hn =

Cn−1/9, MSE(f̂(x)) ≈ Dn−8/9, and MISE(f̂) ≈ En−8/9. I will leave up to you
to work out the remaining details (e.g., compute C, D, and E). Instead, let us
state a few examples of kernels K that satisfy the assumptions of this section.

Example 9. A classical example is

K(x) =

{
3
8 (3− 5x2), if |x| < 1,

0, otherwise.

A few lines of calculations reveal that: (i) K is symmetric; (ii)
∫∞
−∞K(x) dx = 1;

(iii)
∫∞
−∞ x2K(x) dx = 0; and (iv) µ4(K) =

∫∞
−∞ x4K(x) dx = −3/35 6= 0.

Example 10. We obtain another family of classical examples, due to W. R.
Schucany and J. P. Sommers,5 by first choosing a (proper probability density)
kernel K, and then modifiying it as follows: Let ν > 1 be fixed, and define

Kν(x) :=

(
ν2

ν2 − 1

)[
K(x)− 1

ν3
K
(x
ν

)]
.

Suppose K is symmetric and has four finite moments. Then, a few lines of
calculations reveal that the function Kν satisfies the conditions of the kernels
of this section. Namely: (i) Kν is symmetric; (ii)

∫∞
−∞Kν(x) dx = 1; (iii)∫∞

−∞ x2Kν(x) dx = 0; and (iv) µ4(Kν) =
∫∞
−∞ x4Kν(x) dx = −ν2µ4(Kν) 6= 0.

Schucany and Sommers recommend using values of ν that are > 1, but very
close to one.

5W. R. Schucany and J. P. Sommers (1977), Improvement of kernel type density estimators,
JASA 72, 420–423.
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6 Consistency

It turns out that under some conditions on h, K, etc. the kernel density estimator
is consistent. That is, there is a sense in which f̂ ≈ f for n large. I mention
three important examples of this phenomenon:

1. Fix x ∈ R. Then, we want to know that under some reasonable conditions,
limn f̂(x) = f(x) in probability. This is “pointwise consistency.”

2. We want to know that under reasonable conditions, f̂ ≈ f in some global
sense. A strong case can be made for the so-called “L1 distance” between
f̂ and f . That is, we wish to know that under some natural conditions,
limn→∞

∫∞
−∞ |f̂(x) − f(x)|dx = 0 in probability. This is “consistency in

L1.”

3. For some applications (e.g., mode-finding), we need to know that maxx |f̂(x)−
f(x)| → 0 in probability. This is the case of “uniform consistency.”

6.1 Consistency at a Point

In this subsection we study that case where we are estimating f(x) locally. That

is, we fix some point x ∈ R, and try to see if f̂(x) ≈ f(x) for large values of
n. For this to make sense we need to bandwidth h to depend on n, and go to
zero as n → ∞. We shall write hn in place of h, but this hn need not be the
asymptotically optimal one that was referred to earlier. This notation will be
adopted from here on.

The following is a stronger form of a classical consistency theorem of E.
Parzen.6

Theorem 11 (Parzen, 1962). Let us assume the following:

1. K vanishes at infinity, and
∫∞
−∞K2(x) dx <∞;

2. hn → 0 as n→∞; and

3. nhn →∞ as n→∞.

Then, whenever f is continuous in an open neighborhood of x we have f̂(x)
P→

f(x), as n→∞.

Proof: Throughout, we choose and fix an x around which f is continuous.
Recall from page 15 that

E[f̂(x)] = (Khn
∗ f)(x),

Var (f̂(x)) =
1

n

[(
K2
hn
∗ f
)

(x)− (Khn
∗ f)

2
(x)
]
.

6E. Parzen (1962). On estimation of a probability density function and mode, Ann. Math.
Statist. 33, 1065–1076.
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It might help to recall the notation on convolutions. In particular, we have

(
K2
hn
∗ f
)

(x) =
1

h2n

∫ ∞
−∞

K2

(
x− y
hn

)
f(y) dy.

Note that K2
hn

is really short-hand for (Khn)2. Let G(x) := K2(x) to find then
that (

K2
hn
∗ f
)

(x) =
1

hn
(Ghn

∗ f) (x).

Now, G(x)/
∫∞
−∞K2(u) du is a probability density that vanishes at infinity.

Therefore, we can apply Theorem 2 to G to find that

(
K2
hn
∗ f
)

(x) ∼ f(x)

hn

∫ ∞
−∞

K2(u) du.

Another application of Theorem 2 shows that (Khn ∗ f)(x)→ f(x). Therefore,

Var (f̂(x)) ∼ 1

n

[
f(x)

hn

∫ ∞
−∞

K2(u) du− f(x)

]
∼ f(x)

nhn

∫ ∞
−∞

K2(u) du. (16)

Since nhn → 0, this proves that Var (f̂(x)) → 0 as n → ∞. Thanks to the
Chebyshev inequality,

f̂(x)− E(f̂(x))
P→ 0.

But another application of Theorem 2 shows that limn→∞ E[f̂(x)] = f(x), be-
cause hn → 0. The theorem follows. �

Next, I state [without proof] a weaker formulation of a theorem of L. De-
vroye.7 The following is a global counterpart of the local Theorem 11.

Theorem 12 (Devroye). Suppose K is bounded, hn → 0, and nhn → ∞ as
n→∞. Then, as n→∞,∫ ∞

−∞
|f̂(x)− f(x)|dx P→ 0.

6.2 Uniform Consistency

Theorem 12 is a natural global-consistency theorem. But it falls short of ad-
dressing an important application of density estimation to which we will come
in the next subsection. That is, estimating the mode of a density. [This was one
of the original motivations behind the theory of kernel density estimation. See
E. Parzen (1962), On estimation of a probability density function and mode,
Ann. Math. Statist. 33, 1065–1076.] Here we address the important issue of
uniform consistency. That is, we seek to find reasonable conditions under which
maxx |f̂(x)− f(x)| converges to zero in probability.

7L. Devroye (1983). The equivalence of weak, strong and complete convergence in density
estimation in L1 for kernel density estimates, Ann. Statis. 11, 896–904.
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First we recall a few facts from Fourier analysis. If h is an integrable function
[that is, if

∫∞
−∞ |h(x)|dx < ∞], then its Fourier transform is the function Fh

defined by

(Fh)(t) :=

∫ ∞
−∞

eitxh(x) dx for −∞ < t <∞.

Note that whenever h := f is a density function, and it is the case for us, then,

(Ff)(t) = E
[
eitX1

]
, (17)

and so Ff is the socalled “characteristic function of X.” We need the following
deep fact from Fourier/harmonic analysis. In rough terms, the following tells us
that after multiplying by (2π)−1, the definition of Fh can be formally inverted
to yield a formula for h in terms of its Fourier transform.

Theorem 13 (Inversion Theorem). If h and Fh are integrable, then

h(x) =
1

2π

∫ ∞
−∞

e−itx(Fh)(t) dt for −∞ < x <∞.

The condition that h is integrable is very natural. For us, h is a probability
density, after all. However, it turns out that the absolute integrability of Fh
implies that h is uniformly continuous. So this can be a real restriction.

Now note that the Fourier transform of our kernel density estimate f̂ is

(F f̂)(t) =

∫ ∞
−∞

eitxf̂(x) dx

=
1

nhn

n∑
j=1

∫ ∞
−∞

eitxK

(
x−Xj

hn

)
dx

=
1

n

n∑
j=1

eitXj

∫ ∞
−∞

eihntyK(y) dy,

after an interchange of the sum with the integral. In other words, the Fourier
transform of f̂ can be written in terms of the Fourier transform of K as follows:

(F f̂)(t) =
1

n

n∑
j=1

eitXj (FK)(hnt).

In particular, F f̂ is integrable as soon as FK is. If so, then the inversion
theorem (Theorem 13) tell us that

f̂(x) =
1

2π

∫ ∞
−∞

e−itx(F f̂)(t) dt

=
1

2πn

n∑
j=1

∫ ∞
−∞

eit(Xj−x)(FK)(hnt) dt

=
1

2π

∫ ∞
−∞

e−itx
1

n

n∑
j=1

eitXj (FK)(hnt) dt.
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Take expectations also to find that

E[f̂(x)] =
1

2π

∫ ∞
−∞

e−itx[eitX1 ](FK)(hnt) dt.

Therefore,

f̂(x)− E[f̂(x)] =
1

2π

∫ ∞
−∞

e−itx (φn(t)− E[φn(t)]) (FK)(hnt) dt,

where φn is the “empirical characteristic function,”

φn(t) :=
1

n

n∑
j=1

eitXj , for all t ∈ R.

Because |eitx| ≤ 1, the triangle inequality yields,

max
x
|f̂(x)− E[f̂(x)]| ≤ 1

2π

∫ ∞
−∞
|φn(t)− E[φn(t)]| · |(FK)(hnt)| dt. (18)

Take expectations and use the “Cauchy–Schwarz inequality,” E(|Z|) ≤
√

E(Z2)
to find that

E
(

max
x
|f̂(x)− E[f̂(x)]|

)
≤ 1

2π

∫ ∞
−∞

√
Var [φn(t)] |(FK)(hnt)| dt.

[Caution: When Z is complex-valued, by Var (Z) we really mean E(|Z−EZ|2).]
Now, we can write eitXj = cos(tXj) + i sin(tXj). Therefore (check!),

Var (eitXj ) = Var (cos(tXj)) + Var (sin(tXj)) ≤ E
[
cos2(tXj) + sin2(tXj)

]
= 1.

Even it Z1, . . . , Zn are complex-valued, as long as they are i.i.d., Var [
∑n
j=1 Zj ] =∑n

j=1 Var [Zj ] (why?). Therefore, Var [φn(t)] ≤ 1/n. It follows then that

E
(

max
x
|f̂(x)− E[f̂(x)]|

)
≤ 1

2π
√
n

∫ ∞
−∞
|(FK)(hnt)| dt

=
1

2πhn
√
n

∫ ∞
−∞
|(FK)(s)| ds.

This and Chebyshev’s inequality together implies that if hn
√
n → ∞ then

maxx |f̂(x)− E[f̂(x)]| → 0 in probability. Next we prove that if f is uniformly
continuous and hn → 0, then

max
x
|E[f̂(x)]− f(x)| → 0, as n→∞. (19)

If this is the case, then we have proved the following celebrated theorem of
Parzen (1962).
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Theorem 14 (Parzen). Suppose f is uniformly continuous, FK is integrable,
hn → 0, and hn

√
n→∞. Then,

max
x
|f̂(x)− f(x)| P→ 0, as n→∞.

Proof: It remains to verify (19). But this follows from Theorem 4 and the fact

that E[f̂(x)] = (Khn
∗ f)(x). �

Remark 15. The condition that hn
√
n→∞ can be improved (slightly more)

to the following:

hn

√
n

log n
→∞ as n→∞.

This improvement is due to M. Bertrand-Retali.8 But this requires more ad-
vanced methods.

What does the integrability condition on FK mean? To start with, the
inversion theorem can be used to show that if

∫∞
−∞ |(FK)(t)|dt <∞ then K is

uniformly continuous. But the integrability of FK is a little bit more stringent
than the uniform continuity of K. This problem belongs to a course in harmonic
analysis. Therefore, rather than discussing this issue further we show two useful
classes of examples where this condition is verified. Both are the examples that
have made several appearances in these notes thus far.

Remark 16. Suppose K is the N(0 , τ2) density, where τ > 0 is fixed. Then,
FK is the characteristic function of a N(0 , τ2) random variable; see (17). We
can compute it as easily as the MGF of a normal:

(FK)(t) = e−τ
2t2/2, for all t ∈ R.

Obviously, FK is integrable. In fact,∫ ∞
−∞
|(FK)(t)|dt =

∫ ∞
−∞

e−τ
2t2/2 dt =

√
2π/τ.

Remark 17. Suppose K(x) = 1
2e−|x| is the double exponential density. Then,

(FK)(t) =
1

2

∫ ∞
−∞

e−|x|+itx dx

=
1

2

∫ ∞
0

e−x+itx dx+
1

2

∫ 0

−∞
ex+itx dx

=
1

2

∫ ∞
0

e−x+itx dx+
1

2

∫ ∞
0

e−x−itx dx.

The first integral is the characteristic function of an exponential random variable
with mean one. Therefore, it is given by

∫∞
0

e−x+itx dx = 1/(1 − it). Plug −t
8M. Bertrand-Retali (1978). Convergence uniforme d’un estimateur de la densité par la

méthode de noyau, Rev. Roumaine Math. Pures. Appl. 23, 361–385.
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in place to t to find the second integral:
∫∞
0

e−x−itx dx = 1/(1 + it). Add and
divide by two to find that

(FK)(t) =
1

2

[
1

1− it
+

1

1 + it

]
=

1

1 + t2
for −∞ < t <∞.

Evidently, this is integrable. In fact,∫ ∞
−∞
|(FK)(t)|dt =

∫ ∞
−∞

dt

1 + t2
= π.
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7 Hunting for Modes

Let f be a density function on R. A mode for f is a position of a local maximum.
For example, Figure 9 depicts a density plot for the density function

f(x) =
1

2
φ1(x) +

1

2
φ2(x),

where φ1 is the N(0 , 0.4) density and φ2 is the N(2 , 0.2) density function.

Figure 9: An Example of Modes.

One can understand this distribution as follows: We toss an independent
fair coin; if the coin comes up heads, then we sample from φ1; if the coin comes
up tails, then we sample from φ2. Because f has two local maxima, it has two
modes: One is x = 0; and the other is x = 2.

In general, the question is: How can we use data to estimate the mode(s)
of an unknown density function f? The answer is very simple now: If we know
that f̂ ≈ f uniformly (and with very high probability), then the mode(s) of f̂
have to approximate those of f with high probability. [This requires an exercise
in real analysis, and is omitted.] Therefore, we may estimate the number of

modes of f with the number of modes of f̂ . This process can be even carried
out visually!
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8 There are no unbiased density estimators

There is a beautiful theorem of Rosenblatt (Ann. Math. Stat. 27, 1956) that says
that there are no universally-unbiased density estimators of any kind. This gives
us some hope about, say, kernel density estimation which we know is biased.

Theorem 18 (Rosenblatt, 1956). Let T be a function-valued function of n
variables such that x 7→ T (z1 , . . . , zn)(x) is a pdf for all z1, . . . , zn ∈ R. Given
an iid sample X1, . . . , Xn from a continuous pdf f , we may use the density
estimator

f̂(x) := T (X1, . . . , Xn)(x).

Then f̂ is not generically unbiased. That is, Ef [f̂(x)] 6= f(x) for some contin-
uous pdf f and x ∈ R.

Sketch of proof. Let Θ denote the parameter space of all continuous pdfs f .
Material similar to that of 5080 and 5090 tells us that the order statistics
X1:n, . . . , Xn:n are complete and sufficient for estimating f ∈ Θ. Let Fn de-
note the empirical cdf; i.e.,

Fn(b) :=
1

n

n∑
j=1

I{Xj ≤ b}.

Because Fn can be written directly as a function of the order statistics and

Ef [Fn(b)] =
∫ b
−∞ f(y) dy for all f ∈ Θ, it follows that Fn is the only unbiased

estimator of F that is based on the order statistics.
Now suppose there exists a procedure T , as stated. We will derive a contra-

diction from this assumption.
Define

f̃(x) :=
1

n!

∑
π

T (Xπ1
, . . . , Xπn

) (x),

where the sum is taken over all n! permutations (π1 , . . . , πn) of (1 , . . . , n). Then,
it is easy to see that f̃ is unbiased for f and is a function of the order statistics
alone [since it is permutation invariant]. Consequently,

F̃ (b) :=

∫ b

−∞
f̃(x) dx

is an unbiased estimator of F (b) and depends only on the order statistics. By
the first paragraph of the proof, F̃ = Fn. But this cannot be: F̃ is continuous
[in fact differentiable] whereas Fn is pure-jump!
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