A Probability Primer Math 6070, Spring 2013

Davar Khoshnevisan University of Utah

January 23, 2013

Contents

1	Pro	babilities	2		
2	2.1	tribution Functions Discrete Random Variables	2 2		
3	Expectations				
	3.1	Moments	4		
	3.2	A (Very) Partial List of Discrete Distributions	4		
	3.3	A (Very) Partial List of Continuous Distributions	5		
4	Rar	ndom Vectors	5		
	4.1	Distribution Functions	6		
	4.2	Expectations	6		
	4.3	Multivariate Normals	6		
5	Ind	ependence	7		
6	Cor	vergence Criteria	7		
	6.1	Convergence in Distribution	8		
	6.2		8		
7	Mo	ment Generating Functions	8		
	7.1	Some Examples	9		
	7.2	Properties	9		
8	Characteristic Functions				
	8.1	Some Examples	0		

9	Classical Limit Theorems				
	9.1	The Central Limit Theorem	11		
	9.2	(Weak) Law of Large Numbers	11		
	9.3	Variance Stabilization	12		
	9.4	Refinements to the CLT	12		
10	Com	ditional Europetations	12		
10 Conditional Expectations 12					
	10.1	Conditional Probabilities and Densities	12		
	10.2	Conditional Expectations	13		
	10.3	An Intuitive Interpretation	13		

1 Probabilities

Let \mathcal{F} be a collection of sets. A *probability* P is a function, on \mathcal{F} , that has the following properties:

- 1. $P(\emptyset) = 0$ and $P(\Omega) = 1$;
- 2. If $A \subset B$ then $P(A) \leq P(B)$;
- 3. (Finite additivity). If A and B are disjoint then $P(A \cup B) = P(A) + P(B)$;
- 4. For all $A, B \in \mathcal{F}$, $P(A \cup B) = P(A) + P(B) P(A \cap B)$;
- 5. (Countable Additivity). If $A_1, A_2, \ldots \in \mathcal{F}$ are disjoint, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

2 Distribution Functions

Let X denote a random variable. It distribution function is the function

$$F(x) = P\{X \le x\},\tag{1}$$

defined for all real numbers x. It has the following properties:

- 1. $\lim_{x \to -\infty} F(x) = 0;$
- 2. $\lim_{x \to \infty} F(x) = 1$;
- 3. F is right-continuous; i.e., $\lim_{x\downarrow y} F(x) = F(y)$, for all real y;
- 4. F has left-limits; i.e., $F(y-) := \lim_{x \uparrow y} F(x)$ exists for all real y. In fact, $F(y-) = P\{X < y\}$;
- 5. F is non-decreasing; i.e., $F(x) \leq F(y)$ whenever $x \leq y$.

It is possible to prove that (1)–(5) are always valid for all what random variables X. There is also a converse. If F is a function that satisfies (1)–(5), then there exists a random variable X whose distribution function is F.

2.1 Discrete Random Variables

We will mostly study two classes of random variables: discrete, and continuous. We say that X is a *discrete* random variable if its possible values form a countable or finite set. In other words, X is discrete if and only if there exist x_1, x_2, \ldots such that: $P\{X = x_i \text{ for some } i \geq 1\} = 1$. In this case, we are interested in the mass function of X, defined as the function p such that

$$p(x_i) = P\{X = x_i\} \quad (i \ge 1).$$
 (2)

Implicitly, this means that p(x) = 0 if $x \neq x_i$ for some i. By countable additivity, $\sum_{i=1}^{\infty} p(x_i) = \sum_{x} p(x) = 1$. By countable additivity, the distribution function of F can be computed via the following: For all x,

$$F(x) = \sum_{y \le x} p(y). \tag{3}$$

Occasionally, there are several random variables around and we identify the mass function of X by p_X to make the structure clear.

2.2 Continuous Random Variables

A random variable is said to be (absolutely) continuous if there exists a non-negative function f such that $P\{X \in A\} = \int_A f(x) dx$ for all A. The function f is said to be the density function of X, and has the properties that:

- 1. $f(x) \ge 0$ for all x;
- $2. \int_{-\infty}^{\infty} f(x) dx = 1.$

The distribution function of F can be computed via the following: For all x,

$$F(x) = \int_{-\infty}^{x} f(y) \, dy. \tag{4}$$

By the fundamental theorem of calculus,

$$\frac{dF}{dx} = f. (5)$$

Occasionally, there are several random variables around and we identify the density function of X by f_X to make the structure clear.

Continuous random variables have the peculiar property that $P\{X = x\} = 0$ for all x. Equivalently, F(x) = F(x-), so that F is continuous (not just right-continuous with left-limits).

3 Expectations

The (mathematical) expectation of a discrete random variable X is defined as

$$EX = \sum_{x} xp(x), \tag{6}$$

where p is the mass function. Of course, this is well defined only if $\sum_{x} |x| p(x) < \infty$. In this case, we say that X is *integrable*. Occasionally, EX is also called the *moment*, *first moment*, or the *mean* of X.

Proposition 1 For all functions g,

$$Eg(X) = \sum_{x} g(x)p(x), \tag{7}$$

provided that g(X) is integrable, and/or $\sum_{x} |g(x)|p(x) < \infty$.

This is not a trivial result if you read things carefully, which you should. Indeed, the definition of expectation implies that

$$Eg(X) = \sum_{y} yP\{g(X) = y\} = \sum_{y} yp_{g(X)}(y).$$
 (8)

The (mathematical) $\it expectation$ of a continuous random variable $\it X$ is defined as

$$EX = \int_{-\infty}^{\infty} x f(x) \, dx,\tag{9}$$

where f is the density function. This is well defined when $\int_{-\infty}^{\infty} |x| f(x) dx$ is finite. In this case, we say that X is *integrable*. Some times, we write E[X] and/or $E\{X\}$ and/or E(X) in place of E[X].

Proposition 2 For all functions g,

$$Eg(X) = \int_{-\infty}^{\infty} g(x)f(x) dx,$$
(10)

provided that g(X) is integrable, and/or $\int_{-\infty}^{\infty} |g(x)| f(x) dx < \infty$.

As was the case in the discrete setting, this is not a trivial result if you read things carefully. Indeed, the definition of expectation implies that

$$Eg(X) = \int_{-\infty}^{\infty} y f_{g(X)}(y) \, dy. \tag{11}$$

Here is a result that is sometimes useful, and not so well-known to students of probability:

Proposition 3 Let X be a non-negative integrable random variable with distribution function F. Then,

$$\mathbf{E}X = \int_0^\infty (1 - F(x)) \, dx. \tag{12}$$

Proof. Let us prove it for continuous random variables. The discrete case is proved similarly. We have

$$\int_0^\infty (1 - F(x)) \, dx = \int_0^\infty P\{X > x\} \, dx = \int_0^\infty \left(\int_x^\infty f(y) \, dy \right) \, dx. \tag{13}$$

Change the order of integration to find that

$$\int_0^\infty (1 - F(x)) \, dx = \int_0^\infty \left(\int_0^y \, dx \right) f(y) \, dy = \int_0^\infty y f(y) \, dy. \tag{14}$$

Because f(y) = 0 for all y < 0, this proves the result.

It is possible to prove that for all integrable random variables X and Y, and for all reals a and b,

$$E[aX + bY] = aEX + bEY. (15)$$

This justifies the buzz-phrase, "expectation is a linear operation."

3.1 Moments

Note that any random variable X is integrable if and only if $E|X| < \infty$. For all r > 0, the rth moment of X is $E\{X^r\}$, provided that the rth absolute moment $E\{|X|^r\}$ is finite.

In the discrete case,

$$E[X^r] = \sum_{x} x^r p(x), \tag{16}$$

and in the continuous case,

$$E[X^r] = \int_{-\infty}^{\infty} x^r f(X) \, dx. \tag{17}$$

When it makes sense, we can consider negative moments as well. For instance, if $X \ge 0$, then $\mathrm{E}[X^r]$ makes sense for r < 0 as well, but it may be infinite.

Proposition 4 If r > 0 and X is a non-negative random variable with $E[X^r] < \infty$, then

$$E[X^{r}] = r \int_{0}^{\infty} x^{r-1} (1 - F(x)) dx.$$
 (18)

Proof. When r=1 this is Proposition 3. The proof works similarly. For instance, when X is continuous,

$$E[X^{r}] = \int_{0}^{\infty} x^{r} f(x) dx = \int_{0}^{\infty} \left(r \int_{0}^{x} y^{r-1} dy \right) f(x) dx$$

$$= r \int_{0}^{\infty} y^{r-1} \left(\int_{y}^{\infty} f(x) dx \right) dy = r \int_{0}^{\infty} y^{r-1} P\{X > y\} dy.$$
(19)

This verifies the proposition in the continuous case.

A quantity of interest to us is the *variance* of X. If is defined as

$$Var X = E\left[\left(X - EX \right)^2 \right], \tag{20}$$

and is equal to

$$Var X = E[X^2] - (EX)^2$$
. (21)

Variance is finite if and only if X has two finite moments.

3.2 A (Very) Partial List of Discrete Distributions

You are expected to be familiar with the following discrete distributions:

1. Binomial (n, p). Here, $0 and <math>n = 1, 2, \ldots$ are fixed, and the mass function is

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 if $x = 0, ..., n$. (22)

- EX = np and VarX = np(1-p).
- The binomial (1, p) distribution is also known as Bernoulli (p).
- 2. Poisson (λ). Here, $\lambda > 0$ is fixed, and the mass function is:

$$p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
 $x = 0, 1, 2, \dots$ (23)

- $EX = \lambda$ and $VarX = \lambda$.
- 3. Negative binomial (n, p). Here, $0 and <math>n = 1, 2, \ldots$ are fixed, and the mass function is:

$$p(x) = {x-1 \choose n-1} p^n (1-p)^{x-n} \qquad x = n, n+1, \dots$$
 (24)

• EX = n/p and $VarX = n(1-p)/p^2$.

3.3 A (Very) Partial List of Continuous Distributions

You are expected to be familiar with the following continuous distributions:

1. Uniform $(a\,,b)$. Here, $-\infty < a < b < \infty$ are fixed, and the density function is

$$f(x) = \frac{1}{b-a} \quad \text{if } a \le x \le b. \tag{25}$$

- EX = (a+b)/2 and $VarX = (b-a)^2/12$.
- 2. Gamma (α, β) . Here, $\alpha, \beta > 0$ are fixed, and the density function is

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} \qquad -\infty < x < \infty.$$
 (26)

Here, $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$ is the (Euler) gamma function. It is defined for all $\alpha > 0$, and has the property that $\Gamma(1+\alpha) = \alpha \Gamma(\alpha)$. Also, $\Gamma(1+n) = n!$ for all integers $n \ge 0$, whereas $\Gamma(1/2) = \sqrt{\pi}$.

- $EX = \alpha/\beta$ and $VarX = \alpha/\beta^2$.
- Gamma $(1,\beta)$ is also known as Exp (β) . [The *Exponential distribution*.]
- When $n \ge 1$ is an integer, Gamma (n/2, 1/2) is also known as $\chi^2(n)$. [The *chi-squared* distribution with n degrees of freedom.]
- 3. $N(\mu, \sigma^2)$. [The normal distribution] Here, $-\infty < \mu < \infty$ and $\sigma > 0$ are fixed, and the density function is:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)} - \infty < x < \infty.$$
 (27)

- $EX = \mu$ and $VarX = \sigma^2$.
- N(0,1) is called the *standard normal* distribution.
- We have the distributional identity, $\mu + \sigma N(0\,,1) = N(\mu\,,\sigma^2)$. Equivalently,

$$\frac{N(\mu, \sigma^2) - \mu}{\sigma} = N(0, 1). \tag{28}$$

• The distribution function of a N(0,1) is an important object, and is always denoted by Φ . That is, for all $-\infty < a < \infty$,

$$\Phi(a) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx. \tag{29}$$

4 Random Vectors

Let X_1, \ldots, X_n be random variables. Then, $\mathbf{X} := (X_1, \ldots, X_n)$ is a random vector.

4.1 Distribution Functions

Let $\mathbf{X} = (X_1, \dots, X_n)$ be an N-dimensional random vector. Its distribution function is defined by

$$F(x_1, \dots, x_n) = P\{X_1 \le x_1, \dots, X_n \le x_n\},$$
 (30)

valid for all real numbers x_1, \ldots, x_n .

If X_1, \ldots, X_n are all discrete, then we say that X is discrete. On the other hand, we say that X is (absolutely) *continuous* when there exists a non-negative function f, of n variables, such that for all n-dimensional sets A,

$$P\{\boldsymbol{X} \in A\} = \int \cdots \int_{A} f(x_1, \dots, x_n) dx_1 \dots dx_n.$$
 (31)

The function f is called the *density function* of X. It is also called the *joint density function* of X_1, \ldots, X_n .

Note, in particular, that

$$F(x_1, \dots, x_n) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} f(u_1, \dots, u_n) \, du_n \, \dots \, du_1. \tag{32}$$

By the fundamental theorem of calculus,

$$\frac{\partial^n F}{\partial x_1 \partial x_2 \dots \partial x_n} = f. \tag{33}$$

4.2 Expectations

If g is a real-valued function of n variables, then

$$Eg(X_1, \dots, X_n) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} g(x_1, \dots, x_n) f(x_1, \dots, x_n) dx_1 \dots dx_n. \quad (34)$$

An important special case is when n = 2 and $g(x_1, x_2) = x_1x_2$. In this case, we obtain

$$E[X_1 X_2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_1 u_2 f(u_1, u_2) du_1 du_2.$$
 (35)

The *covariance* between X_1 and X_2 is defined as

$$Cov(X_1, X_2) := E[(X_1 - EX_1)(X_2 - EX_2)].$$
 (36)

It turns out that

$$Cov(X_1, X_2) = E[X_1 X_2] - E[X_1]E[X_2].$$
 (37)

This is well defined if both X_1 and X_2 have two finite moments. In this case, the *correlation* between X_1 and X_2 is

$$\rho(X_1, X_2) := \frac{\text{Cov}(X_1, X_2)}{\sqrt{\text{Var}X_1 \cdot \text{Var}X_2}},$$
(38)

provided that $0 < \text{Var} X_1, \text{Var} X_2 < \infty$.

The expectation of $X = (X_1, ..., X_n)$ is defined as the vector EX whose jth coordinate is EX_j .

Given a random vector $\mathbf{X} = (X_1, \dots, X_n)$, its covariance matrix is defined as $\mathbf{C} = (C_{ij})_{1 \leq i,j \leq n}$, where $C_{ij} := \text{Cov}(X_i X_j)$. This makes sense provided that the X_i 's have two finite moments.

Lemma 5 Every covariance matrix C is positive semi-definite. That is, $x'Cx \ge 0$ for all $x \in \mathbb{R}^n$. Conversely, every positive semi-definite $(n \times n)$ matrix is the covariance matrix of some random vector.

4.3 Multivariate Normals

Let $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)$ be an *n*-dimensional vector, and \boldsymbol{C} an $(n \times n)$ -dimensional matrix that is *positive definite*. The latter means that $\boldsymbol{x}'\boldsymbol{C}\boldsymbol{x} > 0$ for all non-zero vectors $\boldsymbol{x} = (x_1, \dots, x_n)$. This implies, for instance, that \boldsymbol{C} is invertible, and the inverse is also positive definite.

We say that $\mathbf{X} = (X_1, \dots, X_n)$ has the multivariate normal distribution $N_n(\boldsymbol{\mu}, \mathbf{C})$ if the density function of \mathbf{X} is

$$f(x_1, \dots, x_n) = \frac{1}{\sqrt{2\pi \det C}} e^{-\frac{1}{2}(x-\mu)'C^{-1}(x-\mu)},$$
 (39)

for all $\mathbf{x} = (x_1, \dots, x_n) \in \mathbf{R}^n$.

- $\mathbf{E}\mathbf{X} = \boldsymbol{\mu}$ and $\mathbf{Cov}(\mathbf{X}) = \mathbf{C}$.
- $X \sim N_n(\mu, C)$ if and only if there exists a positive definite matrix A, and n i.i.d. standard normals Z_1, \ldots, Z_n such that $X = \mu + AZ$. In addition, A'A = C.

When n = 2, a multivariate normal is called a bivariate normal.

Warning. Suppose X and Y are each normally distributed. Then it is *not* true in general that (X,Y) is bivariate normal. A similar caveat holds for the n-dimensional case.

5 Independence

Random variables X_1, \ldots, X_n are (statistically) independent if

$$P\{X_1 \in A_1, \dots, X_n \in A_n\} = P\{X_1 \in A_1\} \times \dots \times P\{X_n \in A_n\},$$
 (40)

for all one-dimensional sets A_1, \ldots, A_n . It can be shown that X_1, \ldots, X_n are independent if and only if for all real numbers x_1, \ldots, x_n ,

$$P\{X_1 \le x_1, \dots, X_n \le x_n\} = P\{X_1 \le x_1\} \times \dots \times P\{X_n \le x_n\}.$$
 (41)

That is, the coordinates of $X = (X_1, \ldots, X_n)$ are independent if and only if $F_X(x_1, \ldots, x_n) = F_{X_1}(x_1) \cdots F_{X_n}(x_n)$. Another equivalent formulation of independence is this: For all functions g_1, \ldots, g_n such that $g_i(X_i)$ is integrable,

$$E[g(X_1) \times \ldots \times g(X_n)] = E[g_1(X_1)] \times \cdots \times E[g_n(X_n)]. \tag{42}$$

A ready consequence is this: If X_1 and X_2 are independent, then they are uncorrelated provided that their correlation exists. Uncorrelated means that $\rho(X_1, X_2) = 0$. This is equivalent to $\text{Cov}(X_1, X_2) = 0$.

If X_1, \ldots, X_n are (pairwise) uncorrelated with two finite moments, then

$$Var(X_1 + \dots + X_n) = Var X_1 + \dots + Var X_n.$$
(43)

Significantly, this is true when the X_i 's are independent. In general, the formula is messier:

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var} X_{i} + 2 \sum_{1 \leq i < j \leq n} \operatorname{Cov}(X_{i}, X_{j}). \tag{44}$$

In general, uncorrelated random variables are not *independent*. An exception is made for multivariate normals.

Theorem 6 Suppose $(X, Y) \sim N_{n+k}(\mu, C)$, where X and Y are respectively n-dimensional and k-dimensional random vectors. Then:

- 1. X is multivariate normal.
- 2. Y is multivariate normal.
- 3. If $EX_iY_i = 0$ for all i, j, then **X** and **Y** are independent.

For example, suppose $(X\,,Y)$ is bivariate normal. Then, X and Y are normally distributed. If, in addition, $\mathrm{Cov}(X\,,Y)=0$ then X and Y are independent.

6 Convergence Criteria

Let X_1, X_2, \ldots be a countably-infinite sequence of random variables. There are several ways to make sense of the statement that $X_n \to X$ for a random variable X. We need a few of these criteria.

6.1 Convergence in Distribution

We say that X_n converges to X in distribution if

$$F_{X_n}(x) \to F_X(x),$$
 (45)

for all $x \in \mathbf{R}$ at which F_X is continuous. We write this as $X_n \stackrel{d}{\to} X$.

Very often, F_X is continuous. In such cases, $X_n \stackrel{d}{\to} X$ if and only if $F_{X_n}(x) \to F_X(x)$ for all x. Note that if $X_n \stackrel{d}{\to} X$ and X has a continuous distribution then also

$$P\{a \le X_n \le b\} \to P\{a \le X \le b\},\tag{46}$$

for all a < b.

Similarly, we say that the random vectors X_1, X_2, \ldots converge in distribution to the random vector X when $F_{X_n}(a) \to F_X(a)$ for all a at which F_X is continuous. This convergence is also denoted by $X_n \stackrel{d}{\to} X$.

6.2 Convergence in Probability

We say that X_n converges to X in probability if for all $\epsilon > 0$,

$$P\{|X_n - X| > \epsilon\} \to 0. \tag{47}$$

We denote this by $X_n \stackrel{P}{\to} X$.

It is the case that if $X_n \stackrel{\mathrm{P}}{\to} X$ then $X_n \stackrel{d}{\to} X$, but the converse is patently false. There is one exception to this rule.

Lemma 7 Suppose $X_n \xrightarrow{d} c$ where c is a non-random constant. Then, $X_n \xrightarrow{P} c$.

Proof. Fix $\epsilon > 0$. Then,

$$P\{|X_n - c| \le \epsilon\} \ge P\{c - \epsilon < X_n \le c + \epsilon\} = F_{X_n}(c + \epsilon) - F_{X_n}(c - \epsilon). \tag{48}$$

But $F_c(x) = 0$ if x < c, and $F_c(x) = 1$ if $x \ge c$. Therefore, F_c is continuous at $c \pm \epsilon$, whence we have $F_{X_n}(c+\epsilon) - F_{X_n}(c-\epsilon) \to F_c(c+\epsilon) - F_c(c-\epsilon) = 1$. This proves that $P\{|X_n - c| \le \epsilon\} \to 1$, which is another way to write the lemma. \square

Similar considerations lead us to the following.

Theorem 8 (Slutsky's theorem) Suppose $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} c$ for a constant c. If g is a continuous function of two variables, then $g(X_n, Y_n) \stackrel{d}{\to} g(X, c)$. [For instance, try g(x, y) = ax + by, $g(x, y) = xye^x$, etc.]

When c is a random variable this is no longer valid in general.

7 Moment Generating Functions

We say that X has a moment generating function if there exists $t_0 > 0$ such that

$$M(t) := M_X(t) = E[e^{tX}]$$
 is finite for all $t \in [-t_0, t_0]$. (49)

If this condition is met, then M is the moment generating function of X.

If and when it exists, the moment generating function of X determines its entire distribution. Here is a more precise statement.

Theorem 9 (Uniqueness) Suppose X and Y have moment generating functions, and $M_X(t) = M_Y(t)$ for all t sufficiently close to 0. Then, X and Y have the same distribution.

7.1 Some Examples

1. Binomial (n, p). Then, M(t) exists for all $-\infty < t < \infty$, and

$$M(t) = \left(1 - p + pe^t\right)^n. \tag{50}$$

2. Poisson (λ). Then, M(t) exists for all $-\infty < t < \infty$, and

$$M(t) = e^{\lambda(e^t - 1)}. (51)$$

3. Negative Binomial (n,p). Then, M(t) exists if and only if $-\infty < t < |\log(1-p)|$. In that case, we have also that

$$M(t) = \left(\frac{pe^t}{1 - (1 - p)e^t}\right)^n. \tag{52}$$

4. Uniform (a, b). Then, M(t) exists for all $-\infty < t < \infty$, and

$$M(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}. (53)$$

5. Gamma (α, β) . Then, M(t) exists if and only if $-\infty < t < \beta$. In that case, we have also that

$$M(t) = \left(\frac{\beta}{\beta - t}\right)^{\alpha}. (54)$$

Set $\alpha=1$ to find the moment generating function of an exponential (β) . Set $\alpha=n/2$ and $\beta=1/2$ —for a positive integer n—to obtain the moment generating function of a chi-squared (n).

6. $N(\mu, \sigma^2)$. The moment generating function exists for all $-\infty < t < \infty$. Moreover,

$$M(t) = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right). \tag{55}$$

7.2 Properties

Beside the uniqueness theorem, moment generating functions have two more properties that are of interest in mathematical statistics.

Theorem 10 (Convergence Theorem) Suppose X_1, X_2, \ldots is a sequence of random variables whose moment generating functions all exists in an interval $[-t_0, t_0]$ around the origin. Suppose also that for all $t \in [-t_0, t_0]$, $M_{X_n}(t) \to M_X(t)$ as $n \to \infty$, where M is the moment generating function of a random variable X. Then, $X_n \stackrel{d}{\to} X$.

Example 11 (Law of Rare Events) Let X_n have the $Bin(n, \lambda/n)$ distribution, where $\lambda > 0$ is independent of n. Then, for all $-\infty < t < \infty$,

$$M_{X_n}(t) = \left(1 - \frac{\lambda}{n} + \frac{\lambda}{n}e^t\right)^n.$$
 (56)

We claim that for all real numbers c,

$$\left(1 + \frac{c}{n}\right)^n \to e^c \text{ as } n \to \infty.$$
 (57)

Let us take this for granted for the time being. Then, it follows at once that

$$M_{X_n}(t) \to \exp\left(-\lambda + \lambda e^t\right) = e^{\lambda(e^t - 1)}.$$
 (58)

That is,

Bin
$$(n, \lambda/n) \stackrel{d}{\to} \text{Poisson } (\lambda).$$
 (59)

This is Poisson's "law of rare events" (also known as "the law of small numbers"). Now we wrap up this example by verifying (57). Let $f(x) = (1+x)^n$, and Taylor-expand it to find that $f(x) = 1 + nx + \frac{1}{2}n(n-1)x^2 + \cdots$. Replace x by c/n, and compute to find that

$$\left(1 + \frac{c}{n}\right)^n = 1 + c + \frac{(n-1)c^2}{2n} + \dots \to \sum_{j=0}^{\infty} \frac{c^j}{j!},$$
 (60)

and this is the Taylor-series expansion of e^c . [There is a little bit more one has to do to justify the limiting procedure.]

The second property of moment generating functions is that if and when it exists for a random variable X, then all moments of X exist, and can be computed from M_X .

Theorem 12 (Moment-Generating Property) Suppose X has a finite moment generating function in a neighborhood of the origin. Then, $E(|X|^n)$ exists for all n, and $M^{(n)}(0) = E[X^n]$, where $f^{(n)}(x)$ denotes the nth derivative of function f at x.

Example 13 Let X be a $N(\mu, 1)$ random variable. Then we know that $M(t) = \exp(\mu t + \frac{1}{2}t^2)$. Consequently,

$$M'(t) = (\mu + t)e^{\mu t + (t^2/2)}, \text{ and } M''(t) = [1 + (\mu + t)^2] e^{\mu t + (t^2/2)}$$
 (61)

Set t = 0 to find that $EX = M'(0) = \mu$ and $E[X^2] = M''(0) = 1 + \mu^2$, so that $VarX = E[X^2] - (EX)^2 = 1$.

8 Characteristic Functions

The *characteristic function* of a random variable X is the function

$$\phi(t) := \mathbf{E}\left[e^{itX}\right] \qquad -\infty < t < \infty. \tag{62}$$

Here, the "i" refers to the complex unit, $i = \sqrt{-1}$. We may write ϕ as ϕ_X , for example, when there are several random variables around.

In practice, you often treat e^{itX} as if it were a real exponential. However, the correct way to think of this definition is via the Euler formula, $e^{i\theta} = \cos \theta + i \sin \theta$ for all real numbers θ . Thus,

$$\phi(t) = E[\cos(tX)] + iE[\sin(tX)]. \tag{63}$$

If X has a moment generating function M, then it can be shown that $M(it) = \phi(t)$. [This uses the technique of "analytic continuation" from complex analysis.] In other words, the naive replacement of t by it does what one may guess it would. However, one advantage of working with ϕ is that it is always well-defined. The reason is that $|\cos(tX)| \leq 1$ and $|\sin(tX)| \leq 1$, so that the expectations in (63) exist. In addition to having this advantage, ϕ shares most of the properties of M as well! For example,

Theorem 14 The following hold:

- 1. (Uniqueness Theorem) Suppose there exists $t_0 > 0$ such that for all $t \in (-t_0, t_0)$, $\phi_X(t) = \phi_Y(t)$. Then X and Y have the same distribution.
- 2. (Convergence Theorem) If $\phi_{X_n}(t) \to \phi_X(t)$ for all $t \in (-t_0, t_0)$, then $X_n \xrightarrow{d} X$. Conversely, if $X_n \xrightarrow{d} X$, then $\phi_{X_n}(t) \to \phi_X(t)$ for all t.

8.1 Some Examples

1. Binomial (n, p). Then,

$$\phi(t) = M(it) = \left(1 - p + pe^{it}\right)^n. \tag{64}$$

2. Poisson (λ) . Then,

$$\phi(t) = M(it) = e^{\lambda(e^{it} - 1)}. (65)$$

3. Negative Binomial (n, p). Then,

$$\phi(t) = M(it) = \left(\frac{pe^{it}}{1 - (1 - p)e^{it}}\right)^n.$$
 (66)

4. Uniform (a, b). Then,

$$\phi(t) = M(it) = \frac{e^{itb} - e^{ita}}{t(b-a)}.$$
(67)

5. Gamma (α, β) . Then,

$$\phi(t) = M(it) = \left(\frac{\beta}{\beta - it}\right)^{\alpha}.$$
 (68)

6. $N(\mu, \sigma^2)$. Then, because $(it)^2 = -t^2$,

$$\phi(t) = M(it) = \exp\left(i\mu t - \frac{\sigma^2 t^2}{2}\right). \tag{69}$$

9 Classical Limit Theorems

9.1 The Central Limit Theorem

Theorem 15 (The CLT) Let $X_1, X_2, ...$ be i.i.d. random variables with two finite moments. Let $\mu := EX_1$ and $\sigma^2 = VarX_1$. Then,

$$\frac{\sum_{j=1}^{n} X_j - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} N(0,1). \tag{70}$$

Elementary probability texts prove this by appealing to the convergence theorem for moment generating functions. This approach does not work if we know only that X_1 has two finite moments, however. However, by using characteristic functions, we can relax the assumptions to the finite mean and variance case, as stated.

Proof of the CLT. Define

$$T_n := \frac{\sum_{j=1}^n X_j - n\mu}{\sigma\sqrt{n}}. (71)$$

Then,

$$\phi_{T_n}(t) = \mathbf{E} \left[\prod_{j=1}^n \exp\left(it\left(\frac{X_j - \mu}{\sigma\sqrt{n}}\right)\right) \right]$$

$$= \prod_{j=1}^n \mathbf{E} \left[\exp\left(it\left(\frac{X_j - \mu}{\sigma\sqrt{n}}\right)\right) \right],$$
(72)

thanks to independence; see (42) on page 7. Let $Y_j := (X_j - \mu)/\sigma$ denote the standardization of X_j . Then, it follows that

$$\phi_{T_n}(t) = \prod_{j=1}^n \phi_{Y_j} \left(t / \sqrt{n} \right) = \left[\phi_{Y_1} \left(t / \sqrt{n} \right) \right]^n, \tag{73}$$

because the Y_j 's are i.i.d. Recall the Taylor expansion, $e^{ix}=1+ix-\frac{1}{2}x^2+\cdots$, and write $\phi_{Y_1}(s)$ as $\mathrm{E}[e^{itY_1}]=1+it\mathrm{E}Y_1-\frac{1}{2}t^2\mathrm{E}[Y_1^2]+\cdots=1-\frac{1}{2}t^2+\cdots$. Thus,

$$\phi_{T_n}(t) = \left[1 - \frac{t^2}{2n} + \dots\right]^n \to e^{-t^2/2}.$$
 (74)

See (57) on page 9. Because $e^{-t^2/2}$ is the characteristic function of N(0,1), this and the convergence theorem (Theorem 15 on page 11) together prove the CLT.

The CLT has a multidimensional counterpart as well. Here is the statement.

Theorem 16 Let X_1, X_2, \ldots be i.i.d. k-dimensional random vectors with mean vector $\boldsymbol{\mu} := EX_1$ and covariance matrix $\boldsymbol{Q} := Cov \boldsymbol{X}$. If \boldsymbol{Q} is non-singular, then

$$\frac{\sum_{j=1}^{n} \boldsymbol{X}_{j} - n\boldsymbol{\mu}}{\sqrt{n}} \stackrel{d}{\to} N_{k}(\boldsymbol{0}, \boldsymbol{Q}). \tag{75}$$

9.2 (Weak) Law of Large Numbers

Theorem 17 (Law of Large Numbers) Suppose $X_1, X_2, ...$ are i.i.d. and have a finite first moment. Let $\mu := EX_1$. Then,

$$\frac{\sum_{j=1}^{n} X_j}{n} \stackrel{P}{\to} \mu. \tag{76}$$

Proof. We will prove this in case there is also a finite variance. The general case is beyond the scope of these notes. Thanks to the CLT (Theorem 15, page 11), $(X_1 + \cdots + X_n)/n$ converges in distribution to μ . Slutsky's theorem (Theorem 8, page 8) proves that convergence holds also in probability.

9.3 Variance Stabilization

Let X_1, X_2, \ldots be i.i.d. with $\mu = EX_1$ and $\sigma^2 = Var X_1$ both defined and finite. Define the partial sums,

$$S_n := X_1 + \dots + X_n. \tag{77}$$

We know that: (i) $S_n \approx n\mu$ in probability; and (ii) $(S_n - n\mu) \stackrel{d}{\approx} N(0, n\sigma^2)$. Now use Taylor expansions: For any smooth function h,

$$h(S_n/n) \approx h(\mu) + \left(\frac{S_n}{n} - \mu\right) h'(\mu),$$
 (78)

in probability. By the CLT, $(S_n/n) - \mu \stackrel{d}{\approx} N(0, \sigma^2/n)$. Therefore, Slutsky's theorem (Theorem 8, page 8) proves that

$$\sqrt{n} \left[h\left(\frac{S_n}{n}\right) - h(\mu) \right] \stackrel{d}{\to} N\left(0, \sigma^2 |h'(\mu)|^2\right). \tag{79}$$

[Technical conditions: h' should be continuously-differentiable in a neighborhood of μ .]

9.4 Refinements to the CLT

There are many refinements to the CLT. Here is a particularly well-known one. It gives a description of the farthest the distribution function of normalized sums is from the normal.

Theorem 18 (Berry-Esseen) If $\rho := \mathbb{E}\{|X_1|^3\} < \infty$, then

$$\max_{-\infty < a < \infty} \left| P\left\{ \frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma \sqrt{n}} \le a \right\} - \Phi(a) \right| \le \frac{3\rho}{\sigma^3 \sqrt{n}}. \tag{80}$$

10 Conditional Expectations

Let us begin by recalling some basic notions of conditioning from elementary probability. Throughout this section, X denotes a random variable and $Y := (Y_1, \ldots, Y_n)$ an n-dimensional random vector.

10.1 Conditional Probabilities and Densities

If X, Y_1, \ldots, Y_n are all discrete random variables, then the conditional mass function of X, given that Y = y, is

$$p_{X|Y}(x|y) := \frac{P\{X = x, Y_1 = y_1, \dots, Y_n = y_n\}}{P\{Y_1 = y_1, \dots, Y_n = y_n\}},$$
(81)

provided that $P\{Y = y\} > 0$. This is a bona fide mass function [as a function of the variable x] for every fixed choice of y. [It doesn't make sense to worry about its behavior in the variables y_1, \ldots, y_n .]

Similarly, if the distribution of (X, Y_1, \dots, Y_n) is absolutely continuous, then the conditional density function of X, given that Y = y, is

$$f_{X|Y}(x \mid \boldsymbol{y}) := \frac{f_{X,Y}(x, y_1, \dots, y_n)}{f_{Y}(y_1, \dots, y_n)},$$
(82)

provided that the observed value y is such that the joint density $f_{X,Y}$ of the random vector (X,Y) satisfies

$$f_{\mathbf{Y}}(y_1, \dots, y_n) > 0. \tag{83}$$

Note that (83) is entirely possible, though $P\{Y = y\} = 0$ simply because Y has an absolutely continuous distribution. Condition (83) is quite natural in the following sense: Let \mathbb{B} denote the collection of all n-dimensional vectors y such that $f_Y(y_1, \ldots, y_n) = 0$. Then,

$$P\{Y \in \mathbb{B}\} = \int_{\mathbb{B}} f_{Y}(y_1, \dots, y_n) \, dy_1 \cdots dy_n = 0.$$
 (84)

In other words, we do not have to worry about defining $f_{X|Y}(x|y)$ when y is not in \mathbb{B} .

10.2 Conditional Expectations

If we have observed that Y = y, for a known vector $y = (y_1, ..., y_n)$, then the best linear predictor of X is the [classical] conditional expectation

$$E(X \mid \boldsymbol{Y} = \boldsymbol{y}) := \begin{cases} \sum_{x} x P\{X = x \mid \boldsymbol{Y} = \boldsymbol{y}\} & \text{if } (X, \boldsymbol{Y}) \text{ is discrete,} \\ \int_{-\infty}^{\infty} x f_{X|\boldsymbol{Y}}(x \mid \boldsymbol{y}) dx & \text{if } (X, \boldsymbol{Y}) \text{ has a joint pdf.} \end{cases}$$
(85)

The preceding assumes tacitly that the sum/integral converges absolutely. More generally, we have for any nice function φ ,

$$E(\varphi(X) | \mathbf{Y} = \mathbf{y}) := \begin{cases} \sum_{x} \varphi(x) P\{X = x | \mathbf{Y} = \mathbf{y}\} & \text{if discrete,} \\ \int_{-\infty}^{\infty} \varphi(x) f_{X|\mathbf{Y}}(x | \mathbf{y}) dx & \text{if joint pdf exists,} \end{cases}$$
(86)

provided that the sum/integral converges absolutely. The preceding is in fact a theorem, but a careful statement requires writing too many technical details from integration theory.

10.3 An Intuitive Interpretation

The basic use of conditional expectations is this: If we observe that Y = y, then we predict X, based only on our observation that Y = y, as E(X | Y = y).

Example 19 We perform 10 independent Bernoulli trials [p := probability of success per trial]. Let <math>X denote the total number of successes. We know that X has a Bin(10,p) distribution. If Y := the total number of successes in the first 5 trials, then you should check that <math>E(X | Y = 0) = 5p. More generally, E(X | Y = y) = y + 5p for all $y \in \{0, ..., 5\}$.

The previous example shows you that it is frequently more convenient to use a slightly different form of conditional expectations: We write $E(X \mid Y)$ for the random variable whose value is $E(X \mid Y = y)$ when we observe that Y = y. In the previous example, this definition translates to the following computation: $E(X \mid Y) = Y + 5p$. This ought to make very good sense to you, before you read on!

The classical Bayes' formula for conditional probabilities has an analogue for conditional expectations. Suppose (X, Y) has a joint density function $f_{X,Y}$.

Then,

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$= \int_{-\infty}^{\infty} x \left(\int_{\mathbf{R}^n} f_{X,\mathbf{Y}}(x, y_1, \dots, y_n) d\mathbf{y} \right) dx$$

$$= \int_{-\infty}^{\infty} x \left(\int_{\mathbf{R}^n} f_{X|\mathbf{Y}}(x | \mathbf{y}) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y} \right) dx$$

$$= \int_{\mathbf{R}^n} \left(\int_{-\infty}^{\infty} x f_{X|\mathbf{Y}}(x | \mathbf{y}) dx \right) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y}$$

$$= \int_{\mathbf{R}^n} E(X | \mathbf{Y} = \mathbf{y}) f_{\mathbf{Y}}(\mathbf{y}) d\mathbf{y}$$

$$= E\left\{ E(X | \mathbf{Y}) \right\}.$$
(87)

This is always true. That is, we always have

$$E(X) = E\{E(X \mid Y)\}, \qquad (88)$$

provided that $\mathrm{E}|X| < \infty$.