
Chi-squared tests

Math 6070, Spring 2013

Davar Khoshnevisan
University of Utah

February 14, 2013

Contents

1 MLE for goodness-of fit 2

2 The Multivariate normal distribution 3

3 Central limit theorems 5

4 Application to goodness-of-fit 8
4.1 Testing for a finite distribution . . . . . . . . . . . . . . . . . . . 8
4.2 Testing for a Density . . . . . . . . . . . . . . . . . . . . . . . . . 9

“Chi-squared tests” refers to a family of statistical test whose large-sample
asymptotics are related in one way or another to the χ2 family of distributions.
These are our first examples of “non-parametric procedures.” Let me men-
tion one particularly useful chi-squared test here before we get started properly.
Consider a population whose distribution is believed to follow a known density
function f—say, exponential(12). Then there is a chi-squared test that can
be used to check our hypothesis. This chi-squared test is easy to implement,
and works well for large-sized samples. First, we study a related parametric
estimation problem. Then we find a consistent MLE. And finally, we use our
estimate to devise a test for our hypothesis. This will be done in several stages.
It is likely that you already know something of the resulting “χ2-test” (page 8).
But here you will find a rigorous proof, in line with the spirit of this course, of
the fact that the said χ2-test actually works. A [convincing but] non-rigorous
justification of the same fact can be found in pages 314–316 of the excellent
monograph of P. Bickel and K. Doksum [Mathematical Statistics, Holden Day,
First edition, 1977]. There, a likelihood principle argument is devised, which
“usually” works.
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1 MLE for goodness-of fit

Suppose X1, . . . , Xn is an independent sample from a finite population. More
precisely, let t1, . . . , tm bem distinct numbers (or “types”), and θ := (θ1 , . . . , θm)
anm-dimensional probability vector. Consider i.i.d. random variablesX1, . . . , Xn

such that P{X1 = ti} = θi for all 1 ≤ i ≤ m. That is, each X is of type ti with
probability θi. We wish to find a (actually, “the”) MLE for the mass function
of the Xi’s. That is, the MLE for the vector θ := (θ1 , . . . , θm). Note that, here,
Θ is the collection of all θ such that 0 ≤ θ1, . . . , θm ≤ 1 and θ1 + · · ·+ θm = 1.

This is a kind of parametric problem, of course, and we proceed by computing
the MLE.

Define N := (N1, . . . , Nm) to be the count statistics for the various types.
Using column-vector notation, this means that

N =


∑n

j=1 I {Xj = t1}
...∑n

j=1 I {Xj = tm}

 . (1)

In words, Nk denotes the number of occurances of type k in the sample X :=
(X1 , . . . , Xn). Note that

∑m
j=1Nj = n, so the Nj ’s are obviously dependent

rv’s. Let us calculate their joint mass function.
Let n = (n1 , . . . , nm) be anm-vector of positive integers such that

∑m
j=1 nj =

n. Such n’s are the possible values of N . Moreover,

Pθ{N = n} =
∑

Pθ {X1 = s1 , . . . , Xn = sn} , (2)

where the sum is taken over all s = (s1 , . . . , sn) such that n1 of them are of
type t1, n2 of type t2, etc. For all such s,

Pθ {X1 = s1 , . . . , Xn = sn} = θn1
1 · · · θnm

m . (3)

Moreover, the number of all such s’s is exactly(
n

n1 , . . . , nm

)
:=

n!

n1! · · ·nm!
. (4)

Therefore, we have derived the following.

Lemma 1. The random n-vector N has the multinomial distribution with pa-
rameters (n ,θ). That is, for all integers n1, . . . , nm ≥ 1 such that n1+· · ·+nm =
n,

Pθ {N = n} =

(
n

n1 , . . . , nm

)
θn1
1 · · · θnm

m . (5)

Consider the special case n = 2. Then, N1 ∼ binomial(n , θ), and N2 =
n−N1. So the multinomial distribution is an extension of the binomial in this
sense. We write “N ∼ Multinomial(n ,θ)” in place of the statement that “N
is multinomial with parameters (n ,θ).”
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It turns out that we can compute the MLE for θ by using N as the basic
data. To do so, we use Lemma 1 and first find the log-likelihood as follows:

L(θ) = A+

m∑
i=1

Ni ln θi, (6)

where A does not depend on θ. The case where some θi ∈ {0 , 1} is trivial
and can be ruled out easily. Therefore, we may assume that 0 < θi < 1 for all
i = 1, . . . ,m. Thus, for all l = 1, . . . ,m,

∂

∂θl
L(θ) =

m∑
i=1

(
Ni

θi
· ∂θi
∂θl

)
. (7)

As θ varies in Θ, θ1, . . . , θm roam freely subject to the single condition that
θm = 1−

∑m−1
i=1 θi. In other words, (∂θi/∂θl) = 0 for all i = 1, . . . ,m−1 different

from l, but (∂θm/∂θl) = −1. This proves that (∂L(θ)/∂θl) = (Nm/θm)−(Nl/θl)
for all l = 1, . . . ,m − 1. Set it equal to zero (for MLE) to see that there must
exist γ such that Nj = γθj for all j = 1, . . . ,m. But

∑m
j=1Nj = n, whereas∑m

j=1 θj = 1. Therefore, γ = n. We have proved the following.

Lemma 2. The MLE for θ based on N1, . . . , Nm is given by

θ̂ :=

N1/n
...

Nm/n

 . (8)

[To prove that ∂L/∂θl = 0 indeed yields a maximum, you take second deriva-
tives and apply similar arguments.]

2 The Multivariate normal distribution

We have seen already the multinomial distribution, which is a probability dis-
tribution for discrete m-dimensional random vectors. You should note that the
multinomial distribution is a generalization of the binomial distribution. And,
as it turns out, multinomial distributions have a multivariate normal approx-
imation that is a generalization of the better-known central limit theorem for
univariate random variables. In this section, I will hash out a rough outline of
the theory of multivariate normal distributions [and random vectors]. The math-
ematical underpinnings of this theory is explained in math. 6010, and should
not be missed.

Definition 3. Let X := (X1 , . . . , Xm)′ denote an m-dimensional random vec-
tor. It mean vector is defined as

E(X) :=

E(X1)
...

E(Xm)

 ,
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and its covariance matrix is defined as the matrix whose (i , j)th entry is Cov(Xi , Xj);
since Cov(Xi , Xi) = Var(Xi),

Cov(X) :=


Var(X1) Cov(X1 , X2) · · · Cov(X1 , Xm)

Cov(X2 , X1) Var(X2) · · · Cov(X2 , Xm)
...

...
. . .

...
Cov(Xm , X1) Cov(Xm , X2) · · · Var(Xm)

 .

Of course, we are tacitly assuming that the means, variances, and covariances
are finite.

If x is an m-dimensional nonrandom vector, then x′ Cov(X)x is always a
scalar. One can show that, in fact, that scalar is equal to the variance of the
random scalar quantity x′X. That is,

Var (x′X) = x′ Cov(X)x.

Since the variance of a random variable is always ≥ 0, it follows that if Σ :=
Cov(X), then

x′Qx ≥ 0 for all x.

Any matrix that has the preceding property is called positive semidefinite, and
we just saw that all covariance matrices are positive semidefinite. The converse
is also true, but harder to prove.

Proposition 4. Let Q be a symmetric m×m matrix. Then Q is the covariance
of a random vector X if and only if Q is positive semidefinite. Also, a symmetric
m×m matrix Q is positive semidefinite if and only if all of eigenvalues are ≥ 0.

We say that Q is positive definite if

x′Qx > 0 for all x.

Proposition 5. A symmetric m×m matrix Q is positive definite if and only
if all of its eigenvalues are > 0. In particular, such a matrix is invertible.

Definition 6. Given an m-dimensional vector µ and an m × m-dimensional
covariance matrix Q, the multivariate normal pdf with mean vector µ and
covariance matrix Q is

f(x) :=
1

(2π)m/2|detQ|1/2
exp

(
−1

2
(x− µ)′Q−1(x− µ)

)
.

This is a proper pdf on Rm. We say that X ∼ Nm(µ ,Q), when X =
(X1 , . . . , Xm)′, and the joint pdf of (X1 , · · · , Xm) is f .

The preceding function f is indeed a proper joint density in the sense that
f(x) ≥ 0 for all x := (x1 , . . . , xm)′ and∫ ∞

−∞
· · ·
∫ ∞
−∞

f(x1 , . . . , xm) dx1 · · · dxm = 1.

So it makes sense to say “X ∼ Nm(µ ,Q).”
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Proposition 7. If X ∼ Nm(µ ,Q) for some vector µ := (µ1 , . . . , µm)′ and
matrix Q, then

µ = E(X), and Cov(X) = Q.

Thus, we refer to µ and Q respectively as the mean vector and covariance
matrix of the Nm(µ ,Q) distribution.

The following states that a random vector is distributed as a multivariate
normal if and only if all of possible [nonrandom] linear combinations of its
components are distributed as [univariate] normals.

Proposition 8. X ∼ Nm(µ ,Q) if and only if t′X ∼ N(t′µ , t′Qt) for all
nonrandom m-vectors t := (t1 , . . . , tm)′.

In other words, the preceding states that the property about the linear com-
binations of the components characterizes completely the multivariate normal
distribution. An advantage of the preceding characterization is that the non-
singularity of Q is not mentioned anywhere explicitly. Therefore, we can define
the following slight generalization of multivariate normals to the case that Q is
positive semidefinite [as opposed to being positive definite]:

Definition 9. Let X be a random m-vector. We say that X ∼ Nm(µ ,Q),
for some µ = (µ1 , . . . , µm)′ and some m ×m symmetric positive semidefinite
matrix Q, when

t′X ∼ N(t′µ , t′Qt) for all t := (t1 , . . . , tm)′.

3 Central limit theorems

Choose and fix a probability vector θ, and assume it is the true one so that we
write P, E, etc. in place of the more cumbersome Pθ, Eθ, etc.

We can use (1) to say a few more things about the distribution of N . Note
first that (1) is equivalent to the following:

N =

n∑
j=1

 I {Xj = t1}
...

I {Xj = tm}

 :=

n∑
j=1

Yj . (9)

We can compute directly to find that

EY1 = θ, (10)

and

CovY1 =


θ1(1− θ1) −θ1θ2 · · · −θ1θm
−θ1θ2 θ2(1− θ2) · · · −θ2θm

...
...

. . .
...

−θmθ1 −θmθ2 · · · θm(1− θm)


:= Q0.

(11)
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Because Y1, . . . ,Yn are i.i.d. random vectors, the following is a consequence of
the preceding, considered in conjunction with the multidimensional CLT.

Theorem 10. As n→∞,

N − nθ√
n

d→ Nm (0 ,Q0) . (12)

There is a variant of Theorem 10 which is more useful to us. Define

Ñ :=

 (N1 − nθ1)/
√
θ1

...
(Nm − nθm)/

√
θm

 . (13)

This too is a sum of n i.i.d. random vectors Ỹ1, . . . , Ỹn, and has

EỸ1 := 0 and CovỸ1 = Q, (14)

where Q is the (m×m)-dimensional covariance matrix given below:

Q =


1− θ1 −

√
θ1θ2 · · · −

√
θ1θm

−
√
θ1θ2 1− θ2 · · · −

√
θ2θm

...
...

. . .
...

−
√
θmθ1 −

√
θmθ2 · · · 1− θm

 . (15)

Then we obtain,

Theorem 11. As n→∞,

1√
n
Ñ

d→ Nm (0 ,Q) . (16)

Remark 12. One should be a little careful at this stage because Q is singular.
[For example, consider the case m = 2.] However, Nm(0 ,Q) makes sense even
in this case. The reason is this: If C is a non–singular covariance matrix, then
we know what it means for X ∼ Nm(0 ,C), and a direct computation reveals
that for all real numbers t and all m-vectors ξ,

E [exp (itξ′X)] = E

[
exp

(
− t

2

2
ξ′Cξ

)]
. (17)

This defines the characteristic function of the random variable ξ′X uniquely.
There is a theorem (Mann–Wold device) that says that a unique description of
the characteristic function of ξ′X for all ξ also describes the distribution of X
uniquely. This means that any random vector X that satisfies (17) for all t ∈ R
and ξ ∈ Rm is Nm(0 ,C). Moreover, this approach does not require C to be
invertible. To learn more about multivariate normals, you should attend Math.
6010.
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As a consequence of Theorem 11 we have the following: As n→∞,

1√
n

∥∥∥Ñ∥∥∥2 d→ ‖Nm(0 ,Q)‖2 . (18)

[Recall that ‖x‖2 = x21 + · · · + x2m.] Next, we identify the distribution of
‖Nm(0 ,Q)‖2. A direct (and somewhat messy) calculation shows that Q is
a projection matrix. That is, Q2 := QQ = Q. It follows fairly readily from
this that its eigenvalues are all zeros and ones. Here is the proof: Let λ be an
eigenvalue and x an eigenvector. Without loss of generality, we may assume
that ‖x‖ = 1; else, consider the eigenvector y := x/‖x‖ instead. This means
that Qx = λx. Therefore, Q2x = λ2x. Because Q2 = Q, we have proven that
λ = λ2, whence it follows that λ ∈ {0 , 1}, as promised. Write Q in its spectral
form. That is,

Q = P ′


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λm

P , (19)

where P is an orthogonal (m × m) matrix. [This is because Q is positive
semidefinite. You can learn more on this in Math. 6010.] Define

Λ :=


√
λ1 0 · · · 0
0

√
λ2 · · · 0

...
...

. . .
...

0 0 · · ·
√
λm

P . (20)

Then, Q = Λ′Λ, which is why Λ is called the square root of Q. Let Z be an m-
vector of i.i.d. standard normals and consider ΛZ. This is multivariate normal
(check characteristic functions), E[ΛZ] = 0, and Cov(ΛZ) = Λ′Cov(Z)Λ =
Λ′Λ = Q. In other words, we can view Nm(0 ,Q) as ΛZ. Therefore,

‖Nm(0 ,Q)‖2 d
= ‖ΛZ‖2 =

m∑
i=1

λjZ
2
i . (21)

Because λi ∈ {0 , 1}, we have proved that ‖Nm(0 ,Q)‖ ∼ χ2
r, where r =

rank(Q). Another messy but elementary computation shows that the rank of
Q is m− 1. [Roughly speaking, this is because the θi’s have only one source of
linear dependence. Namely, that θ1 + · · ·+ θm = 1.] This proves that

1√
n

∥∥∥Ñ∥∥∥2 d→ χ2
m−1. (22)

Write out the left-hand side explicitly to find the following:

Theorem 13. As n→∞,

m∑
i=1

(Ni − nθi)2

nθi

d→ χ2
m−1. (23)

It took a while to get here, but we will soon be rewarded for our effort.
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4 Application to goodness-of-fit

4.1 Testing for a finite distribution

In light of the development of Section 1, can paraphrase Theorem 13 as saying
that under Pθ, as n→∞,1

nXn(θ)
d→ χ2

m−1, where Xn(θ) :=

m∑
i=1

(
θ̂i − θi

)2
θi

. (24)

Therefore, we are in a position to derive an asymptotic (1− α)-level confidence
set for θ. Define for all a > 0,

Cn(a) :=
{
θ ∈ Θ : Xn(θ) ≤ a

n

}
. (25)

Equation (24) shows that for all θ ∈ Θ,

lim
n→∞

Pθ {θ ∈ Cn(a)} = P
{
χ2
m−1 ≤ a

}
. (26)

We can find (e.g., from χ2-tables) a number χ2(α) such that

P
{
χ2
m−1 > χ2

m−1(α)
}

= α. (27)

It follows that

Cn

(
χ2
m−1(α)

)
is an asymptotic level (1− α) confidence interval for θ. (28)

The statistics Xn(θ) is a little awkward to work with, and this makes the
computation of Cn(χ2

m−1(α)) difficult. Nevertheless, it is easy enough to use
Cn(χ2

m−1(α)) to test simple hypotheses for θ.
Suppose we are interested in the test

H0 : θ = θ0 versus H1 : θ 6= θ0, (29)

where θ0 = (θ01, . . . , θ0m) is a (known) probability vector in Θ. Then we can
reject H0 (at asymptotic level (1− α)) if θ0 6∈ Cn(χ2

m−1(α)). In other words,

we reject H0 if Xn(θ0) >
χ2
m−1(α)

n
. (30)

Because Xn(θ0) is easy to compute, (29) can be carried out with relative ease.
Moreover, Xn(θ0) has the following interpretation: Under H0,

Xn(θ0) =

m∑
i=1

(Obsi − Expi)
2

Expi

, (31)

1The statistic Xn(θ) was discovered by K. Pearson in 1900, and is therefore called the
“Pearson χ2 statistic.” Incidentally, the term “standard deviation” is also due to Karl Pearson
(1893).
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where Obsi denotes the number of observations in the sample that are of type
i, and Expi := θ0i is the expected number—under H0—of sample points that
are of type i.

Next we study two examples.

Example 14. A certain population contains only the digits 0, 1, and 2. We
wish to know if every digit is equally likely to occur in this population. That is,
we wish to test

H0 : θ = ( 1
3 ,

1
3 ,

1
3 ) versus H1 : θ 6= ( 1

3 ,
1
3 ,

1
3 ). (32)

To this end, suppose we make 1, 000 independent draws from this population,
and find that we have drawn 300 zeros (θ̂1 = 0.3), 340 ones (θ̂2 = 0.34), and

360 twos (θ̂3 = 0.36). That is,

Types Obs Exp (Obs−Exp)2/Exp

0 0.30 1/3 3.33× 10−3

1 0.34 1/3 1.33× 10−4

2 0.36 1/3 2.13× 10−3

Total 1.00 1 0.00551 (approx.)

Suppose we wish to test (32) at the traditional (asymptotic) level 95%. Here,
m = 3 and α = 0.05, and we find from chi-square tables that χ2

2(0.05) ≈ 5.9991.
Therefore, according to (30), we reject if and only if Xn(θ0) ≈ 0.00551 is greater
than χ2

2(0.05)/1000 ≈ 0.005991. Thus, we do not reject the null hypothesis
at asymptotic level 95%. On the other hand, χ2

2(0.1) ≈ 4.605, and Xn(θ0) is
greater than χ2

2(0.1)/1000 ≈ 0.004605. Thus, had we performed the test at
asymptotic level 90% we would indeed reject H0. In fact, this discussion has
shown that the “asymptotic P -value” of our test is somewhere between
0.05 and 0.1. It is more important to report/estimate P -values than to make
blanket declarations such as “accept H0” or “reject H0.” Consult your Math.
5080–5090 text(s).

To illustrate this example further, suppose the table of observed vs. expected
remains the same but n = 2000. Then, Xn(θ0) ≈ 0.00551 is a good deal greater
than χ2

2(0.05)/n ≈ 0.00299955 and we reject H0 soundly at the asymptotic level
95%. In fact, in this case the P -value is somewhere between 0.005 and 0.0025
(check this!).

4.2 Testing for a Density

Suppose we wish to know if a certain data-set comes from the exponential(12)
distribution (say!). So let X1, . . . , Xn be an independent sample. We have

H0 : X1 ∼ exponential(12) versus H1 : X1 6∼ exponential(12). (33)
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Now take a fine mesh 0 < z1 < z2 < . . . < zm <∞ of real numbers. Then,

PH0 {zj ≤ X1 ≤ zj+1} = 12

∫ zj+1

zj

e−12r dr = e−12zj − e−12zj+1 . (34)

These are θ0j ’s, and we can test to see whether or not θ = θ0, where θj is
the true probability P{zj ≤ X1 ≤ zj+1} for all j = 1, . . . ,m. The χ2-test of

the previous section handles just such a situation. That is, let θ̂j denote the
proportion of the data X1, . . . , Xn that lies in [zj , zj+1]. Then (30) provides us
with an asymptotic (1 − α)-level test for H0 that the data is exponential(12).
Other distributions are handled similarly, but θ0j is in general

∫ zj+1

zj
f0(x) dx,

where f0 is the density function under H0.

Example 15. Suppose we wish to test (33). Let m = 5, and define zj =
(j − 1)/10 for j = 1, . . . , 5. Then,

θ0j = PH0

{
j − 1

10
≤ X1 ≤

j

10

}
= exp

(
−6(j − 1)

5

)
− exp

(
−6j

5

)
. (35)

That is,

j θ0j

1 0.6988
2 0.2105
3 0.0634
4 0.0191
5 0.0058

Consider the following (hypothetical) data: n = 200, and

j θ0j θ̂j

1 0.6988 0.7
2 0.2105 0.2
3 0.0634 0.1
4 0.0191 0
5 0.0058 0

Then, we form the χ2-table, as before, and obtain

Types Exp Obs (Obs−Exp)2/Exp

1 0.6988 0.7 2.06× 10−6

2 0.2105 0.2 0.00052
3 0.0634 0.1 0.0211
4 0.0191 0 0.0191
5 0.0058 0 0.0058

Total 0.9976 1 0.04655 (approx.)
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Thus, Xn(θ0) ≈ 0.04655. You should check that 0.05 ≤ P -value ≤ 0.1. In fact,
the P -value is much closer to 0.1. So, at the asymptotic level 95%, we do not
have enough evidence against H0.

Some things to think about: In the totals for “Exp,” you will see that the
total is 0.9976 and not 1. Can you think of why this has happened? Does this
phenomenon render our conclusions false (or weaker than they may appear)?
Do we need to fix this by including more types? How can we address it in a
sensible way? Would addressing this change the final conclusion?
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