Math 6070-1, Spring 2006 Solutions to Homework 1

 Compute, carefully, the moment generating function of a Gamma(α, β). Use it to compute the moments of a Gamma-distributed random variable.

Solution: Recall that

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \qquad 0 < x < \infty.$$

Therefore,

$$M(t) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_0^{\infty} x^{\alpha - 1} e^{-(\beta - t)x} dx.$$

If $t \geq \beta$, then $M(t) = \infty$. But if $t < \beta$ then $M(t) = \beta^{\alpha}/(\beta - t)^{\alpha}$. Its derivatives are $M'(t) = \beta^{\alpha}\alpha(\beta - t)^{-\alpha - 1}$, $M''(t) = \beta^{\alpha}\alpha(\alpha - 1)(\beta - t)^{-\alpha - 2}$, and so on. The general term is $M^{(k)}(t) = \beta^{\alpha}(\beta - t)^{-\alpha - k}\prod_{\ell=0}^{k-1}(\alpha - \ell)$. Thus, $\mathbf{E}X = M'(0) = \alpha/\beta$, $\mathbf{E}(X^2) = M''(0) = \alpha(\alpha - 1)/\beta^2$, and so. In general, we have $\mathbf{E}(X^k) = \beta^{-k}\prod_{j=0}^{k-1}(\alpha - j)$.

2. Let X_1, X_2, \ldots, X_n be an independent sample (i.e., they are i.i.d.) with finite mean $\mu = EX_1$ and variance $\sigma^2 = VarX_1$. Define

$$\hat{\sigma}_n^2 := \frac{1}{n} \sum_{j=1}^n \left(X_j - \bar{X}_n \right)^2, \tag{1}$$

where $\bar{X}_n := (X_1 + \cdots + X_n)/n$ denotes the sample average. First, compute $E(\hat{\sigma}_n^2)$. Then prove, carefully, that $\hat{\sigma}_n^2$ converges in probability to σ^2 .

Solution: $\hat{\sigma}_n^2 = n^{-1} \sum_{j=1}^n X_j^2 - (\bar{X}_n)^2$. Therefore, $\mathrm{E}\hat{\sigma}_n^2 = \mathrm{E}[X_1^2] - \mathrm{E}[(\bar{X}_n)^2]$. But $\mathrm{E}X_1^2 = \mathrm{Var}(X_1) + \mu^2 = \sigma^2 + \mu^2$. Similarly, $\mathrm{E}(\bar{X}_n^2) = \mathrm{Var}(\bar{X}_n) + (\mathrm{E}\bar{X}_n)^2 = (\sigma^2/n) + \mu^2$. Therefore, $\mathrm{E}(\hat{\sigma}_n^2) = \sigma^2(n-1)/n$. As regards the large-sample theory, we apply the law of large numbers twice: $\bar{X}_n \xrightarrow{\mathrm{P}} \mu$; and $n^{-1} \sum_{i=1}^n X_i^2 \xrightarrow{\mathrm{P}} \sigma^2 + \mu^2$. This proves that $\hat{\sigma}_n^2$ is a consistent estimator of σ^2 .

- 3. Let U have the Uniform- $(0, \pi)$ distribution.
 - (a) Prove that if F is a distribution function and F^{-1} —its inverse function exists, then the distribution function of $X := F^{-1}(U)$ is F.

Solution: $P\{X \le x\} = P\{U \le F(x)\} = F(x)$, whence we have $F_X = F$, as desired.

(b) Use the preceding to prove that $X := \tan U$ has the Cauchy distribution. That is, the density function of Y is

$$f_X(a) := \frac{1}{\pi (1+a^2)}, \qquad -\infty < a < \infty.$$
 (2)

Solution: Let C have the Cauchy distribution. Then,

$$F_C(a) = P\{C \le a\} = \int_{-\infty}^a \frac{\mathrm{d}u}{\pi(1+u^2)}$$
$$= \frac{1}{\pi}\arctan a - \frac{1}{\pi}\arctan(-\infty) = \frac{1}{\pi}\arctan(a) + \frac{1}{2}$$

Therefore, $F_C^{-1}(a) = \arctan(\pi x - \frac{\pi}{2})$, and $F_C^{-1}(U) \sim \text{Cauchy.}$ Note that $V := \pi U - (\pi/2) \sim \text{Uniform-}(-\pi/2, \pi/2)$. So $\arctan(V)$ is indeed Cauchy, where $V \sim \text{Uniform-}(-\pi/2, \pi/2)$.

(c) Use the preceding to find a function h such that Y := h(U) has the Exponential (λ) distribution.

Solution: If $X \sim \text{Exp}(\lambda)$ then $F(x) = \int_{-\infty}^{x} \lambda e^{-\lambda z} dz = 1 - e^{-\lambda x}$. Thus, $h(x) := F^{-1}(x) = -\lambda^{-1} \ln(1-x)$, and $F^{-1}(U) \sim \text{Exp}(\lambda)$. Note that 1 - U has the same distribution as U. So $-\lambda^{-1} \ln(U) \sim \text{Exponential}(\lambda)$.

4. A random variable X has the logistic distribution if its density function is

$$f(x) = \frac{e^{-x}}{(1 + e^{-x})^2}, \qquad -\infty < x < \infty.$$
(3)

(a) Compute the distribution function of X. Solution: Set $y := 1 + e^{-x}$ to find that that

$$F(a) = \int_{-\infty}^{a} \frac{e^{-x}}{(1 + e^{-x})^2} dx = \int_{1 + \exp(-a)}^{\infty} \frac{dy}{y^2}$$
$$= \frac{1}{1 + e^{-a}}, \quad -\infty < a < \infty.$$

(b) Compute the moment generating function of X. Solution: Again set $y := e^{-x}$ to find that

$$M(t) = \int_{-\infty}^{\infty} \frac{e^{(t-1)x}}{(1+e^{-x})^2} \, \mathrm{d}x = \int_{0}^{\infty} \frac{y^{-t}}{(1+y)^2} \, \mathrm{d}y.$$

If $|t| \ge 1$ then this is ∞ [consider the integral for small y when $t \ge 1$, or large y when $t \le -1$]. On the other hand, if |t| < 1 then this is

finite. Remarkably enough, M(t) can be computed explicitly when |t| < 1. Note that

$$\frac{1}{(1+y)^2} = \int_0^\infty z \mathrm{e}^{-z(1+y)} \,\mathrm{d}z.$$

Therefore,

$$M(t) = \int_0^\infty \left(\int_0^\infty z \mathrm{e}^{-z(1+y)} \,\mathrm{d}z \right) y^{-t} \,\mathrm{d}y$$
$$= \int_0^\infty \left(\int_0^\infty y^{-t} \mathrm{e}^{-zy} \,\mathrm{d}y \right) z \mathrm{e}^{-z} \,\mathrm{d}z,$$

because the order of integration can be reversed. A change of variable [w:=yz] shows that the inner integral is

$$\int_0^\infty y^{-t} \mathrm{e}^{-zy} \,\mathrm{d}y = z^{t-1} \int_0^\infty w^{-t} \mathrm{e}^{-w} \,\mathrm{d}w$$
$$= z^{t-1} \Gamma(1-t).$$

Therefore, whenever |t| < 1,

$$M(t) = \Gamma(1-t) \int_0^\infty z^t e^{-z} dz$$
$$= \Gamma(1-t)\Gamma(1+t).$$

There are other ways of deriving this identity as well. For instance, we can write $w := (1 + y)^{-1}$, so that $dw = -(1 + y)^{-2} dy$ and y = (1/w) - 1. Thus,

$$M(t) = \int_0^1 \left(\frac{1}{w} - 1\right)^{-t} dw$$

= $\int_0^1 w^t (1 - w)^{-t} dw = B(1 + t, 1 - t),$

where $B(a, b) := \int_0^1 w^{a-1} (1-w)^{b-1} dw$ denotes the "beta function." From tables (for instance), we know that $B(a, b) = \Gamma(a)\Gamma(b)/\Gamma(a+b)$. Therefore, $M(t) = \Gamma(1+t)\Gamma(1-t)/\Gamma(2) = \Gamma(1+t)\Gamma(1-t)$, as desired.

(c) Prove that $\mathbb{E}\{|X|^r\} < \infty$ for all r > 0.

Solution: We will prove a more general result: If $M(t) < \infty$ for all $t \in (-t_0, t_0)$ where $t_0 > 0$, then $E(|X|^k) < \infty$ for all $k \ge 1$. Recall that $EZ = \int_0^\infty P\{Z > t\} dt$ whenever $Z \ge 0$. Apply this with $Z := |X|^k$ to find that

$$\begin{split} \mathcal{E}(|X|^k) &= \int_0^\infty \mathcal{P}\left\{|X|^k > r\right\} \, \mathrm{d}r \\ &= \int_0^\infty \mathcal{P}\left\{|X| > r^{1/k}\right\} \, \mathrm{d}r \\ &= k \int_0^\infty \mathcal{P}\{|X| > s\} s^{k-1} \, \mathrm{d}s. \end{split}$$

[Set $s := r^{1/k}$.] Fix $t \in (-t_0, t_0)$. Then, by Chebyshev's inequality,

$$\mathbf{P}\{|X| > s\} = \mathbf{P}\left\{\mathbf{e}^{t|X|} \ge \mathbf{e}^{ts}\right\} \le \frac{\mathbf{E}[\mathbf{e}^{t|X|}]}{\mathbf{e}^{ts}}.$$

But $e^{t|x|} \leq e^{tx} + e^{-tx}$ for all $x \in \mathbf{R}$, with room to spare. Therefore, $E(r^{t|X|}) \leq M(t) + M(-t)$, whence it follows that for $t \in (-t_0, t_0)$ fixed and A := M(t) + M(-t), $P\{|X| > s\} \leq Ae^{-st}$. Thus,

$$\mathbf{E}(|X|^k) \le Ak \int_0^\infty s^{k-1} \mathrm{e}^{-st} \, \mathrm{d}s = Akt^k \Gamma(k) = Ak! t^k < \infty.$$