
Math 6070-1, Spring 2006

Solutions to Homework 1

1. Compute, carefully, the moment generating function of a Gamma(α , β).
Use it to compute the moments of a Gamma-distributed random variable.

Solution: Recall that

f(x) =
βα

Γ(α)
xα−1e−βx, 0 < x <∞.

Therefore,

M(t) =
βα

Γ(α)

∫ ∞
0

xα−1e−(β−t)x dx.

If t ≥ β, then M(t) = ∞. But if t < β then M(t) = βα/(β − t)α. Its
derivatives are M ′(t) = βαα(β− t)−α−1, M ′′(t) = βαα(α−1)(β− t)−α−2,

and so on. The general term is M (k)(t) = βα(β − t)−α−k
∏k−1
`=0 (α − `).

Thus, EX = M ′(0) = α/β, E(X2) = M ′′(0) = α(α − 1)/β2, and so. In

general, we have E(Xk) = β−k
∏k−1
j=0 (α− j).

2. Let X1, X2, . . . , Xn be an independent sample (i.e., they are i.i.d.) with
finite mean µ = EX1 and variance σ2 = VarX1. Define

σ̂2
n :=

1

n

n∑
j=1

(
Xj − X̄n

)2
, (1)

where X̄n := (X1+· · ·+Xn)/n denotes the sample average. First, compute
E(σ̂2

n). Then prove, carefully, that σ̂2
n converges in probability to σ2.

Solution: σ̂2
n = n−1

∑n
j=1X

2
j − (X̄n)2. Therefore, Eσ̂2

n = E[X2
1 ] −

E[(X̄n)2]. But EX2
1 = Var(X1) + µ2 = σ2 + µ2. Similarly, E(X̄2

n) =
Var(X̄n) + (EX̄n)2 = (σ2/n) + µ2. Therefore, E(σ̂2

n) = σ2(n − 1)/n. As
regards the large-sample theory, we apply the law of large numbers twice:

X̄n
P→ µ; and n−1

∑n
=1X

2
i

P→ σ2 +µ2. This proves that σ̂2
n is a consistent

estimator of σ2.

3. Let U have the Uniform-(0 , π) distribution.

(a) Prove that if F is a distribution function and F−1—its inverse function—
exists, then the distribution function of X := F−1(U) is F .
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Solution: P{X ≤ x} = P{U ≤ F (x)} = F (x), whence we have
FX = F , as desired.

(b) Use the preceding to prove that X := tanU has the Cauchy distribu-
tion. That is, the density function of Y is

fX(a) :=
1

π(1 + a2)
, −∞ < a <∞. (2)

Solution: Let C have the Cauchy distribution. Then,

FC(a) = P{C ≤ a} =

∫ a

−∞

du

π(1 + u2)

=
1

π
arctan a− 1

π
arctan(−∞) =

1

π
arctan(a) +

1

2
.

Therefore, F−1C (a) = arctan(πx − π
2 ), and F−1C (U) ∼ Cauchy. Note

that V := πU − (π/2) ∼ Uniform-(−π/2 , π/2). So arctan(V ) is
indeed Cauchy, where V ∼ Uniform-(−π/2 , π/2).

(c) Use the preceding to find a function h such that Y := h(U) has the
Exponential (λ) distribution.

Solution: If X ∼ Exp(λ) then F (x) =
∫ x
−∞ λe−λz dz = 1 − e−λx.

Thus, h(x) := F−1(x) = −λ−1 ln(1 − x), and F−1(U) ∼ Exp(λ).
Note that 1 − U has the same distribution as U . So −λ−1 ln(U) ∼
Exponential(λ).

4. A random variable X has the logistic distribution if its density function is

f(x) =
e−x

(1 + e−x)
2 , −∞ < x <∞. (3)

(a) Compute the distribution function of X.

Solution: Set y := 1 + e−x to find that that

F (a) =

∫ a

−∞

e−x

(1 + e−x)
2 dx =

∫ ∞
1+exp(−a)

dy

y2

=
1

1 + e−a
, −∞ < a <∞.

(b) Compute the moment generating function of X.

Solution: Again set y := e−x to find that

M(t) =

∫ ∞
−∞

e(t−1)x

(1 + e−x)2
dx =

∫ ∞
0

y−t

(1 + y)2
dy.

If |t| ≥ 1 then this is∞ [consider the integral for small y when t ≥ 1,
or large y when t ≤ −1]. On the other hand, if |t| < 1 then this is
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finite. Remarkably enough, M(t) can be computed explicitly when
|t| < 1. Note that

1

(1 + y)2
=

∫ ∞
0

ze−z(1+y) dz.

Therefore,

M(t) =

∫ ∞
0

(∫ ∞
0

ze−z(1+y) dz

)
y−t dy

=

∫ ∞
0

(∫ ∞
0

y−te−zy dy

)
ze−z dz,

because the order of integration can be reversed. A change of variable
[w := yz] shows that the inner integral is∫ ∞

0

y−te−zy dy = zt−1
∫ ∞
0

w−te−w dw

= zt−1Γ(1− t).

Therefore, whenever |t| < 1,

M(t) = Γ(1− t)
∫ ∞
0

zte−z dz

= Γ(1− t)Γ(1 + t).

There are other ways of deriving this identity as well. For instance,
we can write w := (1 + y)−1, so that dw = −(1 + y)−2 dy and y =
(1/w)− 1. Thus,

M(t) =

∫ 1

0

(
1

w
− 1

)−t
dw

=

∫ 1

0

wt(1− w)−t dw = B(1 + t , 1− t),

where B(a , b) :=
∫ 1

0
wa−1(1−w)b−1 dw denotes the “beta function.”

From tables (for instance), we know that B(a , b) = Γ(a)Γ(b)/Γ(a+b).
Therefore, M(t) = Γ(1+t)Γ(1−t)/Γ(2) = Γ(1+t)Γ(1−t), as desired.

(c) Prove that E{|X|r} <∞ for all r > 0.

Solution: We will prove a more general result: If M(t) < ∞ for
all t ∈ (−t0 , t0) where t0 > 0, then E(|X|k) < ∞ for all k ≥ 1.
Recall that EZ =

∫∞
0

P{Z > t} dt whenever Z ≥ 0. Apply this with
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Z := |X|k to find that

E(|X|k) =

∫ ∞
0

P
{
|X|k > r

}
dr

=

∫ ∞
0

P
{
|X| > r1/k

}
dr

= k

∫ ∞
0

P{|X| > s}sk−1 ds.

[Set s := r1/k.] Fix t ∈ (−t0 , t0). Then, by Chebyshev’s inequality,

P{|X| > s} = P
{

et|X| ≥ ets
}
≤ E[et|X|]

ets
.

But et|x| ≤ etx + e−tx for all x ∈ R, with room to spare. Therefore,
E(rt|X|) ≤ M(t) + M(−t), whence it follows that for t ∈ (−t0 , t0)
fixed and A := M(t) +M(−t), P{|X| > s} ≤ Ae−st. Thus,

E(|X|k) ≤ Ak
∫ ∞
0

sk−1e−st ds = AktkΓ(k) = Ak!tk <∞.

4


