
Chapter 8

Martingales

8.18. Because Fk+n-1 ⇢ Fn for all k,n > 1, we may apply the tower property
of conditional expectations to see that

E[Xk+n | Fn] = E
⇣
E[Xk+n | Fk+n-1]

��� Fn

⌘
> E[Xk+n-1 | Fn],

almost surely. Now apply induction to deduce the following: A.s.,

E[Xk+n | Fn] > E[Xk+n-1 | Fn] > · · · > E[Xn | Fn] = Xn.

8.19. Suppose we could write our submartingale X as: Xn = Mn + Zn and
Xn = M 0

n + Z 0
n, where M and M 0 are martingales, and Z and Z 0 are

previsible increasing processes. Because M - M 0 defines a martingale,
this proves that Zn - Z 0

n defines a martingale also. That is,

E [Zn - Z 0
n | Fn-1] = Zn-1 - Z 0

n-1 a.s.

But Z - Z 0 is previsible. So the preceding also equals Zn - Z 0
n a.s. This

proves that for all n > 1, Zn-Zn-1 = Z 0
n-Z 0

n-1 a.s. Thus, for all m > 1,
Zm = Z1 +

Pm
j=2(Zj - Zj-1) = Z1 +

Pm
j=2(Z

0
j - Z 0

j-1) = Z1 - Z 0
1 + Z 0

m

a.s. Thus, if we insist that Z1 = Z 0
1 = E[X1], as was the case in the proof

of Theorem 8.20, then Zm = Z 0
m a.s. for all m.

8.20. If X is bounded in L1(P) then E[X+
n ] 6 E[X+

n ]+E[X-
n ] = kXnk1 is bounded.

For the converse note that E[X-
n ] = E[X+

n ]-E[Xn] = E[X+
n ]-E[X1] by the

martingale property. This proves that kXnk1 = 2E[X+
n ]-E[X1] is bounded

also.

8.26. Without loss of generality, we assume that Y > 0; otherwise, we consider
Y+ and Y- separately.

Let Fn := �(Xn) and note that {Fn}
1
n=1 is a filtration of �-algebras in

F. [This is because of the nested structure of dyadic rationals.] By the

19



20 CHAPTER 8. MARTINGALES

martingale convergence theorem, Z := limn!1 E(Y |Xn) exists a.s. and is
finite a.s. Our goal is to prove that Z = E(Y |X).

Let I be a dyadic-rational interval, and note that if the length |I| is at least
2-N, then {X 2 I} = {Xn 2 I} for all n > N. Therefore,

E [E(Y |Xn); X 2 I] = E [E(Y |Xn); Xn 2 I]

= E[Y; Xn 2 I]

= E[Y; X 2 I]

= E [E(Y |X); X 2 I] for all n > N.

Recall that Z := limn!1 E(Y |Xn) exists a.s. and is finite a.s. If we knew,
additionally, that Y is a bounded random variable—say |Y| 6 K a.s. for a
constant K—then |E(Y |Xn)| 6 E(|Y| |Xn) 6 K by the conditional Jensen
inequality. Consequently, the bounded convergence theorem would yield

E [Z; X 2 I] = E [E(Y |X); X 2 I] ,

for all dyadic-rational intervals I. Since dyadic rational intervals generate
B(R), it follows that we could in fact choose any Borel set I in the preced-
ing display, and therefore, it follows that E[Z;A] = E[E(Y |X);A] for all
A 2 �(X). Since Z and E(Y |X) are both �(X)-measurable, the uniqueness
of conditional expectations yields Z = E(Y |X), as desired.

When Y is not bounded we can find a bounded random variable YK such
that kY - YKk1 6 K-1 for all constants K > 1. The preceding shows that
limn!1 E(YK |Xn) = E(YK |X) a.s. This convergence holds also in L1(P)
because of the bounded convergence theorem.

But now we note from conditional Jensen inequality that

kE(Y |Xn)- E(YK |Xn)k1 6 K-1,

and
kE(Y |X)- E(YK |X)k1 6 K-1.

Therefore,

kE(Y |Xn)- E(Y |X)k1 6 2K-1 + kE(YK |Xn)- E(YK |X)k1 ! 2K-1,

as n ! 1. Let K ! 1 to conclude that E(Y |Xn) ! E(Y |X) in L1(P).
Since E(Y |Xn) ! Z a.s., it follows that Z = E(Y |X) a.s.

Note that we have proved, for free, the additional fact that E(Y |Xn) !
E(Y |X) in L1(P).


