
Chapter 7

The Central Limit Theorem

7.25. Let X1, . . . ,Xn be n i.i.d. Poisson variables with mean 1 each. Then X1 +
· · ·+ Xn is Poisson with mean n, and so
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as n ! 1, thanks to the central limit theorem.

7.30. First let us check that if Yn ) c for a non-random c then Yn ! c in
probability. But this is easy to see, since for all but possibly a countable
number of " > 0,

lim
n!1

P {-" < Yn - c 6 "} = P {-" 6 c- c 6 "} = 1.

1. Let us prove that if Xn ) X and Yn ! Y in probability then (Xn , Yn) )
(X , Y). Let f be a bounded, uniformly continuous function of two
variables. Then, we can write

Ef(Xn , Yn) = E [f(Xn , Yn); |Yn - Y| > "] + E [f(Xn , Yn); |Yn - Y| < "]

:= T1 + T2.

Evidently, |T1| 6 sup |f| ⇥ P{|Yn - Y| > "} ! 0. Since f is uniformly
continuous, for all ⌘ > 0 we can choose " > 0 such that |f(x ,y) -
f(x , z)| 6 ⌘ whenever |y- z| 6 ". Thus,

���T2 - E [f(Xn , Y); |Yn - Y| 6 "]
��� 6 ⌘.
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Finally,
���E [f(Xn , Y); |Yn - Y| 6 "]-Ef(Xn , Y)

��� 6 sup |f|⇥P{|Yn-Y| > "} ! 0.

Combine our efforts to deduce that

lim
n!1

|Ef(Xn , Yn)- Ef(Xn , Y)| = 0.

Since Y is non-random and Xn ) X, Ef(Xn , Y) ! Ef(X , Y), and the
claim follows.

2. This follows readily from the Mann–Wold device.
3. Let X be a (real-valued) symmetric random variable, and define Xn =

X and Yn = -X for all n > 1. Then Xn has the same distribution as
X, and so does Yn. In particular, Xn ) X and Yn ) X. However, it
is clear that (Xn , Yn) 6) (X,X), unless P{X = 0} = 1.



Chapter 8

Martingales

8.1. If E[Xn | G] ! E[X | G] a.s., then for all bounded random variables Z,
E[E(Xn | G)Z] ! E[E(X | G)Z], by the bounded convergence theorem. If Z
is, in addition, G-measurable, then for all Y 2 L

1(P), E[Y | G]Z = E[YZ | G]
a.s., whence the weak convergence in L

1(P) of Xn to X.
For the converse note that kE[Xn | G] - E[X | G]k1 6 kXn - Xk1 by condi-
tional Jensen.

8.2. Let X, Y, and Z be three independent random variables, each taking the
values ±1 with probability 1

2 each. Define W = X, U = X + Y, and
V = X+ Z. Then, E[U |W] = X+ E[Y] = X a.s. In particular,

E [E(U |W) | V] = E[X |V] = 1 a.s. on {V = 2}

= -1 a.s. on {V = -2}.
(8.1)

On the other hand, E[X;V = 0] = E[X;X = 1,Z = -1] + E[X;X = -1,Z =
1] = 0. Therefore, to summarize: E{E(U |W) |V} = V/2 a.s. A similar
analysis shows that E[U |V] = V/2 a.s also. Thus,

E [E(U |V) | W] =
1

2
E[V |W] =

1

2
X a.s.

Because P{V 6= X} = 1, we have produced an example wherein

E[E(U |V) |W] 6= E[E(U |W) |V] a.s.

8.3. If f(x,y) = f1(x)f2(y), then this is easy. In the general case, estimate f(x,y)
by functions of the form f1(x)f2(y), and appeal to Exercise 8.1.

8.7. Because X > 0 a.s., E[X | G] > E[X1{X>�} | G] > �P(X > � | G) a.s.

8.8. Define f

X|Y
(x|y) = f(x,y)/fY (y) where fY (y) =

R1
-1 f(a,y)da; this shows

that our goal is to prove that E[h(X) | Y] =
R1
-1 h(x)f

X|Y
(x|Y)dx a.s., which

is the classical formula on {Y = y}.
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For any positive, bounded function g,

E [h(X)g(Y)] =

Z1

-1
g(y)

✓Z1

-1
h(x)f(x,y)dx

◆
dy

=

Z1

-1
g(y)fY (y)

✓Z1

-1
h(x)f

X|Y
(x|y)dx

◆
dy

= E [⇧(Y)g(Y)] ,

(8.2)

where ⇧(y) =
R1
-1 h(x)f

X|Y
(x|y)dx. By a monotone class argument,

for all bounded �(Y)-measurable Z, E[h(X)Z] = E[⇧(Y)Z]. Therefore,
E[h(X) | Y] = ⇧(Y) a.s., which is the desired result.
Apply (8.2) with h(x) = 1(-1,a](x) to find that

P(X 6 a | Y) =

Za

-1
f

X|Y
(u|y)du,

as desired.


