Chapter 7

The Central Limit Theorem

7.25. Let X1, ..., X, be nii.d. Poisson variables with mean 1 each. Then X; +
-+« + Xy is Poisson with mean n, and so

n? n? nn"
e " (1+n+++-~-+)=P{X1+---+Xn<n}

2 3! n!
—p {Z(Xi —EX;) < o}

i=1
n
—P {n_1/2 D (Xi —EXi) < 0}
i=1

1

as n — oo, thanks to the central limit theorem.

7.30. First let us check that if Y,, = c for a non-random ¢ then Y,, — c in
probability. But this is easy to see, since for all but possibly a countable
number of ¢ > 0,

lim P{—e<Y,—c<e}=P{—e<c—c<e}=1

n—oo

1. Letus prove thatif X;, = Xand Y, — Yin probability then (X, , Yn) =
(X,Y). Let f be a bounded, uniformly continuous function of two
variables. Then, we can write

Ef(Xn,Yn) =E[f(Xn,Yn); Yn =Y = el + E[f(Xq,Yn); [Yn = Y[ < €]
=T+ Ts.

Evidently, |Ti| < supf] x P{|[Yn, — Y| > €} — 0. Since f is uniformly
continuous, for all 1 > 0 we can choose ¢ > 0 such that [f(x,y) —
f(x,z)] < n whenever |y — z| < ¢. Thus,

To —E[f(Xn,Y); [Yn =Y <€l | <.
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Finally,
E[f(Xn, Y); [Yn = Y] < el =Ef(Xq, V)| <sup [fxP{Yn=Y| > ¢} = 0.

Combine our efforts to deduce that

lim [Ef(Xn, Yn) — Ef(Xn,Y)| = 0.

n—o00

Since Y is non-random and X,, = X, Ef(X,,,Y) — Ef(X,Y), and the
claim follows.

2. This follows readily from the Mann-Wold device.

3. Let Xbe a (real-valued) symmetric random variable, and define X, =

Xand Y,, = —X for all n > 1. Then X,, has the same distribution as
X, and so does Yy,. In particular, X, = X and Y, = X. However, it
is clear that (X, , Yn) 7% (X, X), unless P{X =0} = 1.



Chapter 8

Martingales

8.1. If E[X,|G] — E[X|Z] a.s., then for all bounded random variables Z,
E[E(Xn19)Z] — E[E(X]|S)Z], by the bounded convergence theorem. If Z
is, in addition, §-measurable, then for all Y € L' (P), E[Y|G]Z = E[YZ|G]
a.s., whence the weak convergence in L! (P) of X, to X.

For the converse note that |E[X,, | §] — E[X]|Gl]|1 < ||Xn — X||1 by condi-
tional Jensen.

8.2. Let X, Y, and Z be three independent random variables, each taking the
values +1 with probability 3 each. Define W = X, U = X + Y, and
V =X+ Z. Then, E[U|W] = X+ E[Y] = X a.s. In particular,

E[E(UIW)| VI=E[X|V]I=1 as.on{V=2}

=—-1 as.on{V=-2} ®-1)

On the other hand, E[X; V=0 =EX;X=1,Z=—-1]+EX;X=-1,Z =
1] = 0. Therefore, to summarize: E{E(U|W)|V} = V/2 a.s. A similar
analysis shows that E[U|V] = V/2 a.s also. Thus,

E[EUIV)| W] = %E[VIW] = %X a.s.

Because P{V # X} = 1, we have produced an example wherein

E[E(U|V)|W] #E[E(U|W)]|V] a.s.

8.3.1f f(x,y) = f1(x)f2(y), then this is easy. In the general case, estimate f(x,y)
by functions of the form f; (x)f2(y), and appeal to Exercise 8.1.
8.7. Because X > 0 a.s., E[X|G] > E[X1;x>) 1G] 2 AP(X > A[9) ass.

8.8. Define f, , (xly) = f(x,y)/f, (y) where f, (y) = fiooo f(a,y) da; this shows
that our goal is to prove that E[h(X) | Y] = fiooo h(x)f,,, (x[Y) dxa.s., which
is the classical formula on {Y = y}.
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For any positive, bounded function g,

BRX)gMI=[" oty (JOO h(x)f(x,y)dx) dy

—00 —00

= L gy)f,(y) (J h(x)f,,, (xly) dX> dy ®2)
=E[(Y)g(Y)],
where TI(y) = fiooo h(x)f,, (xly) dx. By a monotone class argument,

for all bounded o(Y)-measurable Z, E[h(X)Z] = E[TT(Y)Z]. Therefore,
E[h(X)|Y] =TI(Y) a.s., which is the desired result.
Apply (8.2) with h(x) = 1(_q,q](x) to find that

P(X < alY) :J oy (Uly) du,

as desired.



