Chapter 3

Measure Theory

- **3.2.** Let $\Omega = \mathbf{N} = \{1, 2, ...\}$ denote the numerals. For all n = 1, 2, ... define \mathcal{F}_n to be the σ -algebra generated by $\{1\}, ..., \{n\}$. For example, $\mathcal{F}_1 = \{\emptyset, \mathbf{N}, \{1\}, \mathbf{N} \setminus \{1\}\}, \mathcal{F}_2 = \{\emptyset, \mathbf{N}, \{1\}, \{2\}, \{1, 2\}, \mathbf{N} \setminus \{1\}, \mathbf{N} \setminus \{2\}, \mathbf{N} \setminus \{1, 2\}\}$, and so on. Evidently, $\mathcal{F}_n \subset \mathcal{F}_{n+1}$. However, $\{1, 3, 5, ...\} \notin \bigcup_{i=1}^{\infty} \mathcal{F}_i$.
- **3.3.** For this exercise, we need Cantor's countable axiom of choice: *A countable union of countable sets is itself countable.*

Let \mathcal{F} denote the σ -algebra generated by all singletons in **R**. Obviously, $\{x\} \in \mathcal{F}$ for all $x \in \mathbf{R}$. It remains to show that $[a, b] \notin \mathcal{F}$ for any $a \leq b$. Define $\mathcal{G} = \{G \subseteq \mathbf{R} : \text{ either G or } G^c \text{ is denumerable}\}$. [Recall that "denumerable" means "at most countable."] You can check directly that \mathcal{G} is a σ -algebra. We claim that $\mathcal{F} = \mathcal{G}$. This would prove that $[a, b] \notin \mathcal{F}$, because neither [a, b] nor its complement are denumerable.

Let \mathcal{A} denote the algebra generated by all singletons. If $E \in \mathcal{A}$, then either E is a finite collection of singletons, or E^c is. This proves that $\mathcal{A} \subseteq \mathcal{G}$. The monotone class theorem proves that $\sigma(\mathcal{A}) \subseteq \mathcal{G}$, but $\sigma(\mathcal{A}) = \mathcal{F}$. Therefore, it remains to prove that $\mathcal{G} \subseteq \mathcal{F}$. But it is manifest that $\mathcal{G} \subset \sigma(\mathcal{A})$.

- **3.4.** $\mathcal{B}(\mathbf{R}^k)$ is the σ -algebra generated by all open sets. Let \mathcal{O} define the σ -algebra generated by all open balls in \mathbf{R}^k whose radius and center are rational. Because $\mathcal{O} \subseteq \mathcal{B}(\mathbf{R}^k)$, it remains to derive the converse inclusion. But general topology tells us that any open set is a countable union of open balls with rational centers and radii. This has the desired result.
- **3.9.** If μ is a probability measure on $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$, then $F(\mathfrak{a}) := \mu(-\infty, \mathfrak{a}]$ is clearly non decreasing, $F(-\infty) = 0$, and $F(+\infty) = 1$. Finally, F is right-continuous, since μ is continuous from above [Lemma 3.11(b)]. Therefore, F is a distribution function.

Conversely, if F is a distribution function, then we may define $\mu(a, b] := F(b) - F(a)$, whenever $-\infty \le a < b \le \infty$. And if $(a_i, b_i]$ are disjoint for

 $1 \leq i \leq N$, then

$$\mu\left(\bigcup_{i=1}^{N}(a_{i},b_{i}]\right) := \sum_{i=1}^{N}\mu(a_{i},b_{i}].$$

Appeal to telescoping sums in order to see that the preceding is a well-defined, rational definition. The preceding defines a finitely-additive measure on the algebra \mathcal{A} of all finite disjoint unions of intervals of the form (a, b]. Thanks to the Carathéodory extension theorem, it remains to prove that μ is countably additive on \mathcal{A} ; its Carathéodory extension to $\mathcal{B}(\mathbf{R}) = \mathcal{B}(\mathcal{A})$ is the measure that we need. It remains to prove that if $B_1 \supset B_2 \supset \cdots$ are in \mathcal{A} and $\bigcap_{n=1}^{\infty} B_n = \emptyset$, then $\lim_{n \to \infty} \mu(B_n) = 0$; see the proof of Lemma 3.15. Now we modify the proof of Lemma 3.15 slightly; after all, Lemma 3.15 is the present problem with F(x) := x for $0 \le x \le 1$. In fact, all we have to do is to replace (3.6) with

$$\mathsf{F}(\alpha_{j}^{n}) \leqslant \mathsf{F}(\mathfrak{a}_{j}^{n}) + \frac{\epsilon}{2^{n+2}k_{n}}.$$
(3.6')

[We can do this because F is right continuous.] Then, the remainder of the proof of Lemma 3.15 goes through *verbatim*.