8.38. Almost surely,

$$
\mathrm{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=\left\{\lambda+(1-\lambda) X_{n}\right\} X_{n}+(1-\lambda) X_{n}\left(1-X_{n}\right)=X_{n}
$$

Therefore, $\left\{X_{n}\right\}_{n=1}^{\infty}$ is a bounded martingale, and hence $X_{\infty}:=\lim _{n \rightarrow \infty} X_{n}$ exists a.s. and in $L^{1}(\mathrm{P})$. By the dominated convergence theorem convergence holds in $L^{p}(\mathrm{P})$ too, where $p \geq 1$. Define

$$
\theta:=\mathrm{E} X_{1} .
$$

Then, $\theta \in[0,1]$, and $\theta=\mathrm{E} X_{n}$ for all n by the martingale property, and $\theta=\mathrm{E} X_{\infty}$ by L^{1}-convergence. By the towering property of conditional expectations,

$$
\theta=\mathrm{P}\left\{X_{n+1}=\lambda+(1-\lambda) X_{n}\right\}
$$

Therefore,

$$
\theta=\mathrm{P}\left\{X_{\infty}=\lambda+(1-\lambda) X_{\infty}\right\}=\mathrm{P}\left\{X_{\infty}=1\right\}
$$

(Hint: Fatou's lemma, and the reversed Fatou's lemma for bounded random variables.) Similarly,

$$
1-\theta=\mathrm{P}\left\{X_{\infty}=-\lambda X_{\infty}\right\}=\mathrm{P}\left\{X_{\infty}=0\right\}
$$

