8.36. We will need the following variant of the optional stopping theorem. Theorem: Suppose $\{X_n\}_{n=1}^{\infty}$ is a non-negative supermartingale with respect to a filtration $\mathcal{F} := \{\mathcal{F}_n\}_{n=1}^{\infty}$, and T is an \mathcal{F} -stopping time. Then,

$$\mathbf{E} \left[X_n \mid \mathcal{F}_T \right] \le X_T \quad a.s. \ on \ \{T < n\}.$$

Proof: Let $d_0 := 0$ and $\mathcal{F}_0 := \{\emptyset, \Omega\}$, then define $d_{n+1} := X_{n+1} - X_n$ for all $n \ge 0$. Then, $X_n = \sum_{j=1}^n d_j$, and $\mathbb{E}[d_{j+1} | \mathcal{F}_j] \le 0$. Almost surely,

$$X_n \mathbf{1}_{\{T < n\}} = X_T \mathbf{1}_{\{T < n\}} + \sum_{j=1}^n d_j \mathbf{1}_{\{T < j\}}$$

Therefore, for all $A \in \mathcal{F}_T$,

$$\mathbf{E}\left[X_{n}\mathbf{1}_{\{T< n\}} ; A\right] = \mathbf{E}\left[X_{T}\mathbf{1}_{\{T< n\}} ; A\right] + \sum_{j=1}^{n} \mathbf{E}\left[d_{j} ; A \cap \{T < j\}\right] \le \mathbf{E}\left[X_{T}\mathbf{1}_{\{T< n\}} ; A\right],$$

because $A \cap \{T < j\} \in \mathcal{F}_{j-1}$. This proves the theorem.

Now we return to the problem at hand. By the martingale convergence theorem $X_{\infty} := \lim_{n \to \infty} X_n$ exists and is finite a.s. Let $T := \inf\{n \ge 1 : X_n = 0\}$, and note that we we are told that T is finite a.s. Apply Fatou's lemma to find that

$$EX_{\infty} \leq \liminf_{n \to \infty} E[X_n; T < n] = \liminf_{n \to \infty} E[E(X_n \mid \mathcal{F}_T); T < n].$$

By the stated theorem, this is at most $\liminf_n E[X_T; T < n] \le EX_T = 0$. Since $X_{\infty} \ge 0$ a.s., X_{∞} must be zero a.s. In fact, a small modification of this proof shows that with probability one, $X_{T+n} = 0$ for all $n \ge 1$.