8.26. Define \mathcal{F}_n to the collection all sets $X^{-1}(I)$, where I is a dyadic interval. Thus, $\{\mathcal{F}_n\}_{n=1}^{\infty}$ is a filtration, and $\mathrm{E}[Y | X_n] = \mathrm{E}[Y | \mathcal{F}_n]$. Because it is bounded in $L^1(\mathrm{P})$, $M_n := \mathrm{E}[Y | X_n]$ has an a.s. limit M_{∞} . Evidently, M_{∞} is measurable with respect to $\mathcal{F}_{\infty} := \bigvee_{n=1}^{\infty} \mathcal{F}_n := \sigma(X)$.

First suppose in addition Y is bounded, so that $M_n \to M_\infty$ in $L^1(\mathbf{P})$ as well. Because conditional expectations are contractions on $L^1(\mathbf{P})$, this shows that $M_n = \mathbb{E}[M_{n+k} | \mathcal{F}_n] \to \mathbb{E}[M_\infty | \mathcal{F}_n]$ in $L^1(\mathbf{P})$, as $k \to \infty$. Thus, $\mathbb{E}(M_\infty | \mathcal{F}_n) = M_n$ a.s. for all $n \ge 1$. Thus, for all $A \in \mathcal{F}_\infty$, $\mathbb{E}[M_\infty; A] = \mathbb{E}[M_n; A] =$ $\mathbb{E}[Y; A]$. This proves that $\mathbb{E}[M_\infty; A] = \mathbb{E}[Y; A]$ for all $A \in \mathcal{F}_\infty$. Therefore, $M_\infty = \mathbb{E}[Y | \mathcal{F}_\infty] = \mathbb{E}[Y | X]$. Next suppose $Y \ge 0$. What we just proved shows that $\mathbb{E}[Y \wedge k | X_n] \to \mathbb{E}[Y \wedge k | X]$ a.s. as $n \to \infty$. By Doob's inequality, for all $\lambda > 0$,

$$\mathbf{P}\left\{\sup_{n\geq 1}\left|\mathbf{E}[Y\mid X_n] - \mathbf{E}[Y \wedge k \mid X_n]\right| > \lambda\right\} \leq \frac{1}{\lambda}\mathbf{E}[Y; Y > k].$$

In particular,

$$\mathbf{P}\left\{\limsup_{n\to\infty}\left|\mathbf{E}[Y \mid X_n] - \mathbf{E}[Y \mid X]\right| > \lambda\right\} \le \frac{1}{\lambda}\mathbf{E}[Y; Y > k].$$

Let $k \to \infty$ to find that when Y is nonnegative, $\lim_{n\to\infty} E[Y | X_n] = E[Y | X]$. The general result follows from this and writing $Y = Y^+ - Y^-$.

8.27. Without loss of too much generality we consider the case where X is one-dimensional. Let X_n be as in **8.26**, and note that $E[Y | X_n]$ is a nonrandom Borel function of X_n . The result follows from **8.26**.