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Then, by the optional stopping theorem, n !→ M (k)
n is a mean-zero martingale for all k ≥ 1 fixed.

Apply optional stopping to find that E
[
X2

Tk∧n

]
= E

[
ATk∧n

]
≤ k. Thus, Doob’s maximal inequality

implies that

E
[
sup

n
X2

Tk∧n

]
≤ 4k < ∞.

In particular, n !→ XTk∧n defines an L2(P)-bounded martingale. By the martingale convergence
theorem, it converges a.s. Now, limn XTk∧n = limn Xn on {Tk = ∞}, and {A∞ < ∞} = ∪∞k=1{Tk =
∞}. Whence follows the existence of limn Xn a.s. on {A∞ < ∞}.

8.25. Consider the mean-zero martingale defined by S2
n−nσ2. This, and optional stopping, together prove

that
E

[
S2

T∧n

]
= σ2E [T ∧ n] . (8.4)

Let n ↑ ∞ to find that the right-hand side converges to σ2E[T ], by the monotone convergence theorem.
Also, by Fatou’s lemma,

E
[
S2

T

]
≤ σ2E[T ].

Thus, by Doob’s maximal inequality, E[supn S2
T∧n] ≤ 4E[S2

T ] ≤ 4σ2E[T ] < ∞. Therefore, we can apply
the dominated convergence theorem in (8.4) to finish.

8.26. Define Fn to the collection all sets X−1(I), where I is a dyadic interval. Thus, {Fn}∞n=1 is a filtration,
and E[Y |Xn] = E[Y | Fn]. Because it is bounded in L1(P), Mn := E[Y |Xn] has an a.s. limit M∞.
Evidently, M∞ is measurable with respect to F∞ := ∨∞n=1Fn := σ(X).
First suppose in addition Y is bounded, so that Mn → M∞ in L1(P) as well. Because conditional
expectations are contractions on L1(P), this shows that Mn = E[Mn+k | Fn] → E[M∞ | Fn] in L1(P),
as k →∞. Thus, E(M∞ | Fn) = Mn a.s. for all n ≥ 1. Thus, for all A ∈ F∞, E[M∞;A] = E[Mn;A] =
E[Y ;A]. This proves that E[M∞;A] = E[Y ;A] for all A ∈ F∞. Therefore, M∞ = E[Y | F∞] = E[Y |X].
Next suppose Y ≥ 0. What we just proved shows that E[Y ∧ k |Xn] → E[Y ∧ k |X] a.s. as n →∞. By
Doob’s inequality, for all λ > 0,

P
{

sup
n≥1

∣∣∣E[Y |Xn]− E[Y ∧ k |Xn]
∣∣∣ > λ

}
≤ 1

λ
E[Y ; Y > k].

In particular,

P
{

lim sup
n→∞

∣∣∣E[Y |Xn]− E[Y |X]
∣∣∣ > λ

}
≤ 1

λ
E[Y ; Y > k].

Let k → ∞ to find that when Y is nonnegative, limn→∞ E[Y |Xn] = E[Y |X]. The general result
follows from this and writing Y = Y + − Y −.

8.27. Without loss of too much generality we consider the case where X is one-dimensional. Let Xn be as
in 8.26, and note that E[Y |Xn] is a nonrandom Borel function of Xn. The result follows from 8.26.

8.28. Let T := inf{j ≥ 1 : |Sj | > λ} where inf ∅ := ∞. Since Mn := S2
n − nVarX1 defines a mean-zero

martingale, the optional stopping theorem implies that

ES2
n∧T = VarX1E(T ∧ n).

Because |ST∧n| ≤ B + λ, we have (λ + B)2 ≥ nVarX1P{T > n} = Var(Sn)P{max1≤j≤n |Sj | ≤ λ}.

8.29. If Xn is bounded in Lp(P), then supn |Xn| ∈ Lp(P), thanks to Doob’s maximal inequality. Use the
dominated convergence theorem in conjunction with the martingale convergence theorem to finish.

8.30. It is not hard to check directly that Xn is a mean-one martingale. By the Borel–Cantelli lemma,
lim infn→∞ γn = 0 a.s. Therefore, Xn → 0 a.s. But Xn ,→ 0 in L1(P), since EXn = 1.


