8.22. We integrate by parts:

$$
\begin{aligned}
\|\xi\|_{p}^{p} & =p \int_{0}^{\infty} \lambda^{p-1} \mathrm{P}\{\xi>\lambda\} d \lambda \leq p \int_{0}^{\infty} \lambda^{p-2} \mathrm{E}[\zeta ; \xi>\lambda] d \lambda \\
& =p \mathrm{E}\left[\zeta \int_{0}^{\xi} \lambda^{p-2} d \lambda\right]=\frac{p}{p-1} \mathrm{E}\left[\zeta \xi^{p-1}\right]
\end{aligned}
$$

by Fubini-Tonelli. Let $a>1$ be fixed, and define b by $a^{-1}+b^{-1}=1$. Then, Hölder's inequality shows us that

$$
\|\xi\|_{p}^{p} \leq \frac{p}{p-1}\left(\mathrm{E}\left[\zeta^{a}\right]\right)^{1 / a}\left(\mathrm{E}\left[\xi^{b(p-1)}\right]\right)^{1 / b}
$$

Apply this with $a:=p$, so that $b=p /(p-1)$, and we get

$$
\|\xi\|_{p}^{p} \leq \frac{p}{p-1}\|\zeta\|_{p}^{p} \cdot\|\xi\|_{p}^{(1 / p)-1}
$$

If $\|\xi\|_{p}=0$ then there is nothing to prove. Else, $\|\xi\|_{p}>0$, and we can divide the preceding by $\|\xi\|_{p}$ and solve to finish the first portion.

Apply the said result with $\xi:=\max _{1 \leq i \leq n} X_{i}$ and $\zeta:=X_{n}$ to obtain Doob's maximal inequality (8.70). Finally, apply this to the proof of Theorem 8.20 to finish.

