4.6. First, let us prove this for k = 1: For all closed intervals [a,b], we can find continuous functions $f_n \downarrow \mathbf{1}_{[a,b]}$. By the monotone convergence theorem, $\mu([a,b]) = \nu([a,b])$. Therefore, μ and ν agree on the algebra generated by closed intervals. Because this algebra generates the Borel σ -algebra $\mathscr{B}(\mathbf{R})$, the Carathéodory's extension theorem prove that $\mu = \nu$.

In order to carry this program out when k > 1, we approximate the function $\mathbf{1}_{[a_1,b_1]\times\cdots\times[a_k,b_k]}(x_1,\ldots,x_k) = \mathbf{1}_{[a_1,b_1]}(x_1)\times\cdots\times\mathbf{1}_{[a_k,b_k]}(x_k)$ by continuous functions of the form $f_n^1(x_1)\times\cdots\times f_n^k(x_k)$. Then proceed as in the k = 1 case, using the fact that hyper-cubes of the form $[a_1,b_1]\times\cdots\times[a_k,b_k]$ generate $\mathscr{B}(\mathbf{R}^k)$.