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4.6. First, let us prove this for k = 1: For all closed intervals [a,b], we can find continuous functions fn ↓ 1[a,b]. By
the monotone convergence theorem, µ([a,b]) = ν([a,b]). Therefore, µ and ν agree on the algebra generated
by closed intervals. Because this algebra genarates the Borel σ -algebra B(R), the Carathéodory’s extension
theorem prove that µ = ν .
In order to carry this program out when k > 1, we approximate the function 1[a1,b1]×···×[ak,bk](x1, . . . ,xk) =
1[a1,b1](x1)× · · ·×1[ak,bk](xk) by continuous functions of the form f 1n (x1)× · · ·× f kn (xk). Then proceed as in the
k = 1 case, using the fact that hyper-cubes of the form [a1,b1]× · · ·× [ak,bk] generateB(Rk).

4.7. Let X be a random variable that takes the values x1, . . . ,xk with respective probabilities p1, . . . , pk. Then, E[X ] =
∑ki=1 xi pi, whereas ln∏k

i=1 x
pi
i = ∑ki=1 pi lnxi = E[lnX ]. Thus, we are asked to prove that exp(E[lnX ]) ≤ E[X ],

but this follows from the convexity of the function ψ(x) =− ln(x) and Jensen’s inequality.
Suppose we have shown that whenever v1p1+ · · ·+vk pk = vp11 · · ·vpkk then v1 = · · · = vk. We will next prove that
the same holds for k+1 variables. Indeed, suppose

x1p1+ . . .xk+1pk+1 = xp11 · · ·xpk+1k+1 . (4.2)

There is nothing to prove unless one of the xi’s is non-zero. In that case, we can relabel and assume without loss
of generality that xk+1 %= 0. Because pk+1 = 1− (p1+ · · ·+ pk), the preceding display is equivalent to

(x1− xk+1)p1+ · · ·+(xk− xk+1)pk + xk+1 =
(

x1
xk+1

)p1
· · ·

(
xk
xk+1

)pk
· xk+1.

Divide by xk+1 to obtain
1+ p1(y1−1)+ · · ·+ pk(yk−1) = yp11 · · ·ypkk ,

where yi = xi/xk+1. Because ∑i pi = 1, the left-hand side is equal to ∑ki=1 yi pi. Thus, we have proved that if
(4.2) with k+ 1 variables has a non-trivial solution, then (4.2) has a solution with k variables. So it suffices to
prove that if v1p1+ v2p2 = vp11 v

p2
2 then v1 = v2. Suppose without, loss of generality, that v2 ≥ v1. So we can

write v2 = v1+ r where r ≥ 0. We need to prove that r = 0. Our eq. (4.2) with 2 variables is then written as
v1p1+(v1+r)p2 = vp11 (v1+r)p2 . If v1 = 0, then the only solution is r= 0. Else, v1+rp2 = v1(1+ r

v1
)p2 , which

is the same as 1+ r
v1
p2 = (1+ r

v1
)p2 . Proving that r = 0 is the same as proving that w = (r/v1) = 0. But w

satisfies 1+wp2 = (1+w)p2 . To prove that w= 0, it suffices to check that the function h(z) = (1+z)p2−1−zp2
has a unique maximum at z = 0, and the value of the maximum is zero. But h′(z) = p2(1+ z)p2−1− p2 is zero
iff z= 0, and h′′(z) = p2(p2−1)(1+ z)p2−2 < 0. Because h(0) = 0, we are done.

4.8. Let X be a random variable with P{X = ai} = 1/n for i = 1, . . . ,n. Then, A = EX , G = exp(E[lnX ]), and
H = (E[1/X ])−1. Because ϕ(x) := lnx is concave (ϕ ′′ ≤ 0), Jensen’s inequality tells us that ϕ(G ) = E[ϕ(X)]≤
ϕ(EX) = ϕ(A ), whence G ≤ A . As for the second inequality, note that H ≤ G iff Eln(1/X) ≤ lnE(1/X).
Let Y := 1/X and apply the first to Y .

4.9. Let z= λx+(1−λ )y. Then according to Taylor expansions,

f (x) = f (z)+(x− z) f ′(z)+
1
2
(x− z)2 f ′′(z)

= f (λx+(1−λ )y)+(1−λ )(x− y) f ′(λx+(1−λ )y)+
1
2
(1−λ )2(x− y)2 f ′′(ζ ),

where ζ is between λx+(1−λ )y and x. Similarly,

f (y) = f (z)+(y− z) f ′(z)+
1
2
(y− z)2 f ′′(z)

= f (λx+(1−λ )y)−λ (x− y) f ′(λx+(1−λ )y)+
1
2

λ 2(x− y)2 f ′′(ξ ),


