4.31. There are two cases to consider: (1) $0 \le \alpha \le 1$; and (2) $\alpha > 1$.

1. Suppose $\alpha \in [0,1]$. By Taylor expansions there exists c > 0 such that $\exp(x/n) \le 1 + c(x/n)$ for all $x \in [0,n]$. That is,

$$\sup_{n\geq 1}\frac{\exp(x/n)-1}{x/n}\leq c\quad \forall x\in[0,n].$$

Also, for each *x* fixed,

$$\lim_{n\to\infty}\frac{\exp(x/n)-1}{x/n}=1.$$

Therefore, by the dominated convergence theorem, since $0 \le \alpha \le 1$,

$$\lim_{n \to \infty} n \int_0^{n^{\alpha}} \frac{\exp(x/n) - 1}{x + x^3} \, dx = \int_0^{\infty} \frac{dx}{1 + x^2} = \frac{\pi}{2}.$$

2. Now suppose $\alpha > 1$, and observe that there exists c > 0 such that for all *n* large enough,

$$\int_{0}^{n^{\alpha}} \frac{\exp(x/n) - 1}{x + x^{3}} \, dx \ge \int_{n^{\alpha}/2}^{n^{\alpha}} \frac{\exp\left(n^{\alpha - 1}\right) - 1}{2x^{3}} \, dx \ge cn^{-2\alpha} \exp\left(n^{\alpha - 1}\right)$$

Therefore,

$$\lim_{n\to\infty} n \int_0^{n^{\alpha}} \frac{\exp(x/n) - 1}{x + x^3} \, dx = \infty.$$