
p. 19

4.31. There are two cases to consider: (1) 0≤ α ≤ 1; and (2) α > 1.

1. Suppose α ∈ [0 ,1]. By Taylor expansions there exists c > 0 such that exp(x/n) ≤ 1+ c(x/n) for all
x ∈ [0 ,n]. That is,

sup
n≥1

exp(x/n)−1
x/n

≤ c ∀x ∈ [0 ,n].

Also, for each x fixed,
lim
n→∞

exp(x/n)−1
x/n

= 1.

Therefore, by the dominated convergence theorem, since 0≤ α ≤ 1,

lim
n→∞

n
∫ nα

0

exp(x/n)−1
x+ x3

dx=
∫ ∞

0

dx
1+ x2

=
π
2

.

2. Now suppose α > 1, and observe that there exists c> 0 such that for all n large enough,
∫ nα

0

exp(x/n)−1
x+ x3

dx≥
∫ nα

nα /2

exp
(
nα−1)−1
2x3

dx≥ cn−2α exp
(
nα−1)

Therefore,

lim
n→∞

n
∫ nα

0

exp(x/n)−1
x+ x3

dx= ∞.

4.32. Clearly,
P{X ≥ βλ}≤ δP{X > λ}+P{Y ≥ γλ}.

Multiply both sides by pλ p−1 and integrate [dλ ] to find that ‖X/β‖pp ≤ δ‖X‖pp + ‖Y/γ‖pp. Solve for ‖X‖pp to
finish.

4.33. Follow the hint and set A−1 := {X > Y}, An := {e−n−1Y < X ≤ e−nY} and Bn := An∩{Y ≤ e−n/4} for n≥ 0.
Note that −(n+1)P(An)+E[lnY ;An] ≤ E[lnX ;An] and E[lnY ;A−1] ≤ E[lnX ;A−1]. Hence, it suffices to prove
that ∑∞

n=0 nP(An) <∞. We will prove separately that ∑∞
n=0 nP(Bn) <∞ and ∑∞

n=0 P(An \Bn) <∞. This completes
the proof.

1. In order to prove that∑∞
n=0 nP(Bn) <∞we note that n≤ 4| lnY | on Bn. Therefore, nP(Bn)≤ 4E{| lnY |; Bn},

whence it follows that ∑∞
n=0 nP(Bn)≤ 4‖ lnY‖1 < ∞.

2. Now we prove that ∑n nP(An \Bn) < ∞. Note that

e−n/4P(An \Bn)≤ E[Y ;An \Bn]≤
√
E[X ;An \Bn]≤ e−n/2

√
E[Y ; An \Bn]≤ e−n/2

√
EY . (4.4)

It follows readily from this that P(An \Bn) = O(exp(−n/4)), whence ∑∞
n=0 nP(An \Bn) < ∞.


