4.27. If f is continuously differentiable with compact support, then as the hint suggests, we can integrate by parts to find that $\int_{-\infty}^{\infty} x f(x) f^{\prime}(x) d x=-\frac{1}{2} \int_{-\infty}^{\infty} f^{2}(x) d x$. [If $u:=x$, and $v^{\prime}:=f f^{\prime}$ then $u^{\prime}=1$ and $v=\frac{1}{2} f^{2}$. Because of this and the compact-support property of $f, \int u v^{\prime}=-\frac{1}{2} \int f^{2}$.] Apply the Cauchy-Schwarz inequality to find that $\frac{1}{2} \int_{-\infty}^{\infty} f^{2} \leq\left(\int_{-\infty}^{\infty} x^{2} f^{2}\right)^{1 / 2}\left(\int_{-\infty}^{\infty}\left(f^{\prime}\right)^{2}\right)^{1 / 2}$, as planned. Note that we have not used the C^{1} property of f; only that f^{\prime} exists a.e. Therefore, the same bound is valid for all a.e.-differentiable functions f of compact support. Suppose next that f^{\prime} exists a.e. but f does not have compact support. Replace f by $f \mathbf{1}_{[-n, n]}$ to deduce that $\frac{1}{2} \int_{-n}^{n} f^{2} \leq\left(\int_{-n}^{n} x^{2} f^{2}\right)^{1 / 2}\left(\int_{-n}^{n}\left(f^{\prime}\right)^{2}\right)^{1 / 2}$. Let $n \uparrow \infty$ and appeal to the monotone convergence theorem to obtain the general result.

