4.20. For all $r>0,1-r \leq e^{-r}$. Therefore,

$$
\left(1-\frac{x^{2}}{2 n}\right)^{n} \leq e^{-x^{2} / 2}
$$

for all n, and the left-hand side also converges to the right-hand side as $n \rightarrow \infty$. Therefore, by the dominated convergence theorem the integral of the problem converges to $\int_{-\infty}^{\infty} \exp \left(-x^{2} / 2\right) d x$. It remains to compute the integral. Here is one way:

$$
\int_{-\sqrt{n}}^{\sqrt{n}}\left(1-\frac{x^{2}}{2 n}\right)^{n} d x=2 \sqrt{n} \int_{0}^{1}\left(1-\frac{y^{2}}{2}\right)^{n} d y=\sqrt{2 n} \int_{1 / 2}^{1} x^{n}(1-x)^{-1 / 2} d x
$$

Evidently,

$$
\sqrt{n} \int_{0}^{1 / 2} x^{n}(1-x)^{-1 / 2} d x \leq \sqrt{n} 2^{-n} \int_{0}^{1 / 2}(1-x)^{-1 / 2} d x \rightarrow 0
$$

Thus,

$$
\int_{-\sqrt{n}}^{\sqrt{n}}\left(1-\frac{x^{2}}{2 n}\right)^{n} d x \sim \sqrt{2 n} \int_{0}^{1} x^{n}(1-x)^{-1 / 2} d x=\sqrt{2 n} \frac{\Gamma(n+1) \Gamma(1 / 2)}{\Gamma\left(n+\frac{3}{2}\right)} \sim \sqrt{2 n \pi} \frac{n^{n+(1 / 2)} e^{-n} \beta}{\left(n+\frac{1}{2}\right)^{n+1} e^{-n-(1 / 2)} \beta} \rightarrow \sqrt{2 \pi}
$$

