
p. 16 4. Integration

For the sake of pedagogy, we will concentrate on the case d = 1. The general case follows similarly, and is left
to the student.
Let A denote the algebra of finite disjoint unions of sets of the form (a,b] where 0≤ a< b≤ 1. If A ∈A , then
it is easy to see that there exist continuous functions gn such that: (i) 0≤ gn(x)≤ 1; (ii) gn = 1 on A; (iii) gn = 0
off of A1/n = {x ∈ (0,1] : dist(x,A)≤ 1/n}; and (iv) gn→ 1A almost everywhere (in fact, at all but two points).
In particular, by the bounded convergence theorem, ‖gn−1A‖p→ 0 for all p≥ 1.
Choose and fix a small ε > 0. For any A ∈B((0,1]) we can find A1,A2, . . . ∈A such that: (i) A⊂ ∪∞i=1Ai; and
(ii) ∑∞

i=1 µ(Ai)− ε ≤ µ(A) ≤ µ(∪∞i=1Ai). See the proof of Carathéodory extension theorem. Also, we can find
continuous functions gi such that ‖gi−1Ai‖p ≤ ε2−i.
Without loss of generality, the Ai’s are disjoint. [Else we can consider, in their place, Bi’s, where B1 = A1,
B2 = A2 \A1, B3 = A3 \ (A1∪A2), etc. All are in A .] Therefore, 1∪∞i=1Ai = ∑∞

i=1 1Ai . Moreover, by Minkowski’s
inequality, ‖1∪∞i=1Ai −∑
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where m denotes the Lebegsue measure. Because ε is arbitrary, this has the desired effect.

4.19. First consider f := 1A where A := ∏k
i=1(ai,bi] is a rectangle, with sides parallel to the axes, and has finite

Lebesgue measure. Then, ∫

Rk
| f (x+ ε)− f (x)|p dx=meas((A+ ε))A) ,

where “)” denotes “set difference,” and “meas” denotes “Lebesgue measure on Rk.” Evidently, the preceding
integral goes to zero as ε → 0. By the Minkowski inequality, the same property holds if f has the form f =
∑Ni=1 ci1Ai , where the Ai’s are the sort of finite rectangles we considered a moment earlier. We are done because
the class of such f ’s is dense in Lp(Rk); see Problem 4.15.

4.20. For all r > 0, 1− r ≤ e−r. Therefore, (
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2/2,

for all n, and the left-hand side also converges to the right-hand side as n→ ∞. Therefore, by the dominated
convergence theorem the integral of the problem converges to

∫ ∞
−∞ exp(−x2/2)dx. It remains to compute the

integral. Here is one way:
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4.21. Let Ω= R,F := B(Ω), and µ := the Lebesgue measure on Ω. Define f (x) := x−11[1,∞)(x). Then, f ∈ L2(µ)
but f ,∈ L1(µ). So L2(µ) ,⊂ L1(µ). Also consider g(x) := x−1/21(0,1](x). Then, g ∈ L1(µ) but g ,∈ L2(µ).
Therefore, L1(µ) ,⊂ L2(µ) either.


