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where ξ is between λx+(1−λ )y and y. Therefore, in particular,

λ f (x)+(1−λ ) f (y) = f (λx+(1−λ )y)+
λ (1−λ )

2
(x− y)2

[
(1−λ ) f ′′(ζ )+λ f ′′(ξ )

]
.

The fact that f ′′ ≥ 0 finishes the proof. The remainder is direct computation.

4.10. It follows from (4.12) that { f (x+ ε)− f (x)}/ε is bounded and decreasing as ε ↓ 0. This proves the existence
of right-limits. Left-limits exist for similar reasons.

4.11. Let λ = 1/4 and note that λa+(1−λ )b= (b+ c)/2, where c := (a+b)/2. Therefore,
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Because we can exchange the roles of a and b as well, this proves that for all dyadic rational λ ∈ [0 ,1] and all
a,b, f (λa+(1−λ )b)≤ λ f (a)+(1−λ ) f (b). By continuity, this must holds for all λ ∈ [0 ,1].

4.12. Apply Fatou’s lemma to Yk := supn |Xn|− Xk to find that E[liminfkYk] ≤ liminfkE[Yk]. Solve to find that
limsupEXn ≤ ElimsupXn. For a counter-example consider Xn which is equal to n with probability 1/n and
0 with probability 1− (1/n). Evidently, limsupn→∞Xn = ∞, yet EXn = 1.

4.13. First of all note that if Z is a non-negative random variable and E[ f (Y )] = 0, then Z = 0 a.s. Here is a proof:
Let An = {Z ≥ 1/n} to find that n−1P(An) ≤ E[Z] = 0. Therefore, P(An) = 0 for all n. Because An ⊆ An+1,
continuity properties of P imply that 0= limnP(An) = P(∪∞n=1An) = P{Z > 0}.
If follows that dP(X ,Y ) = 0 iff X = Y a.s. (Let Z = φ(X −Y ).) Because dP(X ,Y ) = dP(Y,X) trivially, as
soon as we verify the triangle inequality it follows that dP is a metric. Equivalently, it suffices to prove that
φ(x− y)≤ φ(x− z)+φ(z− y) for all x,y,z.
First of all, note that φ(x−y) =min(|x−y|,1)≤min(|x−z|+ |z−y|,1).We are done as soon as we prove that for
all a,b≥ 0, min(a+b,1)≤min(a,1)+min(b,1). If a,b≤ 1, then this is obvious because min(a+b,1)≤ a+b.
If a ≥ 1 and b ≤ 1, then use min(a+b,1)≤ 1 ≤ a ≤min(a,1)+min(b,1). If a ≤ 1 and b ≥ 1 then switch the
roles of a and b.

4.14. Evidently, t pP{|X | > t}≤ E{|X |p; |X | > t}. As t→∞, this goes to zero by the dominated convergence theorem.
As regards the converse, first note that

∫ ∞

0
ts−1P{|X | > t}dt = E

∫ ∞

0
ts−11{t<|X |} dt = E

∫ |X |

0
ts−1 dt,

which is equal to s−1E(|X |s). Note that there exists c> 0 such that P{|X | > t}≤ ct−p for all t > 1. Therefore,
for all s ∈ (0 , p),

1
s
E(|X |s)≤ 1+

∫ ∞

1
ts−1P{|X | > t}dt ≤ 1+ c

∫ ∞

1
ts−1−p dt < ∞.

4.15. Continuous functions are uniformly continuous on compact sets. In particular, for all ε > 0 and N > 0 there
exists δ > 0 such that for all x,y,z,w ∈ [−N,N],

if |x− z|≤ δ and |y−w|≤ δ then | f (x,y)− f (z,w)|≤ ε.

With this in mind note that if there exists an ω such that | f (Xn,Yn)− f (X ,Y )|> ε then either: (i) |Xn−X |> δ ; or
(ii) |Yn−Y |> δ ; or (iii) |Xn|>N; or (iv) |Yn|>N; or (v) |X |>N; or (vi) |Y |>N. Choose N so large that P{|X |>
N/2} and P{|Y | > N/2} are both bounded above by an arbitrary η > 0. Because P{|Xn| > N}≤ P{|Xn−X | >
N/2}+P{|X | > N/2}, there exists n0 such that for all n≥ n0, P{|Xn|≥ N}≤ η . By choosing n0 large enough,
we see also that P{|Yn|≥ N}≤ η for all n≥ n0. By choosing n0 larger still, we can ensure that P{|Xn−X | > δ}
and P{|Yn−Y | > δ} are both at most η . This proves that for all n≥ n0, P{| f (Xn,X)− f (Yn,Y )| > ε} is at most
P{|Xn−X | > δ}+P{|Yn−Y | > δ}+P{|Xn| > N}+P{|Yn| > N}+P{|X | > N}+P{|Y | > N} ≤ 6η . Since η
is arbitrary, we are done.


