4.1. There are two things to prove here: (i) $\sigma(X)$ is σ -algebra; and (ii) it is the smallest one with respect to which X is measurable.

As regards (i), we check that $\emptyset \in \sigma(X)$ because $X^{-1}(\emptyset) = \emptyset$. Also if $A \in \sigma(X)$ then $A = X^{-1}(B)$ for some $B \in \mathscr{A}$. But then $A^c = (X^{-1}(B))^c$, which is in $\sigma(X)$. Finally, suppose A_1, A_2, \ldots are all in $\sigma(X)$. Then we can find B_1, B_2, \ldots such that $A_i = X^{-1}(B_i)$. Evidently, $\bigcup_{i=1}^{\infty} X^{-1}(B_i) = X^{-1}(\bigcup_{i=1}^{\infty} B_i)$. Because $\bigcup_{i=1}^{\infty} B_i \in \mathscr{A}$ (the latter is after all a σ -algebra), it follows that $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} X^{-1}(B_i) \in \sigma(X)$. We have proved that $\sigma(X)$ is a σ -algebra.

Note that X is measurable with respect to a σ -algebra $\mathscr G$ iff $X^{-1}(B) \in \mathscr G$ for all $B \in \mathscr A$. Therefore, a priori, X is measurable with respect to $\sigma(X)$, and any other $\mathscr G$ must contain $\sigma(X)$.