MORE APPLICATIONS OF MARTINGALE THEORY

DAVAR KHOSHNEVISAN

1. Patterns

Suppose X_{1}, X_{2}, \ldots are i.i.d. random variables with $\mathrm{P}\left\{X_{1}=1\right\}=$ p and $\mathrm{P}\left\{X_{1}=0\right\}=q$, where $q=1-p$ and $0<p<1$. It is possible to use the Kolmogorov zero-one and deduce that the infinite sequence X_{1}, X_{2}, \ldots will a.s. contain a zero, say. In fact, any predescribed finite pattern of zeroes and ones will appear infinitely often in the sequence $\left\{X_{1}, X_{2}, \ldots\right\}$ with probability one. Let N denote the first k such that the sequence $\left\{X_{1}, \ldots, X_{k}\right\}$ contains a pre-described, non-random pattern. Then, we wish to know $\mathrm{E}[N]$.

The simplest patterns are " 0 " and " 1. ." So let N denote the smallest k such that $\left\{X_{1}, \ldots, X_{k}\right\}$ contains a " 0 ." It is not hard to convince yourself that $\mathrm{E}[N]=1 / q$ because N has the following geometric distribution:

$$
\begin{equation*}
\mathrm{P}\{N=j\}=p^{j-1} q \quad j=1,2, \ldots \tag{1.1}
\end{equation*}
$$

This calculation uses too much of the structure of the pattern " 0 ." Here is an alternative argument, due to Robert Li Shuo-Yen (1980), ${ }^{1}$ which is more robust:

Consider the process

$$
\begin{equation*}
Y_{n}:=\frac{1}{q} \mathbf{1}_{\left\{X_{1}=0\right\}}+\frac{1}{q} \mathbf{1}_{\left\{X_{2}=0\right\}}+\cdots+\frac{1}{q} \mathbf{1}_{\left\{X_{n}=0\right\}} . \tag{1.2}
\end{equation*}
$$

Define \mathscr{F}_{n} to be the σ-algebra defined by $\left\{X_{i}\right\}_{i=1}^{n}$ for every $n \geq 1$. Then, for all $n \geq 1$,

$$
\begin{equation*}
\mathrm{E}\left[Y_{n+1} \mid \mathscr{F}_{n}\right]=Y_{n}+\frac{1}{q} \mathrm{P}\left(X_{n+1}=0 \mid \mathscr{F}_{n}\right)=Y_{n}+1 \tag{1.3}
\end{equation*}
$$

Therefore, $\left\{Y_{n}-n\right\}_{n=1}^{\infty}$ is a mean-zero martingale (check!). By the optional stopping theorem,

$$
\begin{equation*}
\mathrm{E}\left[Y_{N \wedge n}-(N \wedge n)\right]=0 \quad{ }^{\forall} n \geq 1 \tag{1.4}
\end{equation*}
$$

[^0]Equivalently, $\mathrm{E}[N \wedge n]=\mathrm{E}\left[Y_{N \wedge n}\right]$. But $N<\infty$ a.s., and both $\{N \wedge$ $n\}_{n=1}^{\infty}$ and $\left\{Y_{N \wedge n}\right\}_{n=1}^{\infty}$ are increasing. Therefore, we can apply the monotone convergence theorem to deduce that

$$
\begin{equation*}
\mathrm{E}\left[Y_{N}\right]=\mathrm{E}[N] . \tag{1.5}
\end{equation*}
$$

On the other hand, $Y_{N}=(1 / q)$ a.s. Therefore, $\mathrm{E}[N]=1 / q$, as we know already.

The advantage of the second proof is that it can be applied to other patterns. Suppose, for instance, the pattern is a sequence of ℓ ones, where ℓ is an integer greater than or equal to one. Consider

$$
\begin{align*}
Z_{n, \ell}:= & \frac{1}{p^{\ell}} \mathbf{1}_{\left\{X_{1}=1, \ldots, X_{\ell}=1\right\}}+\frac{1}{p^{\ell}} \mathbf{1}_{\left\{X_{2}=1, \ldots, X_{\ell+1}=1\right\}} \\
& +\cdots+\frac{1}{p^{\ell}} \mathbf{1}_{\left\{X_{n-\ell}=1, \ldots, X_{n}=1\right\}}+\frac{1}{p^{\ell-1}} \mathbf{1}_{\left\{X_{n-\ell+1}=1, \ldots, X_{n}=1\right\}} \tag{1.6}\\
& +\frac{1}{p^{\ell-2}} \mathbf{1}_{\left\{X_{n-\ell+2}=1, \ldots, X_{n}=1\right\}}+\cdots+\frac{1}{p} \mathbf{1}_{\left\{X_{n}=1\right\}} .
\end{align*}
$$

Then, you should check that $\left\{Z_{n, \ell}-n\right\}_{n=1}^{\infty}$ is a martingale. As before, we have $\mathrm{E}\left[Z_{N, \ell}\right]=\mathrm{E}[N]$, and now we note that $Z_{N, \ell}=\left(1 / p^{\ell}\right)+$ $\left(1 / p^{\ell-1}\right)+\cdots+(1 / p)$ a.s. Therefore,

$$
\begin{equation*}
\mathrm{E}[N]=\sum_{k=1}^{\ell} \frac{1}{p^{k}}=\frac{1}{q}\left(\frac{1}{p^{\ell}}-1\right) . \tag{1.7}
\end{equation*}
$$

Therefore, set $\ell=2$ to find that

$$
\begin{equation*}
\mathrm{E}[N]=\frac{1}{q}\left(\frac{1}{p^{2}}-1\right) \quad \text { for the pattern "11." } \tag{1.8}
\end{equation*}
$$

Exercise 1. Prove that if the pattern is " 01 ," then $\mathrm{E}[N]=1 /(p q)$. Hint: First show that $\left\{W_{n}-n\right\}_{n=1}^{\infty}$ is a martingale, where

$$
\begin{equation*}
W_{n}:=\frac{1}{p q} \mathbf{1}_{\left\{X_{1}=0, X_{2}=1\right\}}+\cdots+\frac{1}{p q} \mathbf{1}_{\left\{X_{n-1}=0, X_{n}=1\right\}}+\frac{1}{q} \mathbf{1}_{\left\{X_{n}=0\right\}} . \tag{1.9}
\end{equation*}
$$

Which of the two patterns, " 01 " and " 11 ," is more likely to come first? To answer this, we first note that $\left\{W_{n}-Z_{n, 2}\right\}_{n=1}^{\infty}$ is a martingale, since it is the difference of two martingales.

Define T to be the smallest integer $k \geq 1$ such that the sequence $\left\{X_{1}, \ldots, X_{k}\right\}$ contains either " 01 " or " 11 ." Then, we argue as before and find that $\mathrm{E}\left[W_{T}-Z_{T, 2}\right]=0$. But $W_{T}-Z_{T, 2}=(p q)^{-1}$ on
$\{$ " 01 " comes up first $\}$, and $W_{T}-Z_{T, 2}=(1 / p)+\left(1 / p^{2}\right)=(p+1) / p^{2}$ on $\{$ " 11 " comes up first $\}$. Therefore,

$$
\begin{align*}
0=\mathrm{E} & {\left[W_{T}-Z_{T, 2}\right] } \\
= & \frac{1}{p q} \mathrm{P}\{" 01 " \text { comes up first }\} \tag{1.10}\\
& +\frac{p+1}{p^{2}}[1-\mathrm{P}\{" 01 " \text { comes up first }\}]
\end{align*}
$$

Solve to find that

$$
\begin{equation*}
\mathrm{P}\{" 01 " \text { comes up before " } 11 "\}=\frac{p+1}{p+1+(p / q)} \tag{1.11}
\end{equation*}
$$

Thus,

$$
\begin{align*}
& \mathrm{P}\{" 01 " \text { comes before " } 11 "\}<\mathrm{P}\{" 11 " \text { comes before " } 01 "\} \\
& \Longleftrightarrow \frac{p}{q}<p+1 \Longleftrightarrow p>\frac{\sqrt{3}-1}{2} . \tag{1.12}
\end{align*}
$$

Exercise 2. Find the probability that we see ℓ consecutive ones before k consecutive zeroes.

2. Quadratic Forms

Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be a sequence of i.i.d. random variables. For a given double array $\left\{a_{i, j}\right\}_{i, j=1}^{\infty}$ of real numbers, we wish to consider the "quadratic forms" process,

$$
\begin{equation*}
Q_{n}:=\sum_{1 \leq i, j \leq n} \sum_{i, j} X_{i} X_{j} \quad{ }^{\forall} n \geq 1 \tag{2.1}
\end{equation*}
$$

Define $a_{i, j}^{*}:=\left(a_{i, j}+a_{j, i}\right) / 2$. A little thought shows that if we replace $a_{i, j}$ by $a_{i, j}^{*}$ in Q_{n}, then the value of Q_{n} remains the same. Therefore, we can assume that $a_{i, j}=a_{j, i}$, and suffer no loss in generality.

The quadratic form process $\left\{Q_{n}\right\}_{n=1}^{\infty}$ arises in many disciplines. For instance, in mathematical statistics, $\left\{Q_{n}\right\}_{n=1}^{\infty}$ belongs to an important family of processes called " U-statistics."

Here, we wish to prove the following theorem that is essentially due to Dale E. Varberg $(1966)^{2}$.

Theorem 2.1. Suppose $\mathrm{E}\left[X_{1}\right]=0, \mathrm{E}\left[X_{1}^{2}\right]=1$, and $\mathrm{E}\left[X_{1}^{4}\right]<\infty$. If $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i, j}^{2}<\infty$, then $\lim _{n \rightarrow \infty}\left(Q_{n}-\sum_{1 \leq i \leq n} a_{i, i}\right)$ exists and is finite a.s.

[^1]Proof. Let $A_{n}:=\sum_{1 \leq i \leq n} a_{i, i}$. Then, a direct computation reveals that $\left\{Q_{n}-A_{n}\right\}_{n=1}^{\infty}$ is a mean-zero martingale. We plan to prove that $\left\{Q_{n}-\right.$ $\left.A_{n}\right\}_{n=1}^{\infty}$ is bounded in $L^{2}(\mathrm{P})$. Because boundedness in $L^{2}(\mathrm{P})$ implies boundedness in $L^{1}(\mathrm{P})$, the martingale convergence theorem does the rest.

Thanks to the symmetry of the $a_{i, j}$'s we can write

$$
\begin{equation*}
Q_{n}-A_{n}=2 U_{n}+V_{n}, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{n}:=\sum_{1 \leq i<j \leq n} \sum_{i, j} a_{i} X_{j} \quad \text { and } \quad V_{n}:=\sum_{1 \leq i \leq n} a_{i, i}\left[X_{i}^{2}-1\right] . \tag{2.3}
\end{equation*}
$$

Because $(x+y)^{2} \leq 2\left(x^{2}+y^{2}\right)$ for all $x, y \in \mathbf{R}$, it follows that

$$
\begin{equation*}
\left(Q_{n}-A_{n}\right)^{2} \leq 8 U_{n}^{2}+2 V_{n}^{2} . \tag{2.4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\mathrm{E}\left[\left(Q_{n}-A_{n}\right)^{2}\right] \leq 8 \mathrm{E}\left[U_{n}^{2}\right]+2 \mathrm{E}\left[V_{n}^{2}\right] . \tag{2.5}
\end{equation*}
$$

The second expectation is in fact the variance of the sum of n independent random variables. Therefore,

$$
\begin{equation*}
\mathrm{E}\left[V_{n}^{2}\right]=\sum_{1 \leq i \leq n} a_{i, i}^{2} \operatorname{Var}\left(X_{1}^{2}\right) . \tag{2.6}
\end{equation*}
$$

Therefore, $\sup _{n} \mathrm{E}\left[V_{n}^{2}\right]<\infty$. Similarly, we seek to prove that $\mathrm{E}\left[U_{n}^{2}\right]$ is bounded in n. In order to do this we compute directly to find that

$$
\begin{equation*}
\mathrm{E}\left[U_{n}^{2}\right]=\sum_{1 \leq i<j \leq n} \sum_{i, j} a^{2}, \tag{2.7}
\end{equation*}
$$

which is of course bounded.
Exercise 3. Prove that $\mathrm{E}\left[U_{n} V_{n}\right]=0$. Use it to show that

$$
\begin{equation*}
\mathrm{E}\left[\left(Q_{n}-A_{n}\right)^{2}\right]=4 \sum_{1 \leq i<j \leq n} \sum_{i, j}^{2}+\operatorname{Var}\left(X_{1}^{2}\right) \sum_{1 \leq i \leq n} a_{i, i}^{2} . \tag{2.8}
\end{equation*}
$$

Department of Mathematics, The University of Utah, 155 S. 1400 E.
Salt Lake City, UT 84112-0090, USA
E-mail address: davar@math.utah.edu
URL: http://www.math.utah.edu/~davar

[^0]: Date: November 4, 2005.
 Research supported in part by a grant from the National Science Foundation.
 ${ }^{1}$ A martingale approach to the study of occurance of sequence patterns in repeated experiments, Ann. Probab., Vol. 8, No. 6, pp. 1171-1176 (1980)

[^1]: ${ }^{2}$ Convergence of quadratic forms in independent random variables, Ann. Math. Statist., Vol. 37, No. 3, pp. 567-576 (1966)

