Math 6020-1, Spring 2014
Partial Solutions to Assignment 2

7.8. Let h;; be the ith diagonal entry of our hat matrix H = Z(Z'Z)~'Z’.

(a) H is symmetric and satisfies H2 = H [you should check the details].
(b) Note that H is positive definite, and so 37, hj; = tr(H) = >27_; A

=1"'7
where Aq1,..., A, denote the eigenvalues of H. We have seenjthat,
thanks to idempotence, the eigenvalues H are all ones and zeros; the
number of ones is exactly the rank of H, which is r + 1. Therefore,
> i—1Aj =7+ 1, which means that 377, hj; =7+ 1.
Let us arrange the e-pairs so that A\; =--- = A41 =1 and Ao =
-+ =\, = 0. We can then write H = P’ DP, where P is orthogonal
and D = diag(A;, ..., A,); that is,

D ( I1yx(rt1) O(r41)x(n—r—1) ) _
0(n—r—1)><(r+1) O(n—r—l)x(n—r—l)

Then,
n n r+1
hj; = (P'DP); ZZPk,jDk’lPl,j = ZP,EJ..
k=1 I=1 k=1
Thus, hj; > 0 for all j = 1,...,n. Also, h;; = Zii Pl?,j <
> one1 Pp; = (P'P);; = 1. Therefore, we see that
r4+1 n
0<hj;=>» Plyj=1— > P;<1 forallj=1,..,n
k=1 k=r42

Our task is to prove that the inequalities are strict [0 < h;; < 1J;

equivalently, we need to verify that 0 < ZTH P? ;< 1 for all

j = 1,...,n. If not, then either "l p2 = 0 for some j, or
> heri2 P,f’ ; = 0 for some j. We show next that neither case can

happen.

Suppose, to the contrary, that hj;; = TH Pk = 0 for some j. If
so, then the first r + 1 items in the jth column of P are all zeros.
Since the only non-zero terms in D are in the first (r+1) x (r+1) top



quadrant, it would follows that the entire jth column of DP is all
zeros. From this we could deduce that the jth column of H = P’DP
is all zeros. Because Z'H = Z’', it follows that the jth row of Z is
all zeros, which yields a contradiction because Z is assumed to be
full rank. This proves that h; ; > 0 forall 1 <j <mn.

We may apply the preceding argument to the idempotent matrix
I — H—in place of H—in order to see that 1 — h; ; also cannot be
zero. Therefore, we have proved that 0 < h;; < 1 for all j < n, as
desired.

We are considering the linear model

Y=o+ Pz +e

Here,
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it follows that
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where “e” is a group of terms that I have not computed. The point



is that we see from the preceding that
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7.9. Here,
5 =3
3 -1
Y=|4 -1 and Z =
2 2
1 3
Note that
0.6 04
04 0.3
H=2(Z'2)'Z' =] 02 0.2
0 0.1
—-02 0
Therefore,
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In particular,

after direction computation.
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