Math 6010
 Partial solutions to homework 5

1. We have a linear model with $p=2$, parameter vector $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}\right)^{\prime}$ and design matrix,

$$
\boldsymbol{X}=\left(\begin{array}{cc}
a_{1} & b_{1} \\
\vdots & \vdots \\
a_{n} & b_{n}
\end{array}\right)
$$

Note that

$$
\boldsymbol{X}^{\prime} \boldsymbol{X}=\left(\begin{array}{cc}
\sum_{i=1}^{n} a_{i}^{2} & \sum_{i=1}^{n} a_{i} b_{i} \\
\sum_{i=1}^{n} a_{i} b_{i} & \sum_{i=1}^{n} b_{i}^{2}
\end{array}\right)
$$

so that

$$
\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}=\frac{1}{\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}}\left(\begin{array}{cc}
\sum_{i=1}^{n} b_{i}^{2} & -\sum_{i=1}^{n} a_{i} b_{i} \\
-\sum_{i=1}^{n} a_{i} b_{i} & \sum_{i=1}^{n} a_{i}^{2}
\end{array}\right),
$$

provided that \boldsymbol{X} has full rank. ${ }^{1}$ Since $\hat{\boldsymbol{\beta}} \sim \mathrm{N}_{2}\left(\boldsymbol{\beta}, \sigma^{2}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\right)$, we can read off the following:

$$
\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=-\frac{\sigma^{2} \sum_{i=1}^{n} a_{i} b_{i}}{\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}}
$$

This is zero if and only if $\sum_{i=1}^{n} a_{i} b_{i}=0$. Because $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are jointly normal, they are independent if and only if they are uncorrelated; that is, if and only if $\sum_{i=1}^{n} a_{i} b_{i}=0$.
5. Since $\operatorname{Var}(\hat{\boldsymbol{Y}})=\boldsymbol{X} \operatorname{Var}(\hat{\boldsymbol{\beta}}) \boldsymbol{X}^{\prime}=\sigma^{2} \boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}$, the variance of \hat{Y}_{i} is the (i, i) th element of the preceding variance/covariance matrix; that is,

$$
\operatorname{Var}\left(\hat{Y}_{i}\right)=\sigma^{2} \sum_{j=1}^{p} \sum_{k=1}^{p} X_{i, j}\left[(\boldsymbol{X} \boldsymbol{X})^{-1}\right]_{j, k} X_{i, k}
$$

Because $\sum_{i=1}^{n} X_{i, j} X_{i, k}=\left[\boldsymbol{X}^{\prime} \boldsymbol{X}\right]_{j, k}$, it follows that

$$
\sum_{i=1}^{n} \operatorname{Var}\left(\hat{Y}_{i}\right)=\sigma^{2} \sum_{j=1}^{p} \sum_{k=1}^{p}\left[(\boldsymbol{X} \boldsymbol{X})^{-1}\right]_{j, k}\left[\boldsymbol{X}^{\prime} \boldsymbol{X}\right]_{j, k}=\sigma^{2} \operatorname{tr}\left(\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)\right)
$$

Because $\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)=\boldsymbol{I}_{p \times p}$, its trace is p; this does the job.

[^0]10. We need to assume (as is done in the body of the text) additionally that \boldsymbol{V} is positive definite. In that case, $\boldsymbol{a}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{a} \geq 0$ for any vector \boldsymbol{a}. In particular,
$$
F(\boldsymbol{\beta}):=(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime} \boldsymbol{V}^{-1}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}) \geq 0 .
$$

Next, we expand to see that

$$
F(\boldsymbol{\beta})=\boldsymbol{Y}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{Y}-\boldsymbol{\beta}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{Y}-\boldsymbol{Y}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\beta}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta}
$$

The first and the fourth terms are ≥ 0. The second and the third term are equal to one another because they are scalar quantities (and hence equal to their own transpose). Thus, we see that

$$
F(\boldsymbol{\beta})=\boldsymbol{Y}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{Y}-2 \boldsymbol{\beta}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{Y}+\boldsymbol{\beta}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta}
$$

Suppose $\boldsymbol{\beta}_{*}$ is any solution to $\boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta}_{*}=\boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{Y}$. (If \boldsymbol{X} were full rank, then there would be a unique such $\boldsymbol{\beta}_{*}$. Else, there will be infinitely-many different choices of $\boldsymbol{\beta}_{*}$; fix any one of them.) By default, $F\left(\boldsymbol{\beta}_{*}\right)=\boldsymbol{Y}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{Y}-\boldsymbol{\beta}_{*}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta}_{*}$. Therefore,

$$
\begin{aligned}
F(\boldsymbol{\beta})-F\left(\boldsymbol{\beta}_{*}\right) & =-2 \boldsymbol{\beta}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{Y}+\boldsymbol{\beta}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\beta}_{*}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta}_{*} \\
& =\left(\boldsymbol{\beta}_{*}-\boldsymbol{\beta}\right)^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X}\left(\boldsymbol{\beta}_{*}-\boldsymbol{\beta}\right) \\
& \geq 0
\end{aligned}
$$

again because \boldsymbol{V}^{-1} is positive definite. This proves that $F(\boldsymbol{\beta})$ is minimized at $\boldsymbol{\beta}=\boldsymbol{\beta}_{*}$.
15. This problem is an example of a linear model, where the design matrix is

$$
\boldsymbol{X}=\left(\begin{array}{lll}
1 & C_{1} & S_{1} \\
1 & C_{2} & S_{2} \\
1 & C_{3} & S_{3}
\end{array}\right)
$$

where

$$
C_{i}:=\cos \left(\frac{2 \pi k_{1} i}{n}\right), \quad S_{i}:=\sin \left(\frac{2 \pi k_{2} i}{n}\right) \quad \text { for } 1 \leq i \leq n
$$

The theoretical answer is $\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{Y}$, provided that \boldsymbol{X} has full rank. It is a deep fact from Fourier series that, because $k_{1}, k_{2} \geq 1$ are integers, the columns of \boldsymbol{X} are linearly independent. Next we compute $\widehat{\boldsymbol{\beta}}$.
It might be better to instead proceed directly to find $\widehat{\boldsymbol{\beta}}$ in this case, since the problem is pretty modest in size. Incidentally, the answer in the back of your text is manifestly false, starting with the claim that $\boldsymbol{X}^{\prime} \boldsymbol{X}$ is a diagonal matrix! In fact, $\boldsymbol{X}^{\prime} \boldsymbol{X}$ is diagonal only for very special choices of k_{1} and k_{2}. Also, $\widehat{\beta}_{0} \neq \bar{Y}$ etc., as we will see soon.
The direct approach to the least squares problem is to solve the minimization problem,

$$
\min _{\beta_{0}, \beta_{1}, \beta_{2}} \sum_{i=1}^{n}\left[Y_{i}-\beta_{0}-\beta_{1} C_{i}-\beta_{2} S_{i}\right]^{2}:=\min _{\beta_{0}, \beta_{1}, \beta_{2}} f\left(\beta_{0}, \beta_{1}, \beta_{2}\right) .
$$

It is easier to solve this directly, rather than to invert $\boldsymbol{X}^{\prime} \boldsymbol{X}$, etc. The function f is a positive quadratic, therefore it suffices to set $\partial f / \partial \beta_{i}=0$ for $i=0,1,2$. Now,

$$
\frac{\partial f}{\partial \beta_{0}}=-2 \sum_{i=1}^{n}\left[Y_{i}-\beta_{0}-\beta_{1} C_{i}-\beta_{2} S_{i}\right]=-2 n\left[\bar{Y}-\beta_{0}-\beta_{1} \bar{C}-\beta_{2} \bar{S}\right]
$$

where $\bar{Y}:=n^{-1} \sum_{i=1}^{n} Y_{i}, \bar{C}:=n^{-1} \sum_{i=1}^{n} C_{i}$, and $\bar{S}:=n^{-1} \sum_{i=1}^{n} S_{i}$.
Next, we compute

$$
\frac{\partial f}{\partial \beta_{1}}=-2 \sum_{i=1}^{n}\left[Y_{i}-\beta_{0}-\beta_{1} C_{i}-\beta_{2} S_{i}\right] C_{i}=-2 n\left[\overline{Y C}-\beta_{0} \bar{C}-\beta_{1} \overline{C^{2}}-\beta_{2} \overline{S C}\right]
$$

where $\overline{Y C}:=n^{-1} \sum_{i=1}^{n} Y_{i} C_{i}, \overline{C^{2}}:=n^{-1} \sum_{i=1}^{n} C_{i}^{2}$ and $\overline{S C}:=n^{-1} \sum_{i=1}^{n} S_{i} C_{i}$.
Finally,

$$
\frac{\partial f}{\partial \beta_{2}}=-2 \sum_{i=1}^{n}\left[Y_{i}-\beta_{0}-\beta_{1} C_{i}-\beta_{2} S_{i}\right] S_{i}=-2 n\left[\overline{Y S}-\beta_{0} \bar{S}-\beta_{1} \overline{S C}-\beta_{2} \overline{S^{2}}\right],
$$

where $\overline{Y S}:=n^{-1} \sum_{i=1}^{n} Y_{i} S_{i}$ etc.
Set the preceding three $\partial f / \partial \beta_{i}$'s equal to zero and solve to obtain a 3×3 linear system,

$$
\left(\begin{array}{ccc}
1 & \bar{C} & \bar{S} \\
\bar{C} & \overline{C^{2}} & \overline{S C} \\
\bar{S} & \overline{S C} & \overline{S^{2}}
\end{array}\right) \widehat{\boldsymbol{\beta}}=\left(\begin{array}{c}
\bar{Y} \\
\overline{Y C} \\
\overline{Y S}
\end{array}\right) .
$$

Therefore,

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}} & =\left(\begin{array}{lll}
1 & \bar{C} & \bar{S} \\
\bar{C} & \overline{C^{2}} & \overline{S C} \\
\bar{S} & \overline{S C} & \overline{S^{2}}
\end{array}\right)^{-1}\left(\begin{array}{c}
\bar{Y} \\
\overline{Y C} \\
\overline{Y S}
\end{array}\right) \\
& =\frac{1}{\Delta}\left(\begin{array}{ccc}
\overline{C^{2}} \cdot \overline{S^{2}}-(\overline{S C})^{2} & \bar{C} \cdot \overline{S^{2}}-\bar{S} \cdot \overline{S C} & \bar{C} \cdot \overline{S C}-\overline{C^{2}} \cdot \bar{S} \\
\overline{S C}-\bar{C} \cdot \bar{S} & \overline{S^{2}}-(\bar{S})^{2} & \overline{S C}-\bar{C} \cdot \bar{S} \\
\bar{C} \cdot \overline{S C}-\overline{C^{2}} \cdot \bar{S} & \overline{S^{2}}-(\bar{S})^{2} & \overline{C^{2}}-(\bar{C})^{2}
\end{array}\right)\binom{\overline{Y C}}{\overline{Y S}},
\end{aligned}
$$

where

$$
\Delta=\overline{C^{2}} \cdot \overline{S^{2}}-(\overline{S C})^{2}-\bar{C}\left(\bar{C} \cdot \overline{S^{2}}-\bar{S} \cdot \overline{S C}\right)+\bar{S}\left(\bar{C} \cdot \overline{S C}-\bar{S} \cdot \overline{C^{2}}\right)
$$

which is nonzero as we argued, using Fourier series, by other means.

[^0]: ${ }^{1}$ In this case, this means that $\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) \neq\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}$. According to the Cauchy-Schwarz inequality, $\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) \geq\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}$. Therefore, \boldsymbol{X} has full rank if and only if the CauchySchwarz inequality is a strict inequality. This turns out to mean that $z_{i}:=a_{i} b_{i}$ is not a linear function of i.

