Math 6010 Partial solutions to homework 5

1. We have a linear model with p = 2, parameter vector $\boldsymbol{\beta} = (\beta_1, \beta_2)'$ and design matrix,

$$\boldsymbol{X} = \begin{pmatrix} a_1 & b_1 \\ \vdots & \vdots \\ a_n & b_n \end{pmatrix}.$$

Note that

$$\boldsymbol{X}'\boldsymbol{X} = \begin{pmatrix} \sum_{i=1}^{n} a_i^2 & \sum_{i=1}^{n} a_i b_i \\ \sum_{i=1}^{n} a_i b_i & \sum_{i=1}^{n} b_i^2 \end{pmatrix},$$

so that

$$(\mathbf{X}'\mathbf{X})^{-1} = \frac{1}{\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) - \left(\sum_{i=1}^{n} a_{i}b_{i}\right)^{2}} \begin{pmatrix} \sum_{i=1}^{n} b_{i}^{2} & -\sum_{i=1}^{n} a_{i}b_{i} \\ -\sum_{i=1}^{n} a_{i}b_{i} & \sum_{i=1}^{n} a_{i}^{2} \end{pmatrix},$$

provided that \boldsymbol{X} has full rank.¹ Since $\hat{\boldsymbol{\beta}} \sim N_2(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}'\boldsymbol{X})^{-1})$, we can read off the following:

$$\operatorname{Cov}\left(\hat{\beta}_{1},\hat{\beta}_{2}\right) = -\frac{\sigma^{2}\sum_{i=1}^{n}a_{i}b_{i}}{\left(\sum_{i=1}^{n}a_{i}^{2}\right)\left(\sum_{i=1}^{n}b_{i}^{2}\right) - \left(\sum_{i=1}^{n}a_{i}b_{i}\right)^{2}}$$

This is zero if and only if $\sum_{i=1}^{n} a_i b_i = 0$. Because $\hat{\beta}_1$ and $\hat{\beta}_2$ are jointly normal, they are independent if and only if they are uncorrelated; that is, if and only if $\sum_{i=1}^{n} a_i b_i = 0$.

5. Since $\operatorname{Var}(\hat{Y}) = X \operatorname{Var}(\hat{\beta}) X' = \sigma^2 X (X'X)^{-1} X'$, the variance of \hat{Y}_i is the (i, i)th element of the preceding variance/covariance matrix; that is,

$$\operatorname{Var}(\hat{Y}_{i}) = \sigma^{2} \sum_{j=1}^{p} \sum_{k=1}^{p} X_{i,j} \left[(\boldsymbol{X}\boldsymbol{X})^{-1} \right]_{j,k} X_{i,k}.$$

Because $\sum_{i=1}^{n} X_{i,j} X_{i,k} = [\mathbf{X}' \mathbf{X}]_{j,k}$, it follows that

$$\sum_{i=1}^{n} \operatorname{Var}(\hat{Y}_{i}) = \sigma^{2} \sum_{j=1}^{p} \sum_{k=1}^{p} \left[(\boldsymbol{X}\boldsymbol{X})^{-1} \right]_{j,k} [\boldsymbol{X}'\boldsymbol{X}]_{j,k} = \sigma^{2} \operatorname{tr} \left((\boldsymbol{X}'\boldsymbol{X})^{-1} (\boldsymbol{X}'\boldsymbol{X}) \right).$$

Because $(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{X}) = \mathbf{I}_{p \times p}$, its trace is p; this does the job.

¹In this case, this means that $(\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2) \neq (\sum_{i=1}^{n} a_i b_i)^2$. According to the Cauchy–Schwarz inequality, $(\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2) \geq (\sum_{i=1}^{n} a_i b_i)^2$. Therefore, \boldsymbol{X} has full rank if and only if the Cauchy–Schwarz inequality is a strict inequality. This turns out to mean that $z_i := a_i b_i$ is not a linear function of i.

10. We need to assume (as is done in the body of the text) additionally that V is positive definite. In that case, $a'V^{-1}a \ge 0$ for any vector a. In particular,

$$F(\boldsymbol{\beta}) := (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})'\boldsymbol{V}^{-1}(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}) \ge 0.$$

Next, we expand to see that

$$F(\boldsymbol{\beta}) = \boldsymbol{Y}' \boldsymbol{V}^{-1} \boldsymbol{Y} - \boldsymbol{\beta}' \boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{Y} - \boldsymbol{Y}' \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{\beta}' \boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta}.$$

The first and the fourth terms are ≥ 0 . The second and the third term are equal to one another because they are scalar quantities (and hence equal to their own transpose). Thus, we see that

$$F(\boldsymbol{\beta}) = \boldsymbol{Y}' \boldsymbol{V}^{-1} \boldsymbol{Y} - 2\boldsymbol{\beta}' \boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{Y} + \boldsymbol{\beta}' \boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta}.$$

Suppose β_* is any solution to $X'V^{-1}X\beta_* = X'V^{-1}Y$. (If X were full rank, then there would be a unique such β_* . Else, there will be infinitely-many different choices of β_* ; fix any one of them.) By default, $F(\beta_*) = Y'V^{-1}Y - \beta'_*X'V^{-1}X\beta_*$. Therefore,

$$F(\boldsymbol{\beta}) - F(\boldsymbol{\beta}_*) = -2\boldsymbol{\beta}' \boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{Y} + \boldsymbol{\beta}' \boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{\beta}_*' \boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta}_*$$

= $(\boldsymbol{\beta}_* - \boldsymbol{\beta})' \boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{X} (\boldsymbol{\beta}_* - \boldsymbol{\beta})$
 $\geq 0,$

again because V^{-1} is positive definite. This proves that $F(\beta)$ is minimized at $\beta = \beta_*$.

15. This problem is an example of a linear model, where the design matrix is

$$\boldsymbol{X} = \begin{pmatrix} 1 & C_1 & S_1 \\ 1 & C_2 & S_2 \\ 1 & C_3 & S_3 \end{pmatrix},$$

where

$$C_i := \cos\left(\frac{2\pi k_1 i}{n}\right), \qquad S_i := \sin\left(\frac{2\pi k_2 i}{n}\right) \qquad \text{for } 1 \le i \le n$$

The theoretical answer is $\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y}$, provided that \boldsymbol{X} has full rank. It is a deep fact from Fourier series that, because $k_1, k_2 \geq 1$ are integers, the columns of \boldsymbol{X} are linearly independent. Next we compute $\widehat{\boldsymbol{\beta}}$.

It might be better to instead proceed directly to find $\hat{\beta}$ in this case, since the problem is pretty modest in size. Incidentally, the answer in the back of your text is manifestly false, starting with the claim that X'X is a diagonal matrix! In fact, X'X is diagonal only for very special choices of k_1 and k_2 . Also, $\hat{\beta}_0 \neq \overline{Y}$ etc., as we will see soon.

The direct approach to the least squares problem is to solve the minimization problem,

$$\min_{\beta_0,\beta_1,\beta_2} \sum_{i=1}^n \left[Y_i - \beta_0 - \beta_1 C_i - \beta_2 S_i \right]^2 := \min_{\beta_0,\beta_1,\beta_2} f(\beta_0,\beta_1,\beta_2).$$

It is easier to solve this directly, rather than to invert $\mathbf{X}'\mathbf{X}$, etc. The function f is a positive quadratic, therefore it suffices to set $\partial f/\partial \beta_i = 0$ for i = 0, 1, 2. Now,

$$\frac{\partial f}{\partial \beta_0} = -2\sum_{i=1}^n \left[Y_i - \beta_0 - \beta_1 C_i - \beta_2 S_i\right] = -2n\left[\overline{Y} - \beta_0 - \beta_1 \overline{C} - \beta_2 \overline{S}\right],$$

where $\overline{Y} := n^{-1} \sum_{i=1}^{n} Y_i$, $\overline{C} := n^{-1} \sum_{i=1}^{n} C_i$, and $\overline{S} := n^{-1} \sum_{i=1}^{n} S_i$. Next, we compute

$$\frac{\partial f}{\partial \beta_1} = -2\sum_{i=1}^n \left[Y_i - \beta_0 - \beta_1 C_i - \beta_2 S_i\right] C_i = -2n \left[\overline{YC} - \beta_0 \overline{C} - \beta_1 \overline{C^2} - \beta_2 \overline{SC}\right],$$

where $\overline{YC} := n^{-1} \sum_{i=1}^{n} Y_i C_i$, $\overline{C^2} := n^{-1} \sum_{i=1}^{n} C_i^2$ and $\overline{SC} := n^{-1} \sum_{i=1}^{n} S_i C_i$. Finally,

$$\frac{\partial f}{\partial \beta_2} = -2\sum_{i=1}^n \left[Y_i - \beta_0 - \beta_1 C_i - \beta_2 S_i\right] S_i = -2n \left[\overline{YS} - \beta_0 \overline{S} - \beta_1 \overline{SC} - \beta_2 \overline{S^2}\right],$$

where $\overline{YS} := n^{-1} \sum_{i=1}^{n} Y_i S_i$ etc. Set the preceding three $\partial f / \partial \beta$'s

Set the preceding three $\partial f/\partial \beta_i$'s equal to zero and solve to obtain a 3×3 linear system,

$$\begin{pmatrix} 1 & \overline{C} & \overline{S} \\ \overline{C} & \overline{C^2} & \overline{SC} \\ \overline{S} & \overline{SC} & \overline{S^2} \end{pmatrix} \widehat{\boldsymbol{\beta}} = \begin{pmatrix} \overline{Y} \\ \overline{YC} \\ \overline{YS} \end{pmatrix}$$

Therefore,

$$\begin{split} \widehat{\boldsymbol{\beta}} &= \begin{pmatrix} \frac{1}{C} & \frac{\overline{C}}{C^2} & \overline{S}\\ \overline{S} & \frac{\overline{C}}{SC} & \overline{S^2} \end{pmatrix}^{-1} \begin{pmatrix} \overline{Y}\\ \overline{YC}\\ \overline{YS} \end{pmatrix} \\ &= \frac{1}{\Delta} \begin{pmatrix} \overline{C^2} \cdot \overline{S^2} - (\overline{SC})^2 & \overline{C} \cdot \overline{S^2} - \overline{S} \cdot \overline{SC} & \overline{C} \cdot \overline{SC} - \overline{C^2} \cdot \overline{S}\\ \overline{SC} - \overline{C} \cdot \overline{S} & \overline{S^2} - (\overline{S})^2 & \overline{SC} - \overline{C} \cdot \overline{S}\\ \overline{C} \cdot \overline{SC} - \overline{C^2} \cdot \overline{S} & \overline{S^2} - (\overline{S})^2 & \overline{C^2} - (\overline{C})^2 \end{pmatrix} \begin{pmatrix} \overline{Y}\\ \overline{YC}\\ \overline{YS} \end{pmatrix}, \end{split}$$

where

$$\Delta = \overline{C^2} \cdot \overline{S^2} - (\overline{SC})^2 - \overline{C} \left(\overline{C} \cdot \overline{S^2} - \overline{S} \cdot \overline{SC} \right) + \overline{S} \left(\overline{C} \cdot \overline{SC} - \overline{S} \cdot \overline{C^2} \right),$$

which is nonzero as we argued, using Fourier series, by other means.