Midterm Exam, Math 6010-1

Fall 2016
September 28, 2016

This is a 50 -minute exam. You may use your textbook, as well as a calculator, but your work must be completely yours.

The exam is made of 3 questions in 4 pages, and is worth 40 points, total. Be sure to try all of the problems.

Partial credit is given only to carefully-written solutions.

1. (15 points in 3 equal parts) Which of the following are quadratic forms? Explain your reasoning, and identify the matrix of each quadratic form explicitly.
(a) (5 points) $Q(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}$ for every $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{\prime} \in \mathbb{R}^{n}$.

Solution. This is not a quadratic form. Here is why. Suppose to the contrary that there existed a matrix \boldsymbol{A} such that $Q(\boldsymbol{x})=\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}$ for all $\boldsymbol{x} \in \mathbb{R}^{n}$. That is, suppose

$$
Q(\boldsymbol{x})=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} x_{i} x_{j} .
$$

Then, $\left(\partial^{2} Q(\boldsymbol{x})\right) /\left(\partial x_{i} \partial x_{j}\right)=A_{i, j}$ for every $1 \leq i, j \leq n$. For us, however, $\left(\partial^{2} Q(\boldsymbol{x})\right) /\left(\partial x_{i} \partial x_{j}\right)=0$ for every i, j. This implies that $A_{i, j}=0$ for all i, j, which means that $\boldsymbol{A}=\mathbf{0}$, an impossibility.
(b) (5 points) $Q(\boldsymbol{x})=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{j}-\bar{x}\right)$ for every $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{\prime} \in \mathbb{R}^{n}$, where $\bar{x}:=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.
Solution. First, notice that $Q(\boldsymbol{x})=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \cdot \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)=0$. Thus, we see that Q is a quadratic form with trivial matrix $\boldsymbol{A}=\mathbf{0}$.
(c) (5 points) $Q(\boldsymbol{x})=\sum_{i=1}^{n-1}\left(x_{i+1}-x_{i}\right)^{2}$ for every $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{\prime} \in \mathbb{R}^{n}$.

Solution. Write $Q=Q_{1}+Q_{2}-2 Q_{3}$, where

$$
Q_{1}(\boldsymbol{x})=\sum_{i=1}^{n-1} x_{i+1}^{2}, \quad Q_{2}(\boldsymbol{x})=\sum_{i=1}^{n-1} x_{i}^{2}, \quad Q_{3}(\boldsymbol{x})=\sum_{i=1}^{n-1} x_{i} x_{i+1} .
$$

Each Q_{j} is a quadratic form, with respective matrices,

$$
\boldsymbol{A}_{1}=\left(\begin{array}{cc}
\mathbf{0}_{1 \times(n-1)} & 0 \\
\boldsymbol{I}_{(n-1) \times(n-1)} & \mathbf{0}_{(n-1) \times 1}
\end{array}\right), \quad \boldsymbol{A}_{2}=\left(\begin{array}{cc}
\boldsymbol{I}_{(n-1) \times(n-1)} & \mathbf{0}_{(n-1) \times 1} \\
\mathbf{0}_{1 \times(n-1)} & 0
\end{array}\right),
$$

and \boldsymbol{A}_{3} is a matrix that is all ones but the super-diagonal entire; those superdiagonal entries are all ones; that is,

$$
\boldsymbol{A}_{3}=\left(\begin{array}{ccccccc}
0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & \ddots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ddots & 1 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0
\end{array}\right) .
$$

Therefore, Q is a quadratic form with matrix $\boldsymbol{A}_{1}-2 \boldsymbol{A}_{3}+\boldsymbol{A}_{2}$.
2. (10 points total) The claim has been made that a certain random vector \boldsymbol{X} has a $\mathrm{N}_{3}(\mathbf{0}, \boldsymbol{\Sigma})$ distribution, where

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
10 & 2 & 3 \\
4 & 200 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

(a) (2 points) The eigenvalues of $\boldsymbol{\Sigma}$ are (approximately) 4.83, 13.87, and 200.3. Can the claim possibly be true?
Solution. It can potentially be true because $\boldsymbol{\Sigma}$ is positive semi-definite.
(b) (5 points) Compute $\mathrm{E}\left(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\right)$ for the matrix $\boldsymbol{A}=\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right)$.

Solution. We know that
$\mathrm{E}\left(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\right)=\boldsymbol{\mu}^{\prime} \boldsymbol{A} \boldsymbol{\mu}+\operatorname{tr}(\boldsymbol{A} \boldsymbol{\Sigma})=\sum_{i=1}^{3} \sum_{j=1}^{3} A_{i, j} \Sigma_{i, j}=\sum_{i=1}^{3} A_{i, i} \Sigma_{i, i}=20-200+18=-162$.
(c) (3 points) Explain why your answer to (b) implies that \boldsymbol{A} is not positive semidefinite.
Solution. If \boldsymbol{A} were positive semidefinite, then $\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}$ would have to be ≥ 0, and that would imply that $\mathrm{E}\left(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\right)$ would have to be ≥ 0.
3. (15 points total) Let X_{1}, \ldots, X_{10} be an independent random sample from a $\mathrm{N}(0,1)$ distribution, and define $\boldsymbol{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$ as the vector of the following two "lagged averages":

$$
Y_{1}=\frac{X_{1}+\cdots+X_{5}}{5} \quad \text { and } \quad Y_{2}=\frac{X_{2}+\cdots+X_{6}}{5}
$$

(a) (10 points) Compute $\mathrm{E}(\boldsymbol{Y})$ and $\operatorname{Var}(\boldsymbol{Y})$.

Solution. $\mathrm{E}\left(Y_{1}\right)=\mathrm{E}\left(Y_{2}\right)=0$, therefore, $\mathrm{E}(\boldsymbol{Y})=\mathbf{0}$. Also, $\operatorname{Var}\left(Y_{1}\right)=\operatorname{Var}\left(Y_{2}\right)=$ $1 / 5$, and $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=\frac{1}{36} \operatorname{Var}\left(X_{2}+\cdots+X_{5}\right)=4 / 36=1 / 8$. Therefore,

$$
\operatorname{Var}(\boldsymbol{Y})=\left[\begin{array}{ll}
1 / 5 & 1 / 8 \\
1 / 8 & 1 / 5
\end{array}\right]
$$

(b) (5 points) Explain carefully why \boldsymbol{Y} has a bivariate normal distribution. Does \boldsymbol{Y} have a probability density?
Solution. \boldsymbol{Y} is a bivariate normal because $\boldsymbol{Z}=\left(X_{1}, \ldots, X_{6}\right)^{\prime}$ is a vector of i.i.d. standard normals, and

$$
\boldsymbol{Y}=\left(\begin{array}{cccccc}
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 0 \\
0 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5
\end{array}\right) \boldsymbol{Z} .
$$

The determinant of $\operatorname{Var}(\boldsymbol{Y})$ is positive, so $\operatorname{Var}(\boldsymbol{Y})$ is positive definite and hence \boldsymbol{Y} has a pdf. Indeed,

$$
\operatorname{det}[\operatorname{Var}(\boldsymbol{Y})]=(1 / 25)-(1 / 64)=39 /(25 \times 64)>0 .
$$

