Some linear algebra

Recall the convention that, for us, all vectors are column vectors.

1. Symmetric matrices

Let A be a real $n \times n$ matrix. Recall that a complex number λ is an *eigenvalue* of A if there exists a real and nonzero vector x—called an eigenvector for λ —such that $Ax = \lambda x$. Whenever x is an eigenvector for λ , so is ax for every real number a.

The characteristic polynomial χ_A of matrix A is the function

 $\chi_A(\lambda) := \det(\lambda I - A),$

defined for all complex numbers λ , where I denotes the $n \times n$ identity matrix. It is not hard to see that a complex number λ is an eigenvalue of A if and only if $\chi_A(\lambda) = 0$. We see by direct computation that χ_A is an *n*th-order polynomial. Therefore, A has precisely n eigenvalues, thanks to the fundamental theorem of algebra. We can write them as $\lambda_1, \ldots, \lambda_n$, or sometimes more precisely as $\lambda_1(A), \ldots, \lambda_n(A)$.

1. The spectral theorem. The following important theorem is the starting point of our discussion. It might help to recall that vectors $x_1, \ldots, x_k \in \mathbf{R}^n$ are orthonormal if $\mathbf{x}'_i \mathbf{x}_i = 0$ when $i \neq j$ and $\mathbf{x}'_i \mathbf{x}_i = \|\mathbf{x}_i\|^2 = 1$.

Theorem 1. If *A* is a real and symmetric $n \times n$ matrix, then $\lambda_1, \ldots, \lambda_n$ are real numbers. Moreover, there exist *n* orthonormal eigenvectors v_1, \ldots, v_n that correspond respectively to $\lambda_1, \ldots, \lambda_n$.

I will not prove this result, as it requires developing a good deal of elementary linear algebra that we will not need. Instead, let me state and prove a result that is central for us.

Theorem 2 (The spectral theorem). Let A denote a symmetric $n \times n$ matrix with real eigenvalues $\lambda_1, \ldots, \lambda_n$ and corresponding orthonormal eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. Define $\mathbf{D} := \text{diag}(\lambda_1, \ldots, \lambda_n)$ to be the diagonal matrix of the λ_i 's and \mathbf{P} to be the matrix whose columns are \mathbf{v}_1 though \mathbf{v}_n respectively; that is,

$$\boldsymbol{D} := \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{pmatrix}, \quad \boldsymbol{P} := (\boldsymbol{v}_1, \dots, \boldsymbol{v}_n).$$

Then **P** is orthogonal $[\mathbf{P}' = \mathbf{P}^{-1}]$ and $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} = \mathbf{P}\mathbf{D}\mathbf{P}'$.

Proof. P is orthogonal because the orthonormality of the v_i 's implies that

$$\boldsymbol{P}'\boldsymbol{P} = \begin{pmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_n \end{pmatrix} \quad (\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n) = \boldsymbol{I}.$$

Furthermore, because $Av_j = \lambda_j v_j$, it follows that AP = PD, which is another way to say that $A = PDP^{-1}$.

Recall that the *trace* of an $n \times n$ matrix **A** is the sum $A_{1,1} + \cdots + A_{n,n}$ of its diagonal entries.

Corollary 3. If A is a real and symmetric $n \times n$ matrix with real eigenvalues $\lambda_1, \ldots, \lambda_n$, then

$$\operatorname{tr}(A) = \lambda_1 + \cdots + \lambda_n$$
 and $\operatorname{det}(A) = \lambda_1 \times \cdots \times \lambda_n$.

Proof. Write *A*, in spectral form, as PDP^{-1} . Since the determinant of P^{-1} is the reciprocal of that of *A*, it follows that det(A) = det(D), which is clearly $\lambda_1 \times \cdots \times \lambda_n$. In order to compute the trace of *A* we compute directly also:

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \sum_{j=1}^{n} P_{i,j} \left(\mathbf{D} \mathbf{P}^{-1} \right)_{i,j} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} P_{i,j} D_{i,k} P_{j,k}^{-1}$$
$$= \sum_{i=1}^{n} \sum_{k=1}^{n} \left(\mathbf{P} \mathbf{P}^{-1} \right)_{i,k} D_{i,k} = \sum_{i=1}^{n} D_{i,i} = \operatorname{tr}(\mathbf{D}),$$

which is $\lambda_1 + \cdots + \lambda_n$.

2. The square-root matrix. Let *A* continue to denote a real and symmetric $n \times n$ matrix.

Proposition 4. There exists a complex and symmetric $n \times n$ matrix **B**—called the square root of **A** and written as $A^{1/2}$ or even sometimes as \sqrt{A} —such that $A = B^2 := BB$.

The proof of Proposition 4 is more important than its statement. So let us prove this result.

Proof. Apply the spectral theorem and write $A = PDP^{-1}$. Since *D* is a diagonal matrix, its square root can be defined unambiguously as the following complex-valued $n \times n$ diagonal matrix:

$$oldsymbol{D}^{1\!\!\!/_2} := egin{pmatrix} \lambda_1^{1\!\!\!/_2} & 0 & 0 & \cdots & 0 \ 0 & \lambda_2^{1\!\!\!/_2} & 0 & \cdots & 0 \ 0 & 0 & \lambda_3^{1\!\!\!/_2} & \cdots & 0 \ dots & d$$

Define $B := PD^{1/2}P^{-1}$, and note that

$$B^{2} = PD^{1/2}P^{-1}PD^{1/2}P^{-1} = PDP^{-1} = A,$$

since $P^{-1}P = I$ and $(D^{1/2})^2 = D$.

2. Positive-semidefinite matrices

Recall that an $n \times n$ matrix A is *positive semidefinite* if it is symmetric and

 $\mathbf{x}' \mathbf{A} \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbf{R}^n$.

Recall that A is positive definite if it is symmetric and

x'Ax > 0 for all nonzero $x \in \mathbf{R}^n$.

Theorem 5. A symmetric matrix \mathbf{A} is positive semidefinite if and only if all of its eigenvalues are ≥ 0 . \mathbf{A} is positive definite if and only if all of its eigenvalues are > 0. In the latter case, \mathbf{A} is also nonsingular.

The following is a ready consequence.

Corollary 6. All of the eigenvalues of a variance-covariance matrix are always ≥ 0 .

Now let us establish the theorem.

Proof of Theorem 5. Suppose *A* is positive semidefinite, and let λ denote one of its eignenvalues, together with corresponding eigenvector *x*. Since $0 \le x'Ax = \lambda ||x||^2$ and ||x|| > 0, it follows that $\lambda \ge 0$. This proves that all of the eigenvalues of *A* are nonnegative. If *A* is positive definite, then the same argument shows that all of its eigenvalues are > 0. Because det(*A*) is the product of all *n* eigenvalues of *A* (Corollary 3), it follows that det(*A*) > 0, whence *A* is nonsingular.

This proves slightly more than half of the proposition. Now let us suppose that all eigenvalues of A are ≥ 0 . We write A in spectral form A = PDP', and observe that D is a diagonal matrix of nonnegative numbers. By virute of its construction. $A^{1/2} = PD^{1/2}P'$, and hence for all $x \in \mathbf{R}^n$,

$$\mathbf{x}' \mathbf{A} \mathbf{x} = \left(\mathbf{D}^{1/2} \mathbf{P} \mathbf{x} \right)' \left(\mathbf{D}^{1/2} \mathbf{P} \mathbf{x} \right) = \left\| \mathbf{D}^{1/2} \mathbf{P} \mathbf{x} \right\|^2, \qquad (1)$$

which is ≥ 0 . Therefore, *A* is positive semidefinite.

If all of the eigenvalues of A are > 0, then (1) tells us that

$$\mathbf{x}'\mathbf{A}\mathbf{x} = \left\|\mathbf{D}^{1/2}\mathbf{P}\mathbf{x}\right\|^2 = \sum_{j=1}^n \left(\left[\mathbf{D}^{1/2}\mathbf{P}\mathbf{x}\right]_j\right)^2 = \sum_{j=1}^n \lambda_j \left([\mathbf{P}\mathbf{x}]_j\right)^2, \quad (2)$$

where $\lambda_i > 0$ for all *j*. Therefore,

$$\mathbf{x}' \mathbf{A} \mathbf{x} \geq \min_{1 \leq j \leq n} \lambda_j \cdot \sum_{j=1}^n \left\langle [\mathbf{P} \mathbf{x}]_j \right\rangle^2 = \min_{1 \leq j \leq n} \lambda_j \cdot \mathbf{x}' \mathbf{P}' \mathbf{P} \mathbf{x} = \min_{1 \leq j \leq n} \lambda_j \cdot \|\mathbf{x}\|^2.$$

Since $\min_{1 \le j \le n} \lambda_j > 0$, it follows that x'Ax > 0 for all nonzero x. This completes the proof.

Let us pause and point out a consequence of the proof of this last result.

Corollary 7. If **A** is positive semidefinite, then its extremal eigenvalues satisfy

$$\min_{1\leq j\leq n}\lambda_j=\min_{\|\mathbf{x}\|>0}\frac{\mathbf{x}'A\mathbf{x}}{\|\mathbf{x}\|^2},\qquad \max_{1\leq j\leq n}\lambda_j=\max_{\|\mathbf{x}\|>0}\frac{\mathbf{x}'A\mathbf{x}}{\|\mathbf{x}\|^2}.$$

Proof. We saw, during the course of the previous proof, that

$$\min_{1 \le j \le n} \lambda_j \cdot \|\mathbf{x}\|^2 \le \mathbf{x}' \mathbf{A} \mathbf{x} \quad \text{for all } \mathbf{x} \in \mathbf{R}^n. \tag{3}$$

. -

Optimize over all x to see that

$$\min_{1 \le j \le n} \lambda_j \le \min_{\|\mathbf{x}\| > 0} \frac{\mathbf{x}' A \mathbf{x}}{\|\mathbf{x}\|^2}.$$
(4)

But $\min_{1 \le j \le n} \lambda_j$ is an eigenvalue for *A*; let *z* denote a corresponding eigenvector in order to see that

$$\min_{1\leq j\leq n}\lambda_j\leq\min_{\|m{x}\|>0}rac{m{x}'Am{x}}{\|m{x}\|^2}\leqrac{m{z}'Am{z}}{\|m{z}\|^2}=\min_{1\leq j\leq n}\lambda_j.$$

So both inequalities are in fact equalities, and hence follows the formula for the minimum eigenvalue. The one for the maximum eigenvalue is proved similarly. $\hfill \Box$

Finally, a word about the square root of positive semidefinite matrices:

Proposition 8. If A is positive semidefinite, then so is $A^{1/2}$. If A is positive definite, then so is $A^{1/2}$.

Proof. We write, in spectral form, A = PDP' and observe [by squaring it] that $A^{1/2} = PD^{1/2}P'$. Note that $D^{1/2}$ is a real diagonal matrix since the eigenvalues of A are ≥ 0 . Therefore, we may apply (1) to $A^{1/2}$ [in place of A] to see that $x'A^{1/2}x = ||D^{1/4}Px||^2 \geq 0$ where $D^{1/4}$ denotes the [real] square root of $D^{1/2}$. This proves that if A is positive semidefinite, then so is $A^{1/2}$. Now suppose there exists a positive definite A whose square root is not positive definite. It would follow that there necessarily exists a nonzero $x \in \mathbb{R}^n$ such that $x'A^{1/2}x = ||D^{1/4}Px||^2 = 0$. Since $D^{1/4}Px = 0$,

$$\boldsymbol{D}^{1/2}\boldsymbol{P}\boldsymbol{x} = \boldsymbol{D}^{1/4}\boldsymbol{D}^{1/4}\boldsymbol{P}\boldsymbol{x} = \boldsymbol{0} \qquad \Rightarrow \qquad \boldsymbol{x}'\boldsymbol{A}\boldsymbol{x} = \left\|\boldsymbol{D}^{1/2}\boldsymbol{P}\boldsymbol{x}\right\|^2 = \boldsymbol{0}.$$

And this contradicts the assumption that **A** is positive definite.

3. The rank of a matrix

Recall that vectors v_1, \ldots, v_k are linearly independent if

$$c_1 v_1 + \dots + c_k v_k = 0 \qquad \Rightarrow \qquad c_1 = \dots = c_k = 0.$$

For instance, $\mathbf{v}_1 := (1, 0)'$ and $\mathbf{v}_2 := (0, 1)'$ are linearly independent 2-vectors.

The column rank of a matrix A is the maximum number of linearly independent column vectors of A. The row rank of a matrix A is the maximum number of linearly independent row vectors of A. We can interpret these definitions geometrically as follows: First, suppose A is $m \times n$ and define $\mathcal{C}(A)$ denote the linear space of all vectors of the form $c_1v_1 + \cdots + c_nv_n$, where v_1, \ldots, v_n are the column vectors of A and c_1, \ldots, c_n are real numbers. We call $\mathcal{C}(A)$ the column space of A.

We can define the row space $\mathscr{R}(A)$, of A similarly, or simply define $\mathscr{R}(A) := \mathscr{C}(A')$.

Lemma 9. For every $m \times n$ matrix A,

 $\mathscr{C}(A) = \{Ax : x \in \mathbf{R}^n\}, \quad \mathscr{R}(A) := \{x'A : x \in \mathbf{R}^m\}.$

We can think of an $m \times n$ matrix A as a mapping from \mathbb{R}^n into \mathbb{R}^m ; namely, we can think of matrix A also as the function $f_A(x) := x \mapsto Ax$. In this way we see that $\mathcal{C}(A)$ is also the "range" of the function f_A .

Proof. Let us write the columns of A as a_1, a_2, \ldots, a_n . Note that $y \in \mathcal{C}(A)$ if and only if there exist c_1, \ldots, c_n such that $y = c_1a_1 + \cdots + c_na_n = Ac$, where $c := (c_1, \ldots, c_n)'$. This shows that $\mathcal{C}(A)$ is the collection of all vectors of the form Ax, for $x \in \mathbb{R}^n$. The second assertion [about $\mathcal{R}(A)$] follows from the definition of $\mathcal{R}(A$ equalling $\mathcal{C}(A')$ and the already-proven first assertion.

It then follows, from the definition of dimension, that

column rank of $A = \dim \mathcal{C}(A)$, row rank of $A = \dim \mathcal{R}(A)$.

Proposition 10. Given any matrix *A*, its row rank and column rank are the same. We write their common value as rank(*A*).

Proof. Suppose A is $m \times n$ and its column rank is r. Let $\mathbf{b}_1, \ldots, \mathbf{b}_r$ denote a basis for $\mathcal{C}(A)$ and consider the matrix $m \times r$ matrix $B := (\mathbf{b}_1, \ldots, \mathbf{b}_r)$. Write A, columnwise, as $A := (\mathbf{a}_1, \ldots, \mathbf{a}_n)$. For every $1 \leq j \leq n$, there exists $c_{1,j}, \ldots, c_{r,j}$ such that $\mathbf{a}_j = c_{1,j}\mathbf{b}_1 + \cdots + c_{r,j}\mathbf{b}_r$. Let $C := (c_{i,j})$ be the resulting $r \times n$ matrix, and note that A = BC. Because $A_{i,j} = \sum_{k=1}^r B_{i,k}C_{k,j}$, every row of A is a linear combination of the rows of C. In other words, $\mathcal{R}(A) \subseteq \mathcal{R}(C)$ and hence the row rank of A is $\leq \dim \mathcal{R}(C) = r$ = the column rank of A. Apply this fact to A' to see that also the row rank of A' is \leq the row rank of A.

Proposition 11. If A is $n \times m$ and B is $m \times k$, then

 $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B)).$

Proof. The proof uses an idea that we exploited already in the proof of Proposition 10: Since $(AB)_{j,l} = \sum_{\nu=1}^{n} A_{j,\nu}B_{\nu,l}$, the rows of AB are linear combinations of the rows of B; that is $\mathcal{R}(AB) \subseteq \mathcal{R}(B)$, whence rank $(AB) \leq \operatorname{rank}(B)$. Also, $\mathcal{C}(AB) \subseteq \mathcal{C}(A)$, whence rank $(AB) \leq \operatorname{rank}(A)$. These observations complete the proof.

Proposition 12. If A and C are nonsingular, then

 $\operatorname{rank}(ABC) = \operatorname{rank}(B),$

provided that the dimensions match up so that ABC makes sense.

Proof. Let D := ABC; our goal is to show that rank(D) = rank(B).

Two applications of the previous proposition together yield rank(D) \leq rank(AB) \leq rank(B). And since $B = A^{-1}DC^{-1}$, we have also rank(B) \leq rank($A^{-1}D$) \leq rank(D).

Corollary 13. If A is an $n \times n$ real and symmetric matrix, then rank(A) = the total number of nonzero eigenvalues of A. In particular, A has full rank if and only if A is nonsingular. Finally, G(A) is the linear space spanned by the eigenvectors of A that correspond to nonzero eigenvalues.

Proof. We write A, in spectral form, as $A = PDP^{-1}$, and apply the preceding proposition to see that rank(A) = rank(D), which is clearly the total number of nonzero eigenvalue of A. Since A is nonsingular if and only if all of its eigenvalues are nonzero, A has full rank if and only if A is nonsingular.

Finally, suppose **A** has rank $k \leq n$; this is the number of its nonzero eigenvalues $\lambda_1, \ldots, \lambda_k$. Let v_1, \ldots, v_n denote orthonormal eigenvectors such that v_1, \ldots, v_k are eigenvectors that correspond to $\lambda_1, \ldots, \lambda_k$ and v_{k+1}, \ldots, v_n are eigenvectors that correspond to eigenvalues 0 [Gram-Schmidt]. And define & to be the span of v_1, \ldots, v_k ; i.e.,

$$\mathcal{E} := \{ c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k : c_1, \ldots, c_k \in \mathbf{R} \}.$$

Our final goal is to prove that $\mathcal{E} = \mathcal{C}(A)$, which we know is equal to the linear space of all vectors of the form Ax.

Clearly, $c_1 v_1 + \cdots + c_k v_k = Ax$, where $x = \sum_{j=1}^k (c_j/\lambda_j) v_j$. Therefore, $\mathcal{E} \subseteq \mathcal{C}(A)$. If k = n, then this suffices because in that case v_1, \ldots, v_k is a basis for \mathbb{R}^n , hence $\mathcal{E} = \mathcal{C}(A) = \mathbb{R}^n$. If k < n, then we can write every $x \in \mathbb{R}^n$ as $a_1 v_1 + \cdots + a_n v_n$, so that $Ax = \sum_{j=1}^k a_j \lambda_j v_j \in \mathcal{E}$. Thus, $\mathcal{C}(A) \subseteq \mathcal{E}$ and we are done.

Let *A* be $m \times n$ and define the *null space* [or "kernel"] of *A* as

$$\mathcal{N}(\mathbf{A}) := \{ \mathbf{x} \in \mathbf{R}^n : \mathbf{A}\mathbf{x} = \mathbf{0} \}.$$

Note that $\mathcal{N}(\mathbf{A})$ is the linear span of the eigenvectors of \mathbf{A} that correspond to eigenvalue 0. The other eigenvectors can be chosen to be orthogonal to these, and hence the preceding proof contains the facts

that: (i) Nonzero elements of $\mathcal{N}(A)$ are orthogonal to nonzero elements of $\mathcal{C}(A)$; and (ii)

 $\dim \mathcal{N}(A) + \operatorname{rank}(A) = n \ (= \text{the number of columns of } A). \tag{5}$

Proposition 14. rank(A) = rank(A'A) = rank(AA') for every $m \times n$ matrix A.

Proof. If Ax = 0 then A'Ax = 0, and if A'Ax = 0, then $||Ax||^2 = x'A'Ax = 0$. In other words, $\mathcal{N}(A) = \mathcal{N}(A'A)$. Because A'A and A both have n columnes, it follows from (5) that rank(A'A) = rank(A). Apply this observation to A' to see that rank(A') = rank(AA') as well. The result follows from this and the fact that A and A' have the same rank (Proposition 10).

4. Projection matrices

A matrix A is said to be a *projection* matrix if: (i) A is symmetric; and (ii) A is "idempotent"; that is, $A^2 = A$.

Note that projection matrices are always positive semidefinite. Indeed, $\mathbf{x}' A \mathbf{x} = \mathbf{x}' A^2 \mathbf{x} = \mathbf{x}' A' A \mathbf{x} = ||A\mathbf{x}||^2 \ge 0$

Proposition 15. If A is an $n \times n$ projection matrix, then so is I - A. Moreover, all eigenvalues of A are zeros and ones, and rank(A) = the number of eigenvalues that are equal to one.

Proof. $(I - A)^2 = I - 2A + A^2 = I - A$. Since I - A is symmetric also, it is a projection. If λ is an eigenvalue of A and x is a corresponding eigenvector, then $\lambda x = Ax = A^2x = \lambda Ax = \lambda^2 x$. Multiply both sides by x' to see that $\lambda ||x||^2 = \lambda^2 ||x||^2$. Since ||x|| > 0, it follows that $\lambda \in \{0, 1\}$. The total number of nonzero eigenvalues is then the total number of eigenvalues that are ones. Therefore, the rank of A is the total number of eigenvalues that are one.

Corollary 16. If A is a projection matrix, then rank(A) = tr(A).

Proof. Simply recall that tr(A) is the sum of the eigenvalues, which for a projection matrix, is the total number of eigenavalues that are one. \Box

Why are they called "projection" matrices? Or, perhaps even more importantly, what is a "projection"?

Lemma 17. Let Ω denote a linear subspace of \mathbb{R}^n , and $x \in \mathbb{R}^n$ be fixed. Then there exists a unique element $y \in \Omega$ that is closest to x; that is,

$$\|\boldsymbol{y}-\boldsymbol{x}\|=\min_{\boldsymbol{z}\in\Omega}\|\boldsymbol{z}-\boldsymbol{x}\|.$$

The point \mathbf{y} is called the projection of \mathbf{x} onto Ω .

Proof. Let $k := \dim \Omega$, so that there exists an orthonormal basis $\mathbf{b}_1, \ldots, \mathbf{b}_k$ for Ω . Extend this to a basis $\mathbf{b}_1, \ldots, \mathbf{b}_n$ for all of \mathbf{R}^n by the Gram–Schmidt method.

Given a fixed vector $\mathbf{x} \in \mathbf{R}^n$, we can write it as $\mathbf{x} := c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$ for some $c_1, \dots, c_n \in \mathbf{R}$. Define $\mathbf{y} := c_1 \mathbf{b}_1 + \dots + c_k \mathbf{b}_k$. Clearly, $\mathbf{y} \in \Omega$ and $\|\mathbf{y} - \mathbf{x}\|^2 = \sum_{i=k+1}^n c_i^2$. Any other $\mathbf{z} \in \Omega$ can be written as $\mathbf{z} = \sum_{i=1}^k d_i \mathbf{b}_i$, and hence $\|\mathbf{z} - \mathbf{x}\|^2 = \sum_{i=1}^k (d_i - c_i)^2 + \sum_{i=k+1}^n c_i^2$, which is strictly greater than $\|\mathbf{y} - \mathbf{x}\|^2 = \sum_{i=k+1}^n c_i^2$ unless $d_i = c_i$ for all $i = 1, \dots, k$; i.e., unless $\mathbf{z} = \mathbf{y}$.

Usually, we have a *k*-dimensional linear subspace Ω of \mathbb{R}^n that is the range of some $n \times k$ matrix A. That is, $\Omega = \{Ay : y \in \mathbb{R}^k\}$. Equivalently, $\Omega = \mathcal{C}(A)$. In that case,

$$\min_{\boldsymbol{z}\in\Omega} \|\boldsymbol{z}-\boldsymbol{x}\|^2 = \min_{\boldsymbol{y}\in\mathbf{R}^k} \|\boldsymbol{A}\boldsymbol{y}-\boldsymbol{x}\|^2 = \min_{\boldsymbol{y}\in\mathbf{R}^k} \left[\boldsymbol{y}'\boldsymbol{A}'\boldsymbol{A}\boldsymbol{y}-\boldsymbol{y}'\boldsymbol{A}'\boldsymbol{x}-\boldsymbol{x}'\boldsymbol{A}\boldsymbol{y}+\boldsymbol{x}'\boldsymbol{x}\right].$$

Because y'A'x is a scalar, the preceding is simplified to

$$\min_{\boldsymbol{z}\in\Omega} \|\boldsymbol{z}-\boldsymbol{x}\|^2 = \min_{\boldsymbol{y}\in\mathbf{R}^k} \left[\boldsymbol{y}'\boldsymbol{A}'\boldsymbol{A}\boldsymbol{y} - 2\boldsymbol{y}'\boldsymbol{A}'\boldsymbol{x} + \boldsymbol{x}'\boldsymbol{x} \right].$$

Suppose that the $k \times k$ positive semidefinite matrix A'A is nonsingular [so that A'A and hence also $(AA')^{-1}$ are both positive definite]. Then, we can relabel variables [$\alpha := A'Ay$] to see that

$$\min_{\mathbf{z}\in\Omega} \|\mathbf{z}-\mathbf{x}\|^2 = \min_{\boldsymbol{\alpha}\in\mathbf{R}^k} \left[\boldsymbol{\alpha}'(\mathbf{A}'\mathbf{A})^{-1}\boldsymbol{\alpha} - 2\boldsymbol{\alpha}'(\mathbf{A}'\mathbf{A})^{-1}\mathbf{A}'\mathbf{x} + \mathbf{x}'\mathbf{x} \right]$$

A little arithmetic shows that

$$(\boldsymbol{\alpha} - A'\boldsymbol{x})'(A'A)^{-1}(\boldsymbol{\alpha} - A'\boldsymbol{x})$$

= $\boldsymbol{\alpha}'(A'A)^{-1}\boldsymbol{\alpha} - 2\boldsymbol{\alpha}'(A'A)^{-1}A'\boldsymbol{x} + \boldsymbol{x}'A(A'A)^{-1}A'\boldsymbol{x}.$

Consequently,

$$\min_{\boldsymbol{z}\in\Omega} \|\boldsymbol{z} - \boldsymbol{x}\|^2$$

= $\min_{\boldsymbol{\alpha}\in\mathbf{R}^k} \left[(\boldsymbol{\alpha} - \boldsymbol{A}'\boldsymbol{x})'(\boldsymbol{A}'\boldsymbol{A})^{-1}(\boldsymbol{\alpha} - \boldsymbol{A}'\boldsymbol{x}) - \boldsymbol{x}'\boldsymbol{A}(\boldsymbol{A}'\boldsymbol{A})^{-1}\boldsymbol{A}'\boldsymbol{x} + \boldsymbol{x}'\boldsymbol{x} \right].$

The first term in the parentheses is ≥ 0 ; in fact it is > 0 unless we select $\alpha = A'x$. This proves that the projection of x onto Ω is obtained by setting $\alpha := A'x$, in which case the projection itself is Ay =

 $A(A'A)^{-1}A'x$ and the distance between y and x is the square root of $||x||^2 - x'A(A'A)^{-1}A'x$.

Let $P_{\Omega} := A(A'A)^{-1}A'$. It is easy to see that P_{Ω} is a projection matrix. The preceding shows that $P_{\Omega}x$ is the projection of x onto Ω for every $x \in \mathbb{R}^n$. That is, we can think of P_{Ω} as the matrix that projects onto Ω . Moreover, the distance between x and the linear subspace Ω [i.e., $\min_{z \in \mathbb{R}^k} ||z - x||$] is exactly the square root of $x'x - x'P_{\Omega}x = x'(I - P_{\Omega})x = ||(I - P_{\Omega})x||^2$, because $I - P_{\Omega}$ is a projection matrix. What space does it project into?

Let Ω^{\perp} denote the collection of all *n*-vectors that are perpendicular to every element of Ω . If $\mathbf{z} \in \Omega^{\perp}$, then we can write, for all $\mathbf{x} \in \mathbf{R}^n$,

$$\|\boldsymbol{z} - \boldsymbol{x}\|^2 = \|\boldsymbol{z} - (\boldsymbol{I} - \boldsymbol{P}_{\Omega})\boldsymbol{x} + \boldsymbol{P}_{\Omega}\boldsymbol{x}\|^2$$

= $\|\boldsymbol{z} - (\boldsymbol{I} - \boldsymbol{P}_{\Omega})\boldsymbol{x}\|^2 + \|\boldsymbol{P}_{\Omega}\boldsymbol{x}\|^2 - 2\{\boldsymbol{z} - (\boldsymbol{I} - \boldsymbol{P}_{\Omega})\boldsymbol{x}\}'\boldsymbol{P}_{\Omega}\boldsymbol{x}$
= $\|\boldsymbol{z} - (\boldsymbol{I} - \boldsymbol{P}_{\Omega})\boldsymbol{x}\|^2 + \|\boldsymbol{P}_{\Omega}\boldsymbol{x}\|^2$,

since \mathbf{z} is orthogonal to every element of Ω including $\mathbf{P}_{\Omega}\mathbf{x}$, and $\mathbf{P}_{\Omega} = \mathbf{P}_{\Omega}^2$. Take the minimum over all $\mathbf{z} \in \Omega^{\perp}$ to find that $\mathbf{I} - \mathbf{P}_{\Omega}$ is the projection onto Ω^{\perp} . Let us summarize our findings.

Proposition 18. If A'A is nonsingular [equivalently, has full rank], then $P_{\mathcal{C}(A)} := A(A'A)^{-1}A'$ is the projection onto $\mathcal{C}(A)$, $I - P_{\mathcal{C}(A)} = P_{\mathcal{C}(A)^{\perp}}$ is the projection onto Ω^{\perp} , and we have

$$\mathbf{x} = \mathbf{P}_{\mathcal{G}(\mathbf{A})}\mathbf{x} + \mathbf{P}_{\mathcal{G}(\mathbf{A})^{\perp}}\mathbf{x}, \text{ and } \|\mathbf{x}\|^2 = \|\mathbf{P}_{\mathcal{G}(\mathbf{A})}\mathbf{x}\|^2 + \|\mathbf{P}_{\mathcal{G}(\mathbf{A})^{\perp}}\mathbf{x}\|^2.$$

The last result is called the "Pythagorean property."