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Some linear algebra

Recall the convention that, for us, all vectors are column vectors.

1. Symmetric matrices

Let A be a real n x n matrix. Recall that a complex number A is an
eigenvalue of A if there exists a real and nonzero vector x—called an
eigenvector for A—such that Ax = Ax. Whenever x is an eigenvector
for A, so is ax for every real number a.

The characteristic polynomial xa of matrix A is the function
xa(A) := det(AI — A),

defined for all complex numbers A, where I denotes the n x n identity
matrix. It is not hard to see that a complex number A is an eigenvalue
of A if and only if ya(A) = 0. We see by direct computation that x4 is an
nth-order polynomial. Therefore, A has precisely n eigenvalues, thanks
to the fundamental theorem of algebra. We can write them as A4, ..., Ap,
or sometimes more precisely as A (A), ..., Ay (A).

1. The spectral theorem. The following important theorem is the start-

ing point of our discussion. It might help to recall that vectors x4, ..., x, €
R™ are orthonormal if xjxj = 0 when i # j and x/x; = [xi]? = 1.
Theorem 1. If A is a real and symmetric n x n matrix, then A4, ..., A
are real numbers. Moreover, there exist n orthonormal eigenvectors
vi,..., v, that correspond respectively to Ay, ..., An.
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I will not prove this result, as it requires developing a good deal of
elementary linear algebra that we will not need. Instead, let me state
and prove a result that is central for us.

Theorem 2 (The spectral theorem). Let A denote a symmetric n x n
matrix with real eigenvalues Aq,...,A, and corresponding orthonor-
mal eigenvectors vy,...,v,. Define D := diag(A1,...,Ay) to be the di-
agonal matrix of the A;’s and P to be the matrix whose columns are
vy though v, respectively; that is,

M 0 0 - 0
0 X 0 --- O

D:=|0 0 A5 -« 0]  P:i=(v,...,v).
0O 0 0 - An

Then P is orthogonal [P’ = P!l and A = PDP~! = PDP".

Proof. P is orthogonal because the orthonormality of the v;’s implies
that

l4

Vi
PP=|:| (v,...,vy) =L
Vn
Furthermore, because Av; = A;vj, it follows that AP = PD, which is
another way to say that A = PDPL. O

Recall that the frace of an n x n matrix A is the sum Ay 41 +---+Apn
of its diagonal entries.

Corollary 3. If A is a real and symmetric n x n matrix with real
eigenvalues Ay, ..., A,, then

tr(A) =AM +---+ Ay, and det(A) =A4 x -+ x Ap.

Proof. Write 4, in spectral form, as PDP~!. Since the determinant of
P! is the reciprocal of that of A, it follows that det(A) = det(D), which
is clearly Ay x -+ x A,. In order to compute the trace of A we compute
directly also:

n n

n n n
tr(A) = Z b; (DP_1>” = ZZZPi,jDi,kP;]g

i=1 j=1 ’ i=1 j=1 k=1

n
<PP_1>i,k Dy = ;Di,i = tI’(D),

s
-
s

Il

i=1 k=1
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which is Ay + - + Ap. O

2. The square-root matrix. Let A continue to denote a real and sym-
metric n x n matrix.

Proposition 4. There exists a complex and symmetric n x n matrix
B—called the square root of A and written as A" or even sometimes
as vVA—such that A = B? := BB.

The proof of Proposition 4 is more important than its statement. So
let us prove this result.

Proof. Apply the spectral theorem and write A = PDP~'. Since D is
a diagonal matrix, its square root can be defined unambiguously as the
following complex-valued n x n diagonal matrix:

A2 0 0 -0 0
0 A2 0 .- 0
D=0 0 A2 ... 0
0 0 0 - AP

n

Define B:= PD'"?P~1, and note that
B> = pp"p-'pp"”p-! = pPDP~! = A,
since P~'P = I and (D"?)?2 = D. O

2. Positive-semidefinite matrices

Recall that an n x n matrix A is positive semidefinite if it is symmetric
and
x'Ax >0 for all x € R™

Recall that A is positive definite if it is symmetric and

x'Ax >0 for all nonzero x € R".

Theorem 5. A symmetric matrix A is positive semidefinite if and only
if all of its eigenvalues are > 0. A is positive definite if and only if all
of its eigenvalues are > 0. In the latter case, A is also nonsingular.

The following is a ready consequence.

Corollary 6. All of the eigenvalues of a variance-covariance matrix
are always > 0.

Now let us establish the theorem.
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Proof of Theorem 5. Suppose A is positive semidefinite, and let A de-
note one of its eignenvalues, together with corresponding eigenvector
x. Since 0 < x'Ax = A|x||?> and |Jx| > O, it follows that A > 0. This
proves that all of the eigenvalues of A are nonnegative. If A is positive
definite, then the same argument shows that all of its eigenvalues are
> 0. Because det(A) is the product of all n eigenvalues of A (Corollary
3), it follows that det(A) > 0, whence A is nonsingular.

This proves slightly more than half of the proposition. Now let us
suppose that all eigenvalues of A are > 0. We write A in spectral form
A = PDP/, and observe that D is a diagonal matrix of nonnegative
numbers. By virute of its construction. A2 = PD"2P’, and hence for all
x € R,

x'Ax — (D“pr)' (D*Px) = HD

(1)
which is > 0. Therefore, A is positive semidefinite.
If all of the eigenvalues of A are > 0, then (1) tells us that

x'Ax = HDi/QPxH2 = 2”1: <[ 1/2P36] > ZA ([Px];)”, (2)

where A; > 0 for all j. Therefore,

x'Ax > min A; - Z ([Px];)” = mln Aj-x'P'Px = 1m1<1r1 A - x|l
]_n

1<j<n 1<j<n

Since minj<j<p A; > 0, it follows that x’Ax > O for all nonzero x. This
completes the proof. O

Let us pause and point out a consequence of the proof of this last
result.

Corollary 7. If A is positive semidefinite, then its extremal eigenvalues
satisfy
. . x'Ax x'Ax
min Aj = min —, max A; = max ——--.
1<j<n lx)>0 ||| 1<j<n x>0 [l ]|

Proof. We saw, during the course of the previous proof, that

min A; - |x|? < x’Ax for all x ¢ R™. (3)
1<j<n

Optimize over all x to see that

’

min A; < min AN
1<j<n x>0 [l]|
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But mini<j<p A; is an eigenvalue for A; let z denote a corresponding
eigenvector in order to see that
14 4

min A; < min xAx < ZAz min A;.

t<jsn 7 x>0 [x|* T lz]* 1<j<n
So both inequalities are in fact equalities, and hence follows the formula
for the minimum eigenvalue. The one for the maximum eigenvalue is
proved similarly. O

Finally, a word about the square root of positive semidefinite matri-
ces:

Proposition 8. If A is positive semidefinite, then so is A" If A is
positive definite, then so is A"

Proof. We write, in spectral form, A = PDP’ and observe [by squaring
it] that A2 = PD'2P’. Note that D" is a real diagonal matrix since the
eigenvalues of A are > 0. Therefore, we may apply (1) to A" [in place
of A] to see that x’A"”x = |D"Px|? > 0 where D" denotes the [real]
square root of D"2. This proves that if A is positive semidefinite, then
so is A2, Now suppose there exists a positive definite A whose square
root is not positive definite. It would follow that there necessarily exists
a nonzero x ¢ R™ such that x’A"”x = |D"*Px|> = 0. Since D"*Px = 0,

2
D”Px = D"D"Px =0 =  x'Ax = HDi/prH ~0.

And this contradicts the assumption that A is positive definite. O

3. The rank of a matrix

Recall that vectors vy,..., v, are linearly independent if

c1vy + -+ Cpvp =0 = c1=---=cp=0.
For instance, vy := (1,0) and vy := (0,1) are linearly independent 2-
vectors.

The column rank of a matrix A is the maximum number of linearly
independent column vectors of A. The row rank of a matrix A is the
maximum number of linearly independent row vectors of A. We can
interpret these definitions geometrically as follows: First, suppose A is
m x n and define G(A) denote the linear space of all vectors of the form
c1v4 + --- + cpvp, Where vy,...,v, are the column vectors of A and
cq,...,Cn are real numbers. We call G(A) the column space of A.

We can define the row space R(A), of A similarly, or simply define
R(A) := G(A).
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Lemma 9. For every m x n matrix A,

B(A)={Ax: x cR"}, R(A):={x'A: x cR™}.

We can think of an m x n matrix A as a mapping from R" into R™;
namely, we can think of matrix A also as the function fj(x) := x +— Ax.
In this way we see that G(A) is also the “range” of the function f4.

Proof. Let us write the columns of A asay, ay,...,a,. Note thaty € G(A)
if and only if there exist ¢4,...,¢c, such that y = ciay + --- + cpha, =
Ac, where ¢ := (c1,...,cp). This shows that G(A) is the collection of

all vectors of the form Ax, for x € R". The second assertion [about
R(A)] follows from the definition of R (A equalling G(A’) and the already-
proven first assertion. ([

It then follows, from the definition of dimension, that

column rank of A = dim G(A), row rank of A = dim R(A).

Proposition 10. Given any matrix A, its row rank and column rank
are the same. We write their common value as rank(A).

Proof. Suppose A is m x n and its column rank is r. Let by,...,b,
denote a basis for G(A) and consider the matrix m x r matrix B :=
(by,...,by). Write A, columnwise , as A := (a1,...,a,). For every
1 < j < n, there exists ¢4 j,...,cpj such that aj = ¢ jby +--- + ¢, jb,. Let
C := (c;,j) be the resulting r x n matrix, and note that A = BC. Because
Aij =Y p_; BixCrj, every row of A is a linear combination of the rows
of C. In other words, R(A) C R(C) and hence the row rank of A is
< dimR(C) = r = the column rank of A. Apply this fact to A’ to see that
also the row rank of A’ is < the column rank of A’; equivalently that the
column rank of A is < the row rank of A. O

Proposition 11. If A is n x m and B is m x k, then

rank(AB) < min (rank(A) , rank(B)) .

Proof. The proof uses an idea that we exploited already in the proof
of Proposition 10: Since (AB);j; = Y.v_; A;,B,, the rows of AB are
linear combinations of the rows of B; that is R(AB) C ®R(B), whence
rank(AB) < rank(B). Also, G(AB) C G(A), whence rank(AB) < rank(A).
These observations complete the proof. ([
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Proposition 12. If A and C are nonsingular, then
rank(ABC) = rank(B),

provided that the dimensions match up so that ABC makes sense.

Proof. Let D := ABC; our goal is to show that rank(D) = rank(B).

Two applications of the previous proposition together yield rank(D) <
rank(AB) < rank(B). And since B = A~!DC~!, we have also rank(B) <
rank(A~'D) < rank(D). O

Corollary 13. If A is an n x n real and symmetric matrix, then rank(A) =
the fotal number of nonzero eigenvalues of A. In particular, A has full
rank if and only if A is nonsingular. Finally, G(A) is the linear space
spanned by the eigenvectors of A that correspond to nonzero eigen-
values.

Proof. We write A, in spectral form, as A = PDP~!, and apply the
preceding proposition to see that rank(A) = rank(D), which is clearly
the total number of nonzero eigenvalue of A. Since A is nonsingular if
and only if all of its eigenvalues are nonzero, A has full rank if and only
if A is nonsingular.

Finally, suppose A has rank k < n; this is the number of its nonzero

eigenvalues Aq,...,Ap. Let vy,..., v, denote orthonormal eigenvectors
such that vy,..., vy are eigenvectors that correspond to A4,...,Ar and
Vki1,...,Vy are eigenvectors that correspond to eigenvalues 0 [Gram-—

Schmidt]. And define & to be the span of vy,..., vg; ie,
&:={civy +---+cCpvp: cq,...,cr € R].
Our final goal is to prove that & = G(A), which we know is equal to the
linear space of all vectors of the form Ax.
Clearly, c1vy + -+ + cpvr = Ax, where x = 2?21((3]‘/)\4]')‘7]'. Therefore,
& C BG(A). If k = n, then this suffices because in that case vy,..., v is a
basis for R", hence & = G(A) = R". If k < n, then we can write every
x € R"asayvi+---+anvp, so that Ax = Z;Zl ajAjvj € &. Thus, G(A) C &
and we are done. O

Let A be m x n and define the null space [or “kernel”] of A as
N(A):= {x e R": Ax =0}.

Note that N'(A) is the linear span of the eigenvectors of A that corre-
spond to eigenvalue 0. The other eigenvectors can be chosen to be
orthogonal to these, and hence the preceding proof contains the facts
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that: (i) Nonzero elements of N'(A) are orthogonal to nonzero elements
of B(A); and (ii)

dim N'(A) + rank(A) = n (= the number of columns of A). (5)

Proposition 14. rank(A) = rank(A’A) = rank(AA’) for every m x n
matrix A.

Proof. If Ax = 0 then A’/Ax = 0, and if A’Ax = 0, then |Ax|? =
x'A’Ax = 0. In other words, N'(A) = N(A'A). Because A’A and A both
have n columnes, it follows from (5) that rank(A’A) = rank(A). Apply
this observation to A’ to see that rank(A’) = rank(AA’) as well. The
result follows from this and the fact that A and A’ have the same rank
(Proposition 10). O

4. Projection matrices

A matrix A is said to be a projection matrix if: (i) A is symmetric; and
(ii) A is “idempotent”; that is, A* = A.

Note that projection matrices are always positive semidefinite. In-
deed, x'Ax = x'A%x = x’A’Ax = |Ax|* >0

Proposition 15. If A is an n x n projection matrix, then so is I — A.
Moreover, all eigenvalues of A are zeros and ones, and rank(A) = the
number of eigenvalues that are equal to one.

Proof. (I —A)2 =1 -2A + A? = I — A. Since I — A is symmetric also,
it is a projection. If A is an eigenvalue of A and x is a corresponding
eigenvector, then Ax = Ax = A%x = AAx = A%x. Multiply both sides by
x’ to see that A|x|? = A?||x||%. Since |Jx| > 0, it follows that A € {0,1}.
The total number of nonzero eigenvalues is then the total number of
eigenvalues that are ones. Therefore, the rank of A is the total number
of eigenvalues that are one. O

Corollary 16. If A is a projection matrix, then rank(A) = tr(A).

Proof. Simply recall that tr(A) is the sum of the eigenvalues, which for
a projection matrix, is the total number of eigenavalues that are one. [J

Why are they called “projection” matrices? Or, perhaps even more
importantly, what is a “projection”?
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Lemma 17. Let Q2 denote a linear subspace of R", and x € R" be
fixed. Then there exists a unique element y € S that is closest to x;
that is,
¥ — x|l = min [z - x].
zeQ

The point y is called the projection of x onfo Q2.

Proof. Let k := dim 2, so that there exists an orthonormal basis by, ..., bg
for Q2. Extend this to a basis by, ..., b, for all of R" by the Gram-Schmidt
method.

Given a fixed vector x € R", we can write it as x := ¢1by +--- +cpbp
for some cy,...,c, € R. Definey := ¢{by+---+cpbg. Clearly, y € 2 and
ly —x|® = 32" ., c2 Any other z ¢ Q can be written as z = Y., d;b;,
and hence ||z —x|% = 2% ,(d; —c;)? + Y2 ., ¢2, which is strictly greater
than |y —x||? = ¥ .y c? unless d; = ¢; for alli = 1,...,k; ie., unless
zZ=y. O

Usually, we have a k-dimensional linear subspace 2 of R" that is the
range of some n x k matrix A. Thatis, 2 = {Ay: y € Rk}. Equivalently,
Q = G(A). In that case,

min ||z — x||* = min |Ay — x|? = min [y’A'Ay — y'A'x — x'Ay + x'x].
zeQ ycRk ycRE
Because y'A’x is a scalar, the preceding is simplified to
min |z — x|* = min [y'A’'Ay - 29'A'x + x'x].
zeQ ycREk
Suppose that the k x k positive semidefinite matrix A’A is nonsingular

[so that A’A and hence also (AA’)~! are both positive definite]. Then, we
can relabel variables [« := A’Ay] to see that

min ||z — x||? = min [a’(A’A)_ia —2a/(A'A)1Ax + x'x] .
zeQ acRk
A little arithmetic shows that
(a — A'x) (A’A) o — A'x)
= (AA) o - 2a/(A'A) A + x’A(AA) A x.
Consequently,
min ||z — x||?
zeQ

= min |(a — A'x)(A’A) Ha — A'x) — x’A(A'A) 'A% + x'x| .

acRk
The first term in the parentheses is > 0; in fact it is > 0 unless we
select & = A’x. This proves that the projection of x onto Q2 is ob-
tained by setting a := A’x, in which case the projection itself is Ay =



20 3. Some linear algebra

A(A’A)"'A’x and the distance between y and x is the square root of
[x]]? — x’A(A’A) ' A'x.

Let Pg := A(A’A)~'A’. It is easy to see that P is a projection matrix.
The preceding shows that Pox is the projection of x onto Q2 for every
x € R™ That is, we can think of Py as the matrix that projects onto
Q2. Moreover, the distance between x and the linear subspace 2 [i.e.,
min,cgpr [|z—x||] is exactly the square root of x’x —x'Pox = x'(I-Pg)x =
(I — Pg)x||?, because I — Pq is a projection matrix. What space does it
project into?

Let Q+ denote the collection of all n-vectors that are perpendicular
to every element of Q. If z € Q1, then we can write, for all x € R",

|z - x| = |z - (I - Po)x + Pox|?
= ||z = (I = Po)x|* + ||Pox|®> = 2 {z — (I - Pg)x} Pox

= |z — (I - Po)x|* + || Pox|?,

since z is orthogonal to every element of 2 including Pox, and Pg, = sz.
Take the minimum over all z € Q' to find that I — Pg, is the projection
onto Q. Let us summarize our findings.

Proposition 18. If A’A is nonsingular [equivalently, has full rank], then
Pga) := A(A’A)tA’ is the projection onto G(A), I — Pga) = Pg a)L is the
projection onto Q+, and we have

X = P@(A)x + P@(A)Lx, and |]x[|2 = HP@(A)X‘H2 + HP@(A)Lx”Q.

The last result is called the “Pythagorean property.”



