
Some linear algebra

Recall the convention that, for us, all vectors are column vectors.

1. Symmetric matrices

Let A be a real � × � matrix. Recall that a complex number λ is an
eigenvalue of A if there exists a real and nonzero vector �—called an
eigenvector for λ—such that A� = λ�. Whenever � is an eigenvector
for λ, so is �� for every real number �.

The characteristic polynomial χA of matrix A is the function

χA(λ) := det(λI − A)�

defined for all complex numbers λ, where I denotes the � × � identity
matrix. It is not hard to see that a complex number λ is an eigenvalue
of A if and only if χA(λ) = 0. We see by direct computation that χA is an
�th-order polynomial. Therefore, A has precisely � eigenvalues, thanks
to the fundamental theorem of algebra. We can write them as λ1� � � � � λ�,
or sometimes more precisely as λ1(A)� � � � � λ�(A).

1. The spectral theorem. The following important theorem is the start-
ing point of our discussion. It might help to recall that vectors �1� � � � � �� ∈

R� are orthonormal if �
�

�
�� = 0 when � �= � and �

�

�
�� = ����

2 = 1.

Theorem 1. If A is a real and symmetric � × � matrix, then λ1� � � � � λ�

are real numbers. Moreover, there exist � orthonormal eigenvectors

�1� � � � � �� that correspond respectively to λ1� � � � � λ�.
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I will not prove this result, as it requires developing a good deal of
elementary linear algebra that we will not need. Instead, let me state
and prove a result that is central for us.

Theorem 2 (The spectral theorem). Let A denote a symmetric � × �

matrix with real eigenvalues λ1� � � � � λ� and corresponding orthonor-

mal eigenvectors �1� � � � � ��. Define D := diag(λ1 � � � � � λ�) to be the di-

agonal matrix of the λ� ’s and P to be the matrix whose columns are

�1 though �� respectively; that is,

D :=




λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · λ�




� P := (�1 � � � � � ��) �

Then P is orthogonal [P� = P
−1] and A = PDP

−1 = PDP
�
.

Proof. P is orthogonal because the orthonormality of the �� ’s implies
that

P
�
P =




�1
...

��




�

(�1 � � � � � ��) = I�

Furthermore, because A�� = λ��� , it follows that AP = PD, which is
another way to say that A = PDP

−1. �

Recall that the trace of an � × � matrix A is the sum A1�1 + · · · + A���

of its diagonal entries.

Corollary 3. If A is a real and symmetric � × � matrix with real

eigenvalues λ1� � � � � λ�, then

tr(A) = λ1 + · · · + λ� and det(A) = λ1 × · · · × λ��

Proof. Write A, in spectral form, as PDP
−1. Since the determinant of

P
−1 is the reciprocal of that of A, it follows that det(A) = det(D), which

is clearly λ1 × · · · × λ�. In order to compute the trace of A we compute
directly also:

tr(A) =
��

�=1

��

�=1
P���

�
DP

−1
�

���

=
��

�=1

��

�=1

��

�=1
P���D���P

−1
���

=
��

�=1

��

�=1

�
PP

−1
�

���

D��� =
��

�=1
D��� = tr(D)�
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which is λ1 + · · · + λ�. �

2. The square-root matrix. Let A continue to denote a real and sym-
metric � × � matrix.

Proposition 4. There exists a complex and symmetric � × � matrix

B—called the square root of A and written as A
1/2

or even sometimes

as
√

A—such that A = B
2 := BB.

The proof of Proposition 4 is more important than its statement. So
let us prove this result.

Proof. Apply the spectral theorem and write A = PDP
−1. Since D is

a diagonal matrix, its square root can be defined unambiguously as the
following complex-valued � × � diagonal matrix:

D
1/2 :=




λ
1/2
1 0 0 · · · 0
0 λ

1/2
2 0 · · · 0

0 0 λ
1/2
3 · · · 0

...
...

... . . . ...
0 0 0 · · · λ

1/2
�




�

Define B := PD
1/2

P
−1, and note that

B
2 = PD

1/2
P

−1
PD

1/2
P

−1 = PDP
−1 = A�

since P
−1

P = I and (D1/2)2 = D. �

2. Positive-semidefinite matrices

Recall that an � × � matrix A is positive semidefinite if it is symmetric
and

�
�
A� ≥ 0 for all � ∈ R�

�

Recall that A is positive definite if it is symmetric and
�

�
A� > 0 for all nonzero � ∈ R�

�

Theorem 5. A symmetric matrix A is positive semidefinite if and only

if all of its eigenvalues are ≥ 0. A is positive definite if and only if all

of its eigenvalues are > 0. In the latter case, A is also nonsingular.

The following is a ready consequence.

Corollary 6. All of the eigenvalues of a variance-covariance matrix

are always ≥ 0.

Now let us establish the theorem.
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Proof of Theorem 5. Suppose A is positive semidefinite, and let λ de-
note one of its eignenvalues, together with corresponding eigenvector
�. Since 0 ≤ �

�
A� = λ���

2 and ��� > 0, it follows that λ ≥ 0. This
proves that all of the eigenvalues of A are nonnegative. If A is positive
definite, then the same argument shows that all of its eigenvalues are
> 0. Because det(A) is the product of all � eigenvalues of A (Corollary
3), it follows that det(A) > 0, whence A is nonsingular.

This proves slightly more than half of the proposition. Now let us
suppose that all eigenvalues of A are ≥ 0. We write A in spectral form
A = PDP

�, and observe that D is a diagonal matrix of nonnegative
numbers. By virute of its construction. A

1/2 = PD
1/2

P
�, and hence for all

� ∈ R�,
�

�
A� =

�
D

1/2
P�

�� �
D

1/2
P�

�
=

���D
1/2

P�

���
2

� (1)

which is ≥ 0. Therefore, A is positive semidefinite.
If all of the eigenvalues of A are > 0, then (1) tells us that

�
�
A� =

���D
1/2

P�

���
2

=
��

�=1

��
D

1/2
P�

�

�

�2
=

��

�=1
λ�

�
[P�]

�

�2
� (2)

where λ� > 0 for all � . Therefore,

�
�
A� ≥ min

1≤�≤�

λ� ·

��

�=1

�
[P�]

�

�2 = min
1≤�≤�

λ� · �
�
P

�
P� = min

1≤�≤�

λ� · ���
2
�

Since min1≤�≤� λ� > 0, it follows that �
�
A� > 0 for all nonzero �. This

completes the proof. �

Let us pause and point out a consequence of the proof of this last
result.

Corollary 7. If A is positive semidefinite, then its extremal eigenvalues

satisfy

min
1≤�≤�

λ� = min
���>0

�
�
A�

���2 � max
1≤�≤�

λ� = max
���>0

�
�
A�

���2 �

Proof. We saw, during the course of the previous proof, that

min
1≤�≤�

λ� · ���
2

≤ �
�
A� for all � ∈ R�

� (3)

Optimize over all � to see that

min
1≤�≤�

λ� ≤ min
���>0

�
�
A�

���2 � (4)
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But min1≤�≤� λ� is an eigenvalue for A; let � denote a corresponding
eigenvector in order to see that

min
1≤�≤�

λ� ≤ min
���>0

�
�
A�

���2 ≤
�

�
A�

���2 = min
1≤�≤�

λ� �

So both inequalities are in fact equalities, and hence follows the formula
for the minimum eigenvalue. The one for the maximum eigenvalue is
proved similarly. �

Finally, a word about the square root of positive semidefinite matri-
ces:

Proposition 8. If A is positive semidefinite, then so is A
1/2

. If A is

positive definite, then so is A
1/2

.

Proof. We write, in spectral form, A = PDP
� and observe [by squaring

it] that A
1/2 = PD

1/2
P

�. Note that D
1/2 is a real diagonal matrix since the

eigenvalues of A are ≥ 0. Therefore, we may apply (1) to A
1/2 [in place

of A] to see that �
�
A

1/2
� = �D

1/4
P��

2
≥ 0 where D

1/4 denotes the [real]
square root of D

1/2. This proves that if A is positive semidefinite, then
so is A1/2. Now suppose there exists a positive definite A whose square
root is not positive definite. It would follow that there necessarily exists
a nonzero � ∈ R� such that �

�
A

1/2
� = �D

1/4
P��

2 = 0. Since D
1/4

P� = 0,

D
1/2

P� = D1/4
D

1/4
P� = 0 � �

�
A� =

���D
1/2

P�

���
2

= 0�

And this contradicts the assumption that A is positive definite. �

3. The rank of a matrix

Recall that vectors �1� � � � � �� are linearly independent if
�1�1 + · · · + ���� = 0 � �1 = · · · = �� = 0�

For instance, �1 := (1 � 0)� and �2 := (0 � 1)� are linearly independent 2-
vectors.

The column rank of a matrix A is the maximum number of linearly
independent column vectors of A. The row rank of a matrix A is the
maximum number of linearly independent row vectors of A. We can
interpret these definitions geometrically as follows: First, suppose A is
� × � and define �(A) denote the linear space of all vectors of the form
�1�1 + · · · + ����, where �1� � � � � �� are the column vectors of A and
�1� � � � � �� are real numbers. We call �(A) the column space of A.

We can define the row space �(A), of A similarly, or simply define
�(A) := �(A�).
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Lemma 9. For every � × � matrix A,

�(A) = {A� : � ∈ R�
} � �(A) :=

�
�

�
A : � ∈ R�

�
�

We can think of an � × � matrix A as a mapping from R� into R�;
namely, we can think of matrix A also as the function �A(�) := � �� A�.
In this way we see that �(A) is also the “range” of the function �A.

Proof. Let us write the columns of A as �1� �2� � � � � ��� Note that � ∈ �(A)
if and only if there exist �1� � � � � �� such that � = �1�1 + · · · + ���� =
A�, where � := (�1 � � � � � ��)�. This shows that �(A) is the collection of
all vectors of the form A�, for � ∈ R�. The second assertion [about
�(A)] follows from the definition of �(A equalling �(A�) and the already-
proven first assertion. �

It then follows, from the definition of dimension, that

column rank of A = dim �(A)� row rank of A = dim �(A)�

Proposition 10. Given any matrix A, its row rank and column rank

are the same. We write their common value as rank(A).

Proof. Suppose A is � × � and its column rank is �. Let �1� � � � � ��

denote a basis for �(A) and consider the matrix � × � matrix B :=
(�1 � � � � � ��). Write A, columnwise , as A := (�1 � � � � � ��). For every
1 ≤ � ≤ �, there exists �1�� � � � � � ���� such that �� = �1���1 + · · · + ������ . Let
C := (���� ) be the resulting � × � matrix, and note that A = BC. Because
A��� =

�
�

�=1 B���C��� ;, every row of A is a linear combination of the rows
of C. In other words, �(A) ⊆ �(C) and hence the row rank of A is
≤ dim �(C) = � = the column rank of A. Apply this fact to A

� to see that
also the row rank of A

� is ≤ the column rank of A
�; equivalently that the

column rank of A is ≤ the row rank of A. �

Proposition 11. If A is � × � and B is � × �, then

rank(AB) ≤ min (rank(A) � rank(B)) �

Proof. The proof uses an idea that we exploited already in the proof
of Proposition 10: Since (AB)��� =

�
�

ν=1 A��νBν�� , the rows of AB are
linear combinations of the rows of B; that is �(AB) ⊆ �(B), whence
rank(AB) ≤ rank(B). Also, �(AB) ⊆ �(A), whence rank(AB) ≤ rank(A).
These observations complete the proof. �
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Proposition 12. If A and C are nonsingular, then

rank(ABC) = rank(B)�
provided that the dimensions match up so that ABC makes sense.

Proof. Let D := ABC; our goal is to show that rank(D) = rank(B).
Two applications of the previous proposition together yield rank(D) ≤

rank(AB) ≤ rank(B)� And since B = A
−1

DC
−1, we have also rank(B) ≤

rank(A−1
D) ≤ rank(D)� �

Corollary 13. If A is an �×� real and symmetric matrix, then rank(A) =
the total number of nonzero eigenvalues of A. In particular, A has full

rank if and only if A is nonsingular. Finally, �(A) is the linear space

spanned by the eigenvectors of A that correspond to nonzero eigen-

values.

Proof. We write A, in spectral form, as A = PDP
−1, and apply the

preceding proposition to see that rank(A) = rank(D), which is clearly
the total number of nonzero eigenvalue of A. Since A is nonsingular if
and only if all of its eigenvalues are nonzero, A has full rank if and only
if A is nonsingular.

Finally, suppose A has rank � ≤ �; this is the number of its nonzero
eigenvalues λ1� � � � � λ�. Let �1� � � � � �� denote orthonormal eigenvectors
such that �1� � � � � �� are eigenvectors that correspond to λ1� � � � � λ� and
��+1� � � � � �� are eigenvectors that correspond to eigenvalues 0 [Gram–
Schmidt]. And define � to be the span of �1� � � � � ��; i.e.,

� := {�1�1 + · · · + ���� : �1� � � � � �� ∈ R} �

Our final goal is to prove that � = �(A), which we know is equal to the
linear space of all vectors of the form A�.

Clearly, �1�1 + · · · + ���� = A�, where � =
�

�

�=1(��/λ� )�� � Therefore,
� ⊆ �(A). If � = �, then this suffices because in that case �1� � � � � �� is a
basis for R�, hence � = �(A) = R�. If � < �, then we can write every
� ∈ R� as �1�1 +· · ·+����, so that Ax =

�
�

�=1 ��λ��� ∈ �. Thus, �(A) ⊆ �

and we are done. �

Let A be � × � and define the null space [or “kernel”] of A as
�(A) := {� ∈ R� : A� = 0} �

Note that �(A) is the linear span of the eigenvectors of A that corre-
spond to eigenvalue 0. The other eigenvectors can be chosen to be
orthogonal to these, and hence the preceding proof contains the facts
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that: (i) Nonzero elements of �(A) are orthogonal to nonzero elements
of �(A); and (ii)

dim �(A) + rank(A) = � ( = the number of columns of A)� (5)

Proposition 14. rank(A) = rank(A�
A) = rank(AA

�) for every � × �

matrix A.

Proof. If A� = 0 then A
�
A� = 0, and if A

�
A� = 0, then �A��

2 =
�

�
A

�
A� = 0� In other words, �(A) = �(A�

A). Because A
�
A and A both

have � columnes, it follows from (5) that rank(A�
A) = rank(A). Apply

this observation to A
� to see that rank(A�) = rank(AA

�) as well. The
result follows from this and the fact that A and A

� have the same rank
(Proposition 10). �

4. Projection matrices

A matrix A is said to be a projection matrix if: (i) A is symmetric; and
(ii) A is “idempotent”; that is, A

2 = A.
Note that projection matrices are always positive semidefinite. In-

deed, �
�
A� = �

�
A

2
� = �

�
A

�
A� = �A��

2
≥ 0

Proposition 15. If A is an � × � projection matrix, then so is I − A.

Moreover, all eigenvalues of A are zeros and ones, and rank(A) = the

number of eigenvalues that are equal to one.

Proof. (I − A)2 = I − 2A + A
2 = I − A� Since I − A is symmetric also,

it is a projection. If λ is an eigenvalue of A and � is a corresponding
eigenvector, then λ� = A� = A

2
� = λA� = λ

2
�. Multiply both sides by

�
� to see that λ���

2 = λ
2
���

2. Since ��� > 0, it follows that λ ∈ {0 � 1}.
The total number of nonzero eigenvalues is then the total number of
eigenvalues that are ones. Therefore, the rank of A is the total number
of eigenvalues that are one. �

Corollary 16. If A is a projection matrix, then rank(A) = tr(A).

Proof. Simply recall that tr(A) is the sum of the eigenvalues, which for
a projection matrix, is the total number of eigenavalues that are one. �

Why are they called “projection” matrices? Or, perhaps even more
importantly, what is a “projection”?
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Lemma 17. Let Ω denote a linear subspace of R�
, and � ∈ R�

be

fixed. Then there exists a unique element � ∈ Ω that is closest to �;

that is,

�� − �� = min
�∈Ω

�� − ���

The point � is called the projection of � onto Ω.

Proof. Let � := dim Ω, so that there exists an orthonormal basis �1� � � � � ��

for Ω. Extend this to a basis �1� � � � � �� for all of R� by the Gram–Schmidt
method.

Given a fixed vector � ∈ R�, we can write it as � := �1�1 + · · · + ����

for some �1� � � � � �� ∈ R. Define � := �1�1+· · ·+����. Clearly, � ∈ Ω and
�� − ��

2 =
�

�

�=�+1 �
2
�
. Any other � ∈ Ω can be written as � =

�
�

�=1 ����,
and hence ��−��

2 =
�

�

�=1(�� −��)2 +
�

�

�=�+1 �
2
�
, which is strictly greater

than �� − ��
2 =

�
�

�=�+1 �
2
�

unless �� = �� for all � = 1� � � � � �; i.e., unless
� = �. �

Usually, we have a �-dimensional linear subspace Ω of R� that is the
range of some � × � matrix A. That is, Ω = {A� : � ∈ R�

}. Equivalently,
Ω = �(A). In that case,
min
�∈Ω

�� − ��
2 = min

�∈R�

�A� − ��
2 = min

�∈R�

�
�

�
A

�
A� − �

�
A

�
� − �

�
A� + �

�
�

�
�

Because �
�
A

�
� is a scalar, the preceding is simplified to
min
�∈Ω

�� − ��
2 = min

�∈R�

�
�

�
A

�
A� − 2�

�
A

�
� + �

�
�

�
�

Suppose that the � × � positive semidefinite matrix A
�
A is nonsingular

[so that A
�
A and hence also (AA

�)−1 are both positive definite]. Then, we
can relabel variables [α := A

�
A�] to see that

min
�∈Ω

�� − ��
2 = min

α∈R�

�
α

�(A�
A)−1

α − 2α
�(A�

A)−1
A

�
� + �

�
�

�
�

A little arithmetic shows that
(α − A

�
�)�(A�

A)−1(α − A
�
�)

= α
�(A�

A)−1
α − 2α

�(A�
A)−1

A
�
� + �

�
A(A�

A)−1
A

�
��

Consequently,
min
�∈Ω

�� − ��
2

= min
α∈R�

�
(α − A

�
�)�(A�

A)−1(α − A
�
�) − �

�
A(A�

A)−1
A

�
� + �

�
�

�
�

The first term in the parentheses is ≥ 0; in fact it is > 0 unless we
select α = A

�
�. This proves that the projection of � onto Ω is ob-

tained by setting α := A
�
�, in which case the projection itself is A� =
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A(A�
A)−1

A
�
� and the distance between � and � is the square root of

���
2

− �
�
A(A�

A)−1
A

�
�.

Let PΩ := A(A�
A)−1

A
�. It is easy to see that PΩ is a projection matrix.

The preceding shows that PΩ� is the projection of � onto Ω for every
� ∈ R�. That is, we can think of PΩ as the matrix that projects onto
Ω. Moreover, the distance between � and the linear subspace Ω [i.e.,
min�∈R� ��−��] is exactly the square root of �

�
�−�

�
PΩ� = �

�(I−PΩ)� =
�(I − PΩ)��

2, because I − PΩ is a projection matrix. What space does it
project into?

Let Ω⊥ denote the collection of all �-vectors that are perpendicular
to every element of Ω. If � ∈ Ω⊥, then we can write, for all � ∈ R�,

�� − ��
2 = �� − (I − PΩ)� + PΩ��

2

= �� − (I − PΩ)��
2 + �PΩ��

2
− 2 {� − (I − PΩ)�}

�
PΩ�

= �� − (I − PΩ)��
2 + �PΩ��

2
�

since � is orthogonal to every element of Ω including PΩ�, and PΩ = P
2
Ω.

Take the minimum over all � ∈ Ω⊥ to find that I − PΩ is the projection
onto Ω⊥. Let us summarize our findings.

Proposition 18. If A
�
A is nonsingular [equivalently, has full rank], then

P�(A) := A(A�
A)−1

A
�
is the projection onto �(A), I − P�(A) = P�(A)⊥ is the

projection onto Ω⊥
, and we have

� = P�(A)� + P�(A)⊥�� and ���
2 =

��P�(A)�
��2 +

��P�(A)⊥�
��2

�

The last result is called the “Pythagorean property.”


