Stror 2

Random vectors

It will be extremely helpful to us if we worked directly with random
vectors and not a group of individual random variables. Throughout,
all vectors are written columnwise; and so are random ones. Thus, for
instance, a random vector X € R" is written columnwise as

X = = (Xi,..., Xn).

And even more generally, we might sometimes be interested in random
matrices. For instance, a random m x n matrix is written coordinatewise
as

X114 o Xin
X = : :
Xm,l tee Xm,n

1. Expectation

If X is a random m x n matrix, then we define its expectation in the
most natural possible way as

EXi1 -+ EXin
EX := : :
EXmt1 -+ EXmn
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Many of the properties of expectations continue to hold in the setting
of random vectors and/or matrices. The following summarizes some of
those properties.

Proposition 1. Suppose A, B, C, and D are nonrandom matrices, and
X and Y are random matrices. Then,

E(AXB + CYD) = A(EX)B + C (EV)D,

provided that the matrix dimensions are sensible.

Proof. Because
(AXB + CYD);; = (AXB);; + (CYD);;,

it suffices to prove that E(AXB) = AE(X)B. But then, we can work
coordinatewise as follows:

E[(AXB);;| = EZZA kXkeBej = ZZAlkE Xr.0)Bej

k=1 0=1 k=1 0=1

ZZAlk [EX]p¢Bej = [AE(X)B]; ;.

/—\w

—1¢
That is, E(AXB) = X)B coordinatewise. This proves the result. O

2. Covariance

Suppose X = (X4,...,Xw) and ¥ = (V;,...,VY,) are two jointly dis-
tributed random vectors. We define their covariance as

Cov(Xy,Y) --- Cov(Xy,Yn)

Cov(X,Y):= : :
Cov(iXm, Y1) -+ Cov(Xm, Yn)

Proposition 2. We always have

Cov(X,¥) = E[(X —EX)(Y —-EV)].

Proof. The (i, j)th entry of the matrix (X -EX)(Y -EY)"is (X; —EX;)(V; -
EY;), whose expectation is Cov(X;, Xj). Because this is true for all (i, j),
the result holds coordinatewise. O

Warning. Note where the transpose is: Except in the case that n and
m are the same integer, (X — EX)' (Y — EY) does not even make sense,
whereas (X — EX)(Y — EY) is always a random m x n matrix. O



3. Mathematical properties of variance and covariance 9

An important special case occurs when we have X = Y. In that case
we write
Var(X) := Cov(X, X).
We call Var(X) the variance-covariance matrix of X. The terminology
is motivated by the fact that

Var(X1) Cov(X1,Xo) Cov(Xy,Xz) --- Cov(Xy,Xm)

Cov(Xs, Xy) Var(Xo) Cov(Xg,X3) --- Cov(Xg,Xn)

Var(X) = Cov(X3,X1) Cov(X3z,Xo) Var(Xsz) - Cov(X3,Xm)
Cov(Xm,X1) Cov(Xpm,Xo) CoviXpm,Xz) --- Var(Xm)

Note that Var(X) is always a square and symmetric matrix; its dimension
is m x m when X is m-dimensional. On-diagonal entries of Var(X) are
always nonnegative; off-diagonal entries can be arbitrary real numbers.

3. Mathematical properties of variance and covariance

e Because (X —EX)(X —EX) = XX' - X(EX) - (EX)X' + (EX)(EX)’,
it follows that
Var(X) =E (XX’) - 2(EX)(EX)" + (EX)(EX)’
=E (XX’) - (EX)(EX)’,
after expansion. This is a multidimensional extension of the for-

mula Var(Z) = E(Z?) — (EZ)?, valid for every [univariate] random
variable Z.

e If a € R" is nonrandom, then (X —a) - E(X —a) = X - EX.
Therefore,
Var(X —a) = E [(X - EX)(X - EX)'] = Var(X).
This should be a familiar property in the one-dimensional case.

e If X, ¥, and Z are three jointly-distributed random vectors [with
the same dimensions], then X((Y+Z)-E(Y+Z)) = X(Y-EY) +
X(Z — EZ)'. Therefore,

Cov(X,Y+Z)=Cov(X,¥Y) + Cov(X, Z).

e Suppose A, B are nonrandom matrices. Then, (AX-E(AX))(BY —
E(BY)) = A(X — EX)(Y — EY)'B'. Therefore,
Cov(AX,BY) = ACov(X,VY)B.

The special case that X = Y is worth pointing out: In that case
we obtain the identity,

Var(AX) = AVar(X)A'.
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4. A relation to positive-semidefinite matrices

Let a € R" be a nonrandom vector and X be an n-dimensional random
vector. Then, the properties of variance-covariance matrices ensure that

Var (a'X) = a'Var(X)a.
Because a’X = Y ", a;X; is univariate, Var(a'X) > 0, and hence

a'Var(X)a >0 for all a € R™. (1)

A real and symmetric n x n matrix A is said to be positive semidef-
inite if x’Ax > 0 for all x € R". And A is positive definite if x’Ax > 0
for every nonzero x € R™.

Proposition 3. If X is an n-dimensional random vector, then Var(X) is
positive semidefinite. If P{a’X = b} =0 for everya € R" and b € R,
then Var(X) is positive definite.

Proof. We have seen already in (1) that Var(X) is positive semidefinite.
Now suppose that P{a’X = b} = 0, as indicated. Then, a’X is a genuine
random variable and hence a’Var(X)a = Var(a’X) > O foralla € R". [

Remark 4. The very same argument can be used to prove the following
improvement: Suppose P{a’X =b}] <1 forall b € R and a € R". Then
Var(X) is positive definite. The proof is the same because P{a’X =
E(a’X)} < 1 implies that the variance of the random variable a’X cannot
be zero when a # 0. O



