
Random vectors

It will be extremely helpful to us if we worked directly with random
vectors and not a group of individual random variables. Throughout,
all vectors are written columnwise; and so are random ones. Thus, for
instance, a random vector X ∈ R

� is written columnwise as

X =




X1
X2
...

X�


 = (X1 � � � � � X�)��

And even more generally, we might sometimes be interested in random
matrices. For instance, a random �×� matrix is written coordinatewise
as

X =




X1�1 · · · X1��

...
...

X��1 · · · X���


 �

1. Expectation

If X is a random � × � matrix, then we define its expectation in the
most natural possible way as

EX :=




EX1�1 · · · EX1��

...
...

EX��1 · · · EX���


 �
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Many of the properties of expectations continue to hold in the setting
of random vectors and/or matrices. The following summarizes some of
those properties.

Proposition 1. Suppose A, B, C, and D are nonrandom matrices, and

X and Y are random matrices. Then,

E (AXB + CYD) = A (EX) B + C (EY ) D�

provided that the matrix dimensions are sensible.

Proof. Because

(AXB + CYD)��� = (AXB)��� + (CYD)��� �

it suffices to prove that E(AXB) = AE(X)B. But then, we can work
coordinatewise as follows:

E
�
(AXB)���

�
= E

��

�=1

��

�=1
A���X���B��� =

��

�=1

��

�=1
A���E(X���)B���

=
��

�=1

��

�=1
A��� [EX]

���
B��� = [AE(X)B]

���
�

That is, E(AXB) = AE(X)B coordinatewise. This proves the result. �

2. Covariance

Suppose X = (X1 � � � � � X�)� and Y = (Y1 � � � � � Y�)� are two jointly dis-
tributed random vectors. We define their covariance as

Cov(X � Y ) :=




Cov(X1 � Y1) · · · Cov(X1 � Y�)
...

...
Cov(X� � Y1) · · · Cov(X� � Y�)


 �

Proposition 2. We always have

Cov(X � Y ) = E
�
(X − EX) (Y − EY )�

�
�

Proof. The (� � �)th entry of the matrix (X−EX)(Y −EY )� is (X� −EX�)(Y� −

EY� ), whose expectation is Cov(X� � X� ). Because this is true for all (� � �),
the result holds coordinatewise. �

Warning. Note where the transpose is: Except in the case that � and
� are the same integer, (X − EX)�(Y − EY ) does not even make sense,
whereas (X − EX)(Y − EY )� is always a random � × � matrix. �
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An important special case occurs when we have X = Y . In that case
we write

Var(X) := Cov(X � X)�
We call Var(X) the variance-covariance matrix of X. The terminology
is motivated by the fact that

Var(X) =




Var(X1) Cov(X1 � X2) Cov(X1 � X3) · · · Cov(X1 � X�)
Cov(X2 � X1) Var(X2) Cov(X2 � X3) · · · Cov(X2 � X�)
Cov(X3 � X1) Cov(X3 � X2) Var(X3) · · · Cov(X3 � X�)

...
...

... . . . ...
Cov(X� � X1) Cov(X� � X2) Cov(X� � X3) · · · Var(X�)




�

Note that Var(X) is always a square and symmetric matrix; its dimension
is � × � when X is �-dimensional. On-diagonal entries of Var(X) are
always nonnegative; off-diagonal entries can be arbitrary real numbers.

3. Mathematical properties of variance and covariance

• Because (X−EX)(X−EX)� = XX
�
−X(EX)� − (EX)X� +(EX)(EX)�,

it follows that
Var(X) = E

�
XX

�
�

− 2(EX)(EX)� + (EX)(EX)�

= E
�
XX

�
�

− (EX)(EX)��
after expansion. This is a multidimensional extension of the for-
mula Var(Z) = E(Z2)− (EZ)2, valid for every [univariate] random
variable Z.

• If � ∈ R
� is nonrandom, then (X − �) − E(X − �) = X − EX.

Therefore,
Var(X − �) = E

�
(X − EX)(X − EX)�

�
= Var(X)�

This should be a familiar property in the one-dimensional case.
• If X, Y , and Z are three jointly-distributed random vectors [with

the same dimensions], then X((Y +Z)−E(Y +Z))� = X(Y −EY )�+
X(Z − EZ)�. Therefore,

Cov(X � Y + Z) = Cov(X � Y ) + Cov(X � Z)�

• Suppose A � B are nonrandom matrices. Then, (AX−E(AX))(BY−

E(BY ))� = A(X − EX)(Y − EY )�B�
� Therefore,

Cov(AX � BY ) = ACov(X � Y )B�
�

The special case that X = Y is worth pointing out: In that case
we obtain the identity,

Var(AX) = AVar(X)A�
�
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4. A relation to positive-semidefinite matrices

Let � ∈ R
� be a nonrandom vector and X be an �-dimensional random

vector. Then, the properties of variance-covariance matrices ensure that
Var

�
�

�
X

�
= �

�Var(X)��

Because �
�
X =

�
�

�=1 ��X� is univariate, Var(��
X) ≥ 0, and hence

�
�Var(X)� ≥ 0 for all � ∈ R

�
� (1)

A real and symmetric � × � matrix A is said to be positive semidef-

inite if �
�
A� ≥ 0 for all � ∈ R

�. And A is positive definite if �
�
A� > 0

for every nonzero � ∈ R
�.

Proposition 3. If X is an �-dimensional random vector, then Var(X) is

positive semidefinite. If P{�
�
X = �} = 0 for every � ∈ R

�
and � ∈ R,

then Var(X) is positive definite.

Proof. We have seen already in (1) that Var(X) is positive semidefinite.
Now suppose that P{�

�
X = �} = 0, as indicated. Then, �

�
X is a genuine

random variable and hence �
�Var(X)� = Var(��

X) > 0 for all � ∈ R
�. �

Remark 4. The very same argument can be used to prove the following
improvement: Suppose P{�

�
X = �} < 1 for all � ∈ R and � ∈ R

�. Then
Var(X) is positive definite. The proof is the same because P{�

�
X =

E(��
X)} < 1 implies that the variance of the random variable �

�
X cannot

be zero when � �= 0. �


