
Quadratic forms

Let A be a real and symmetric � × � matrix. Then the quadratic form

associated to A is the function QA defined by

QA(�) := �
�
A� (� ∈ R�)�

We have seen quadratic forms already, particularly in the context of
positive-semidefinite matrices.

1. Random quadratic forms

Let X := (X1� � � � � X�)� be an �-dimensional random vector. We are in-
terested in the random quadratic form QA(X) := X

�
AX.

Proposition 1. If EX := µ and Var(X) := Σ, then

E
�
X

�
AX

�
= tr(AΣ) + µ

�
Aµ�

In symbols, E(QA(X)) = tr(AΣ) + QA(µ)�

Proof. We can write

X
�
AX = (X − µ)�AX + µ

�
AX

= (X − µ)�A(X − µ) + µ
�
AX + (X − µ)�Aµ�

If we take expectations, then the last term vanishes and we obtain

E
�
X

�
AX

�
= E

�
(X − µ)�A(X − µ)

�
+ µ

�
Aµ�

It suffices to verify that the expectation on the right-hand side is the trace
of AΣ. But this is a direct calculation: Let Y� := X� −µ� , so that Y = X−µ
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and hence
E

�
(X − µ)�A(X − µ)

�
= E

�
Y

�
AY

�

=
��

�=1

��

�=1
E

�
Y�A���Y�

�
=

��

�=1

��

�=1
A��� [Var(Y )]

���

=
��

�=1

��

�=1
A��� [Var(X − µ)]

���
=

��

�=1

��

�=1
A��� [Var(X)]

���

=
��

�=1

��

�=1
A���Σ��� =

��

�=1

��

�=1
A���Σ���

=
��

�=1
[AΣ]

���
= tr(AΣ)�

as desired. �

We easily get the following by a relabeling (X ⇔ X − �):

Corollary 2. For every nonrandom � ∈ R�
,

E
�
(X − �)�A(X − �)

�
= tr(AΣ) + (µ − �)�A(µ − �)�

In particular, E[(X − µ)�A(X − µ)] = tr(AΣ)�

2. Examples of quadratic forms

What do quadratic forms look like? It is best to proceed by example.

Example 3. If A := I�×�, then QA(�) =
�

�

�=1 �
2
�
. Because tr(AΣ) =

tr(Σ) =
�

�

�=1 Var(X�), it follows that

E
�

��

�=1
X

2
�

�
=

��

�=1
Var(X�) +

�
��

�=1
µ

2
�

�
�

This ought to be a familiar formula. �

Example 4. If

A := 1�×� :=




1 · · · 1
...

...
1 · · · 1




�×�

�

then QA(�) = (
�

�

�=1 ��)2� Note that

tr(AΣ) =
��

�=1

��

�=1
A���Σ��� =

��

�=1

��

�=1
Cov(X� � X� )�
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Therefore,

E




�

��

�=1
X�

�2


 =
��

�=1

��

�=1
Cov(X� � X� ) +

�
��

�=1
µ�

�2

;

this is another familiar formula. �

Example 5. One can combine matrices in a natural way to obtain new
quadratic forms from old ones. Namely, if �� � ∈ R and A and B are
real and symmetric � × � matrices, then Q�A+�B(�) = �QA(�) + �QB(�).
For instance, suppose A := I�×� and B := 1�×�. Then,

�A + �B =




� + � � � · · · �

� � + � � · · · �

� � � + � · · · �

...
...

... . . . ...
� � � · · · � + �




�

and, thanks to the preceding two examples,

Q�A+�B(�) = �

��

�=1
�

2
�

+ �

�
��

�=1
��

�2

�

An important special case is when � := 1 and � := −1/�. In that case,

A −
1
�

B =




1 − 1/� −1/� −1/� · · · −1/�
−1/� 1 − 1/� −1/� · · · −1/�
−1/� −1/� 1 − 1/� · · · −1/�

...
...

... . . . ...
−1/� −1/� −1/� · · · 1 − 1/�




�

and

QA−(1/�)B(�) =
��

�=1
�

2
�

−
1
�

�
��

�=1
��

�2

=
��

�=1
(�� − �̄)2�

Note that

tr(AΣ) =
��

�=1
Var(X�) + 1

�

��

�=1

��

�=1
Cov(X� � X� )�

Consider the special case that the X� ’s are uncorrelated. In that case,
tr(AΣ) = (1 − 1/�)

�
�

�=1 Var(X�), and hence

E
�

��

�=1
(X� − X̄)2

�
= (1 − 1/�)

��

�=1
Var(X�) +

��

�=1
(µ� − µ̄)2�
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When the X� ’s are i.i.d. this yields E
�

�

�=1(X� −X̄)2 = (�−1)Var(X1), which
is a formula that you have seen in the context of the unbiasedness of the
sample variance estimator S

2 := (� − 1)−1 �
�

�=1(X� − X̄)2. �

Example 6. Consider a symmetric matrix of the form

A :=




0 1 0 · · · 0 0
1 0 1 · · · 0 0
0 1 0 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 1
0 0 0 · · · 1 0




�

That is, the super- and sub-diagonal entires are all ones and all other
entries are zeros. Then,

QA(�) = 2
�−2�

�=1
����+2�

Other examples can be constructed in this way as well, and by also
combining such examples. �

3. The variance of a random quadratic form

In the previous section we computed the expectation of X
�
AX where X

is a random vector. Here let us say a few things about the variance of
the same random vector, under some conditions on X.

Proposition 7. Suppose X := (X1 � � � � � X�)� where the X� ’s are i.i.d. with

mean zero and four finite moments. Then,

Var
�
X

�
AX

�
=

�
µ4 − 3µ

2
2

� ��

�=1
A

2
���

+
�

µ
2
2 − 1

�
(tr(A))2 + 2µ

2
2tr

�
A

2
�

�

where µ2 := E(X2
1) and µ4 := E(X4

1).

One can generalize this a little more as well, with more or less the
same set of techniques, in order to compute the variance of X

�
AX in the

case that the X� ’s are independent, with common first four moments,
and not necessarily mean zero.

Proof. Suppose X := (X1 � � � � � X�)�, where X1� � � � � X� are independent
and mean zero. Suppose µ2 := E(X2

�
) and µ4 := E(X4

�
) do not depend on

� [e.g., because the X� ’s are independent]. Then we can write
�
X

�
AX

�2 =
� � � �

1≤�������≤�

A���A���X�X�X�X� �
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Note that

E
�
X�X�X�X�

�
=






µ4 of � = � = � = ��

µ
2
2 if � = � �= � = � or

if � = � �= � = � or
if � = � �= � = ��

0 otherwise�

Therefore,

E
��

X
�
AX

�2
�

=
��

�=1
A

2
���

µ4 +
� �

1≤� �=�≤�

A���A��� µ
2
2 +

� �

1≤� �=�≤�

A���A��� µ
2
2 +

� �

1≤� �=�≤�

A���A��� µ
2
2

= µ4

��

�=1
A

2
���

+ µ
2
2




� �

1≤� �=�≤�

A���A��� + 2
� �

1≤� �=�≤�

A
2
���



 �

Next, we identify the double sums in turn:
� �

1≤� �=�≤�

A���A��� =
��

�=1
A���

��

�=1
A��� −

��

�=1
A

2
���

= (tr(A))2 −

��

�=1
A

2
���

�

� �

1≤� �=�≤�

A
2
���

=
��

�=1

��

�=1
A

2
���

−

��

�=1
A

2
���

=
��

�=1

��

�=1
A���A��� −

��

�=1
A

2
���

=
��

�=1
(A2)��� −

��

�=1
A

2
���

= tr
�

A
2
�

−

��

�=1
A

2
���

�

Consequently,

E
��

X
�
AX

�2
�

= µ4

��

�=1
A

2
���

+ µ
2
2

�
(tr(A))2 −

��

�=1
A

2
���

+ 2tr
�

A
2
�

− 2
��

�=1
A

2
���

�

=
�

µ4 − 3µ
2
2

� ��

�=1
A

2
���

+ µ
2
2

�
(tr(A))2 + 2tr

�
A

2
��

�

Therefore, in this case,

Var
�
X

�
AX

�
=

�
µ4 − 3µ

2
2

� ��

�=1
A

2
���

+µ
2
2

�
(tr(A))2 + 2tr

�
A

2
��

−
�
E

�
X

�
AX

��2
�

This proves the result because E(X�
AX) = tr(A). �


