Quadratic forms

Let \boldsymbol{A} be a real and symmetric $n \times n$ matrix. Then the quadratic form associated to \boldsymbol{A} is the function Q_{A} defined by

$$
Q_{A}(x):=x^{\prime} A x \quad\left(x \in \mathbf{R}^{n}\right) .
$$

We have seen quadratic forms already, particularly in the context of positive-semidefinite matrices.

1. Random quadratic forms

Let $X:=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ be an n-dimensional random vector. We are interested in the random quadratic form $Q_{A}(X):=X^{\prime} A X$.

Proposition 1. If $\mathrm{EX}:=\boldsymbol{\mu}$ and $\operatorname{Var}(\boldsymbol{X}):=\boldsymbol{\Sigma}$, then

$$
\mathrm{E}\left(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\right)=\operatorname{tr}(\boldsymbol{A} \boldsymbol{\Sigma})+\boldsymbol{\mu}^{\prime} \boldsymbol{A} \boldsymbol{\mu}
$$

In symbols, $\mathrm{E}\left(Q_{A}(\boldsymbol{X})\right)=\operatorname{tr}(\boldsymbol{A} \boldsymbol{\Sigma})+Q_{A}(\boldsymbol{\mu})$.
Proof. We can write

$$
\begin{aligned}
\boldsymbol{X}^{\prime} \boldsymbol{A} X & =(X-\boldsymbol{\mu})^{\prime} \boldsymbol{A} X+\boldsymbol{\mu}^{\prime} A X \\
& =(\boldsymbol{X}-\boldsymbol{\mu})^{\prime} \boldsymbol{A}(\boldsymbol{X}-\boldsymbol{\mu})+\boldsymbol{\mu}^{\prime} \boldsymbol{A} \boldsymbol{X}+(\boldsymbol{X}-\boldsymbol{\mu})^{\prime} \boldsymbol{A} \boldsymbol{\mu} .
\end{aligned}
$$

If we take expectations, then the last term vanishes and we obtain

$$
\mathrm{E}\left(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\right)=\mathrm{E}\left[(X-\boldsymbol{\mu})^{\prime} \boldsymbol{A}(\boldsymbol{X}-\boldsymbol{\mu})\right]+\boldsymbol{\mu}^{\prime} \boldsymbol{A} \boldsymbol{\mu} .
$$

It suffices to verify that the expectation on the right-hand side is the trace of $\boldsymbol{A} \boldsymbol{\Sigma}$. But this is a direct calculation: Let $Y_{j}:=X_{i}-\mu_{j}$, so that $\boldsymbol{Y}=\boldsymbol{X}-\boldsymbol{\mu}$
and hence

$$
\begin{aligned}
\mathrm{E}\left[(\boldsymbol{X}-\boldsymbol{\mu})^{\prime} \boldsymbol{A}(\boldsymbol{X}-\boldsymbol{\mu})\right] & =\mathrm{E}\left(\boldsymbol{Y}^{\prime} \boldsymbol{A} \boldsymbol{Y}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{E}\left(Y_{i} A_{i, j} Y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j}[\operatorname{Var}(\boldsymbol{Y})]_{i, j} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j}[\operatorname{Var}(\boldsymbol{X}-\boldsymbol{\mu})]_{i, j}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j}[\operatorname{Var}(\boldsymbol{X})]_{i, j} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} \Sigma_{i, j}=\sum_{i=1}^{n} \sum_{i=1}^{n} A_{i, j} \Sigma_{j, i} \\
& =\sum_{i=1}^{n}[\boldsymbol{A} \boldsymbol{\Sigma}]_{i, i}=\operatorname{tr}(\boldsymbol{A} \boldsymbol{\Sigma}),
\end{aligned}
$$

as desired.
We easily get the following by a relabeling ($\boldsymbol{X} \Leftrightarrow \boldsymbol{X}-\boldsymbol{b}$):
Corollary 2. For every nonrandom $\mathbf{b} \in \mathbf{R}^{n}$,

$$
\mathrm{E}\left[(X-\boldsymbol{b})^{\prime} \boldsymbol{A}(X-\boldsymbol{b})\right]=\operatorname{tr}(\boldsymbol{A} \boldsymbol{\Sigma})+(\boldsymbol{\mu}-\boldsymbol{b})^{\prime} \boldsymbol{A}(\boldsymbol{\mu}-\boldsymbol{b})
$$

In particular, $\mathrm{E}\left[(\mathrm{X}-\boldsymbol{\mu})^{\prime} \boldsymbol{A}(\mathrm{X}-\boldsymbol{\mu})\right]=\operatorname{tr}(\boldsymbol{A} \boldsymbol{\Sigma})$.

2. Examples of quadratic forms

What do quadratic forms look like? It is best to proceed by example.
Example 3. If $\boldsymbol{A}:=\boldsymbol{I}_{n \times n}$, then $Q_{A}(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2}$. Because $\operatorname{tr}(\boldsymbol{A \Sigma})=$ $\operatorname{tr}(\boldsymbol{\Sigma})=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$, it follows that

$$
\mathrm{E}\left(\sum_{i=1}^{n} X_{i}^{2}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\left(\sum_{i=1}^{n} \mu_{i}^{2}\right)
$$

This ought to be a familiar formula.
Example 4. If

$$
A:=\mathbf{1}_{m \times m}:=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & & \vdots \\
1 & \cdots & 1
\end{array}\right)_{m \times m}
$$

then $Q_{A}(\boldsymbol{x})=\left(\sum_{i=1}^{n} x_{i}\right)^{2}$. Note that

$$
\operatorname{tr}(\mathbf{A} \boldsymbol{\Sigma})=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} \Sigma_{i, j}=\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right) .
$$

Therefore,

$$
\mathrm{E}\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)+\left(\sum_{i=1}^{n} \mu_{i}\right)^{2} ;
$$

this is another familiar formula.
Example 5. One can combine matrices in a natural way to obtain new quadratic forms from old ones. Namely, if $a, b \in \mathbf{R}$ and \boldsymbol{A} and \boldsymbol{B} are real and symmetric $n \times n$ matrices, then $Q_{a A+b \boldsymbol{B}}(\boldsymbol{x})=a Q_{\boldsymbol{A}}(\boldsymbol{x})+b Q_{\boldsymbol{B}}(\boldsymbol{x})$. For instance, suppose $\boldsymbol{A}:=\boldsymbol{I}_{n \times n}$ and $\boldsymbol{B}:=\mathbf{1}_{n \times n}$. Then,

$$
a \boldsymbol{A}+b \boldsymbol{B}=\left(\begin{array}{ccccc}
a+b & b & b & \cdots & b \\
b & a+b & b & \cdots & b \\
b & b & a+b & \cdots & b \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b & b & b & \cdots & a+b
\end{array}\right)
$$

and, thanks to the preceding two examples,

$$
Q_{a \boldsymbol{A}+b \boldsymbol{B}}(\boldsymbol{x})=a \sum_{i=1}^{n} x_{i}^{2}+b\left(\sum_{i=1}^{n} x_{i}\right)^{2} .
$$

An important special case is when $a:=1$ and $b:=-1 / n$. In that case,

$$
\boldsymbol{A}-\frac{1}{n} \boldsymbol{B}=\left(\begin{array}{ccccc}
1-1 / n & -1 / n & -1 / n & \cdots & -1 / n \\
-1 / n & 1-1 / n & -1 / n & \cdots & -1 / n \\
-1 / n & -1 / n & 1-1 / n & \cdots & -1 / n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-1 / n & -1 / n & -1 / n & \cdots & 1-1 / n
\end{array}\right)
$$

and

$$
Q_{A-(1 / n) \boldsymbol{B}}(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} .
$$

Note that

$$
\operatorname{tr}(\boldsymbol{A} \boldsymbol{\Sigma})=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right) .
$$

Consider the special case that the X_{i} 's are uncorrelated. In that case, $\operatorname{tr}(\boldsymbol{A} \boldsymbol{\Sigma})=(1-1 / n) \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$, and hence

$$
\mathrm{E}\left[\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]=(1-1 / n) \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i=1}^{n}\left(\mu_{i}-\bar{\mu}\right)^{2} .
$$

When the X_{i} 's are i.i.d. this yields $\mathrm{E} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=(n-1) \operatorname{Var}\left(X_{1}\right)$, which is a formula that you have seen in the context of the unbiasedness of the sample variance estimator $S^{2}:=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.

Example 6. Consider a symmetric matrix of the form

$$
\boldsymbol{A}:=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
1 & 0 & 1 & \cdots & 0 & 0 \\
0 & 1 & 0 & & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right) .
$$

That is, the super- and sub-diagonal entires are all ones and all other entries are zeros. Then,

$$
Q_{\mathbf{A}}(\boldsymbol{x})=2 \sum_{i=1}^{n-2} x_{i} x_{i+2}
$$

Other examples can be constructed in this way as well, and by also combining such examples.

3. The variance of a random quadratic form

In the previous section we computed the expectation of $X^{\prime} A X$ where X is a random vector. Here let us say a few things about the variance of the same random vector, under some conditions on X.

Proposition 7. Suppose $X:=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ where the X_{j} 's are i.i.d. with mean zero and four finite moments. Then,

$$
\operatorname{Var}\left(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\right)=\left(\mu_{4}-3 \mu_{2}^{2}\right) \sum_{i=1}^{n} A_{i, i}^{2}+\left(\mu_{2}^{2}-1\right)(\operatorname{tr}(\boldsymbol{A}))^{2}+2 \mu_{2}^{2} \operatorname{tr}\left(\boldsymbol{A}^{2}\right)
$$

where $\mu_{2}:=\mathrm{E}\left(X_{1}^{2}\right)$ and $\mu_{4}:=\mathrm{E}\left(X_{1}^{4}\right)$.
One can generalize this a little more as well, with more or less the same set of techniques, in order to compute the variance of $\boldsymbol{X}^{\prime} A X$ in the case that the X_{i} 's are independent, with common first four moments, and not necessarily mean zero.

Proof. Suppose $X:=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$, where X_{1}, \ldots, X_{n} are independent and mean zero. Suppose $\mu_{2}:=\mathrm{E}\left(X_{i}^{2}\right)$ and $\mu_{4}:=\mathrm{E}\left(X_{i}^{4}\right)$ do not depend on i [e.g., because the X_{j} 's are independent]. Then we can write

$$
\left(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\right)^{2}=\sum \sum_{1 \leq i, j, k, \ell \leq n} \sum_{A_{i, j}} A_{k, \ell} X_{i} X_{j} X_{k} X_{\ell} .
$$

Note that

$$
\mathrm{E}\left(X_{i} X_{j} X_{k} X_{\ell}\right)= \begin{cases}\mu_{4} & \text { of } i=j=k=\ell \\ \mu_{2}^{2} & \text { if } i=j \neq k=\ell \text { or } \\ & \text { if } i=k \neq j=\ell \text { or } \\ & \text { if } i=\ell \neq k=j \\ 0 & \text { otherwise }\end{cases}
$$

Therefore,
$\mathrm{E}\left[\left(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\right)^{2}\right]=\sum_{i=1}^{n} A_{i, i}^{2} \mu_{4}+\sum_{1 \leq i \neq k \leq n} A_{i, i} A_{k, k} \mu_{2}^{2}+\sum_{1 \leq i \neq j \leq n} \sum_{i, j} A_{j, i} \mu_{2}^{2}+\sum_{1 \leq i \neq k \leq n} \sum_{i, k} A_{k, i} \mu_{2}^{2}$

$$
=\mu_{4} \sum_{i=1}^{n} A_{i, i}^{2}+\mu_{2}^{2}\left[\sum_{1 \leq i \neq k \leq n} A_{i, i} A_{k, k}+2 \sum_{1 \leq i \neq j \leq n} \sum_{i, j}^{2}\right] .
$$

Next, we identify the double sums in turn:

$$
\begin{aligned}
\sum_{1 \leq i \neq k \leq n} A_{i, i} A_{k, k} & =\sum_{i=1}^{n} A_{i, i} \sum_{k=1}^{n} A_{k, k}-\sum_{i=1}^{n} A_{i, i}^{2}=(\operatorname{tr}(\mathbf{A}))^{2}-\sum_{i=1}^{n} A_{i, i}^{2} \\
\sum_{1 \leq i \neq j \leq n} \sum_{i, j} & =\sum_{i=1}^{2} \sum_{j=1}^{n} A_{i, j}^{2}-\sum_{i=1}^{n} A_{i, i}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} A_{j, i}-\sum_{i=1}^{n} A_{i, i}^{2} \\
& =\sum_{i=1}^{n}\left(A^{2}\right)_{i, i}-\sum_{i=1}^{n} A_{i, i}^{2}=\operatorname{tr}\left(A^{2}\right)-\sum_{i=1}^{n} A_{i, i}^{2}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\mathrm{E}\left[\left(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\right)^{2}\right] & =\mu_{4} \sum_{i=1}^{n} A_{i, i}^{2}+\mu_{2}^{2}\left[(\operatorname{tr}(\boldsymbol{A}))^{2}-\sum_{i=1}^{n} A_{i, i}^{2}+2 \operatorname{tr}\left(\boldsymbol{A}^{2}\right)-2 \sum_{i=1}^{n} A_{i, i}^{2}\right] \\
& =\left(\mu_{4}-3 \mu_{2}^{2}\right) \sum_{i=1}^{n} A_{i, i}^{2}+\mu_{2}^{2}\left[(\operatorname{tr}(\boldsymbol{A}))^{2}+2 \operatorname{tr}\left(\boldsymbol{A}^{2}\right)\right]
\end{aligned}
$$

Therefore, in this case,
$\operatorname{Var}\left(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\right)=\left(\mu_{4}-3 \mu_{2}^{2}\right) \sum_{i=1}^{n} A_{i, i}^{2}+\mu_{2}^{2}\left[(\operatorname{tr}(\boldsymbol{A}))^{2}+2 \operatorname{tr}\left(\boldsymbol{A}^{2}\right)\right]-\left[\mathrm{E}\left(\boldsymbol{X}^{\prime} \boldsymbol{A} \boldsymbol{X}\right)\right]^{2}$.
This proves the result because $\mathrm{E}\left(\boldsymbol{X}^{\prime} \boldsymbol{A} X\right)=\operatorname{tr}(\boldsymbol{A})$.

