Hypothesis Testing

Throughout, we assume the normal-error linear model that is based on the model

$$y = \beta_1 x_1 + \cdots + \beta_p x_p + \text{noise.}$$

[Note the slight change in the notation.]

1. A test for one parameter

Suppose we want to test to see whether or not the $(\ell+1)$ st x-variable has a [linear] effect on the y variable. Of course, $1 \le \ell \le p$, so we are really testing the statistical hypothesis

$$H_0: \beta_{\ell} = 0$$

Since $\widehat{\boldsymbol{\beta}} \sim N_p (\boldsymbol{\beta}, \sigma^2 (X'X)^{-1})$, it follows that

$$\widehat{eta}_{\ell} \sim \mathsf{N}\left(eta_{\ell} \, \mathsf{,} \, \sigma^2 \left[(X'X)^{-1}
ight]_{\ell,\ell}
ight).$$

Because S is independent of $\widehat{\beta}$ and hence $\widehat{\beta}_{\ell}$, and since $S^2/\sigma^2 \sim \chi^2_{n-p}/(n-p)$,

$$\frac{\widehat{\beta}_{\ell} - \beta_{\ell}}{S\sqrt{\left[(X'X)^{-1}\right]_{\ell,\ell}}} = \frac{\sigma}{S} \cdot \frac{\widehat{\beta}_{\ell} - \beta_{\ell}}{\sigma\sqrt{\left[(X'X)^{-1}\right]_{\ell,\ell}}} \sim t_{n-p}.$$

Therefore, it is now a routine matter to set up a t-test for H_0 : $\beta_\ell = 0$. As usual, testing has implications that are unattractive; it is much better to present a confidence interval [which you can then use for a test if you want, any way]: A $(1 - \alpha) \times 100\%$ confidence interval for β_ℓ is

$$\widehat{\beta}_{\ell} \pm St_{n-p}^{\alpha/2} \sqrt{\left[(X'X)^{-1}\right]_{\ell,\ell}}.$$

If you really insist on performing a level- α test for β_{ℓ} , it suffices to check to see if this confidence interval contains 0. If 0 is not in the confidence interval then you reject. Otherwise, you do nothing.

2. Least-squares estimates for contrasts

We wish to study a more general problem. Recall that our model has the form

$$y = \beta_1 x_1 + \beta_1 x_1 + \cdots + \beta_p x_p + \text{noise}.$$

If we sample then the preceding becomes $Y = X\beta + \varepsilon$, as before. As part of model verification, we might ask to see if $(x_i)_{i \in J}$ should be excised from the model, where $J := \{\ell, \ell+1, \ldots, r\}$ is a subset of the index $\{1, \ldots, n\}$. In other words, we ask

$$H_0: \beta_\ell = \cdots = \beta_r = 0.$$

Note that we can translate the preceding, using the language of matrix analysis, as H_0 : $A\beta = 0$, where

$$A := egin{pmatrix} 0 & 0 & 0 \ 0 & I & 0 \ 0 & 0 & 0 \end{pmatrix}$$
 ,

where the identity matrix in the middle is $(r - \ell + 1) \times (r - \ell + 1)$; it starts on position (ℓ, ℓ) and runs $r - \ell$ units in rows and in columns.

Now we ask a slightly more general question [it pays to do this, as it turns out]: Suppose A is a $q \times p$ matrix of full rank $q \leq p$, and we are interested in testing the hypothesis,

$$H_0: A\boldsymbol{\beta} = \mathbf{0}. \tag{1}$$

The first question to ask is, "how can we estimate β "? The answer is given to us by the principle of least squares: We write [as before]

$$Y = \theta + \varepsilon$$
, where $\theta := X\beta$,

and $\boldsymbol{\varepsilon}=(\varepsilon_1,\ldots,\varepsilon_n)'$ are mean-zero random variables, and first find the least-squares estimate $\widehat{\boldsymbol{\theta}}_{H_0}$ of $\boldsymbol{\theta}$, under the assumption that H_0 is valid. That is, we seek to minimize $\|\boldsymbol{Y}-\boldsymbol{X}\boldsymbol{b}\|^2$ over all p-vectors \boldsymbol{b} such that $\boldsymbol{A}\boldsymbol{b}=0$. The optimal value yields $\widehat{\boldsymbol{\theta}}_{H_0}=X\widehat{\boldsymbol{\beta}}_{H_0}$. Then we obtain $\widehat{\boldsymbol{\beta}}_{H_0}$ by noticing that if \boldsymbol{X} has full rank, then $\widehat{\boldsymbol{\beta}}_{H_0}=(X'X)^{-1}X'\widehat{\boldsymbol{\theta}}_{H_0}$.

Now it follows by differentiation [or just geometrically] that $\widehat{\boldsymbol{\theta}}_{H_0}$ is the projection of \boldsymbol{Y} onto the subspace \mathcal{G} of all vectors of the form $\boldsymbol{\vartheta} = \boldsymbol{X}\boldsymbol{b}$ that satisfy $\boldsymbol{A}\boldsymbol{b} = \boldsymbol{0}$, where \boldsymbol{b} is a p-vector. We can simplify this description a little when \boldsymbol{X} has full rank. Note that whenever $\boldsymbol{\vartheta} = \boldsymbol{X}\boldsymbol{b}$, we can solve to get $\boldsymbol{b} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\vartheta}$. Therefore, it follows that—when \boldsymbol{X}

has full rank— $\widehat{\boldsymbol{\theta}}_{H_0}$ is the projection of the observations vector \boldsymbol{Y} onto the subspace \mathcal{G} of all vectors of the form $\boldsymbol{\vartheta}$ that satisfy

$$A_1 \vartheta = 0$$
, where $A_1 := A(X'X)^{-1}X'$.

In other words, \mathcal{G} is the subspace of $\mathcal{G}(X)$, whose every element $\boldsymbol{\vartheta}$ is orthogonal to every row of A_1 . In symbols,

$$\mathcal{G} = \mathcal{C}(X) \cap \left[\mathcal{C}(A_1')\right]^{\perp}$$
.

Because $A'_1 \mathbf{b} = X\mathbf{c}$ for $\mathbf{c} := (X'X)^{-1}A\mathbf{b}$, it follows that $\mathcal{C}(A'_1)$ is a subspace of $\mathcal{C}(X)$. Therefore, we can apply the Pytheagorean property to see that

$$egin{aligned} \widehat{oldsymbol{ heta}}_{H_0} &= oldsymbol{P}_{\mathcal{G}} oldsymbol{Y} &= oldsymbol{P}_{\mathcal{G}(X) \cap [\mathcal{G}(A_1')]^{\perp}} oldsymbol{Y} \ &= oldsymbol{P}_{\mathcal{G}(X)} oldsymbol{Y} - oldsymbol{P}_{\mathcal{G}(A_1')} oldsymbol{Y} \ &= \widehat{oldsymbol{ heta}} - oldsymbol{A}_1' oldsymbol{A}_1' oldsymbol{A}_1' oldsymbol{Y}^{-1} oldsymbol{A}_1 oldsymbol{Y}. \end{aligned}$$

Now

$$A_1A'_1 = A(X'X)^{-1}X'X(X'X)^{-1}A' = A(X'X)^{-1}A'.$$

Therefore,

$$\widehat{\boldsymbol{\theta}}_{H_0} = \widehat{\boldsymbol{\theta}} - \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{A}' \left[\boldsymbol{A}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{A}' \right]^{-1} \boldsymbol{A}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y}.$$

Aside: How do we know that $A(X'X)^{-1}A'$ is nonsingular? Note that $A(X'X)^{-1}A'$ is positive semidefinite. Now X'X is positive definite; therefore, so is its inverse. Therefore, we can write $(X'X)^{-1} = B^2 = BB'$, where $B := (X'X)^{-1/2}$ is the square root of $(X'X)^{-1}$. In this way we find that the rank of $A(X'X)^{-1}A'$ is the same as the rank of AA'. Since A has full rank, AA' is invertible. Equivalently, full rank. Equivalently, $A(X'X)^{-1}A'$ is a full-rank positive definite matrix; hence nonsingular. The vector $\widehat{\theta}_{H_0} := \widehat{Y}_{H_0} = X\widehat{\beta}_{H_0}$ is the vector of fitted values, assuming that H_0 is correct. Therefore, the least-squares estimate for β —under

$$\begin{split} \widehat{\boldsymbol{\beta}}_{H_0} &:= (X'X)^{-1}X'\widehat{\boldsymbol{\theta}}_{H_0} = \widehat{\boldsymbol{\beta}} - (X'X)^{-1}A' \left[A(X'X)^{-1}A' \right]^{-1} A(X'X)^{-1}X'Y \\ &= \widehat{\boldsymbol{\beta}} - (X'X)^{-1}A' \left[A(X'X)^{-1}A' \right]^{-1} A\widehat{\boldsymbol{\beta}} \\ &= \left(I - (X'X)^{-1}A' \left[A(X'X)^{-1}A' \right]^{-1} A \right) \widehat{\boldsymbol{\beta}}. \end{split}$$

This can be generalized further as follows: Suppose we wish to test

$$H_0: \mathbf{A}\mathbf{B} = \mathbf{c}$$

where c is a known q-vector [we just studied this in the case that c=0]. Then we reduce the problem to the previous one as follows: First find a

known *p*-vector β_0 such that $A\beta_0 = c$. Then, create a new parametrization of our problem by setting

$$\boldsymbol{\gamma} := \boldsymbol{\beta} - \boldsymbol{\beta}_0$$
,

and

$$\widetilde{Y} := X \gamma + \varepsilon$$
, equivalently $\widetilde{Y} := Y - X \beta_0$.

Since $A\gamma=0$, we know the least-squares estimate $\widehat{\gamma}_{H_0}$ is given by

$$\widehat{\boldsymbol{\gamma}}_{H_0} = \left(\boldsymbol{I} - (X'X)^{-1} \boldsymbol{A}' \left[\boldsymbol{A} (X'X)^{-1} \boldsymbol{A}' \right]^{-1} \boldsymbol{A} \right) \widehat{\boldsymbol{\gamma}},$$

where

$$\widehat{\boldsymbol{\gamma}} := (X'X)^{-1}X'\widetilde{Y} = (X'X)^{-1}X'Y - \boldsymbol{\beta}_0 = \widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0.$$

In other words,

$$\widehat{\boldsymbol{\beta}}_{H_0} - \boldsymbol{\beta}_0 = \left(\boldsymbol{I} - (X'X)^{-1} A' \left[A(X'X)^{-1} A' \right]^{-1} A \right) \left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0 \right)
= \left(\boldsymbol{I} - (X'X)^{-1} A' \left[A(X'X)^{-1} A' \right]^{-1} A \right) \widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0 + (X'X)^{-1} A' \left[A(X'X)^{-1} A' \right]^{-1} A \boldsymbol{\beta}_0
= \left(\boldsymbol{I} - (X'X)^{-1} A' \left[A(X'X)^{-1} A' \right]^{-1} A \right) \widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0 + (X'X)^{-1} A \left[A(X'X)^{-1} A' \right]^{-1} c.$$

In this way, we have discovered the following:

Theorem 1. Consider once again the general linear model $Y = X\beta + \varepsilon$. If $A_{q \times p}$ and $c_{q \times 1}$ are known, and A has full rank $q \leq p$, then the least-squares estimate for β —under the null hypothesis H_0 : $A\beta = c$ —is

$$\widehat{\boldsymbol{\beta}}_{H_0} = \boldsymbol{\Theta} \widehat{\boldsymbol{\beta}} + \boldsymbol{\mu},$$

where

$$\mathbf{\Theta} := \left(\mathbf{I} - (X'X)^{-1} \mathbf{A}' \left[\mathbf{A} (X'X)^{-1} \mathbf{A}' \right]^{-1} \mathbf{A} \right), \tag{2}$$

and

$$\mu = \mu(\mathbf{c}) := (X'X)^{-1}A' \left[A(X'X)^{-1}A' \right]^{-1}\mathbf{c},$$
 (3)

provided that X has full rank.

3. The normal model

Now consider the same problem under the normal model. That is, we consider H_0 : $A\beta = c$ under the assumption that $\epsilon \sim N_p(0, \sigma^2 I)$.

Theorem 2. Consider the normal-error linear model $Y = X\beta + \varepsilon$. If $A_{q \times p}$ and $c_{q \times 1}$ are known, and A has full rank $q \leq p$, then the least-squares estimate for β —under the null hypothesis H_0 : $A\beta = c$ —satisfies

$$\widehat{m{eta}}_{H_0} \sim \mathrm{N}_p \left(m{eta} \, , \, \sigma^2 m{\Theta} (X'X)^{-1} m{\Theta}'
ight)$$
 ,

provided that X has full rank.

Indeed, since

$$\widehat{oldsymbol{eta}} \sim \operatorname{N}_p\left(oldsymbol{eta}$$
 , $\sigma^2(X'X)^{-1}
ight)$ and $\widehat{oldsymbol{eta}}_{H_0} = oldsymbol{\Theta}\widehat{oldsymbol{eta}} + oldsymbol{\mu}$,

it follows that

$$\widehat{m{eta}}_{H_0} \sim \mathrm{N}_p \left(m{\Theta}m{eta} + m{\mu}$$
 , $\sigma^2m{\Theta}(X'X)^{-1}m{\Theta}'
ight)$.

Therefore, it remains to check that $\Theta \beta + \mu = \beta$ when $A\beta = c$. But this is easy to see directly.

Next we look into inference for σ^2 . Recall that our estimation of σ^2 was based on RSS := $\|\mathbf{Y} - X\hat{\boldsymbol{\beta}}\|^2$. Under H_0 , we do the natural thing and estimate σ^2 instead by

$$\begin{split} \mathrm{RSS}_{H_0} &:= \left\| \mathbf{Y} - X \widehat{\boldsymbol{\beta}}_{H_0} \right\|^2 \\ &= \left\| \underbrace{\mathbf{Y} - X \widehat{\boldsymbol{\beta}}}_{\mathcal{T}_1} - \underbrace{X(X'X)^{-1}A' \left[A(X'X)^{-1}A' \right]^{-1} \left[\mathbf{c} - A \widehat{\boldsymbol{\beta}} \right]}_{\mathcal{T}_2} \right\|^2. \end{split}$$

I claim that \mathcal{T}_2 is orthogonal to \mathcal{T}_1 ; indeed,

$$\mathcal{T}_{2}'\mathcal{T}_{1} = \left[\mathbf{c} - A\widehat{\boldsymbol{\beta}}\right]' \left[A(X'X)^{-1}A'\right]^{-1} A \underbrace{(X'X)^{-1}X'Y}_{\widehat{\boldsymbol{\beta}}}$$
$$-\left[\mathbf{c} - A\widehat{\boldsymbol{\beta}}\right]' \left[A(X'X)^{-1}A'\right]^{-1} A \underbrace{(X'X)^{-1}X'X}_{\widehat{\boldsymbol{\beta}}} \widehat{\boldsymbol{\beta}}$$
$$= 0.$$

Therefore, the Pythagorean property tells us that

$$RSS_{H_0} = \left\| \mathbf{Y} - \mathbf{X} \widehat{\boldsymbol{\beta}} \right\|^2 + \left\| \mathcal{T}_2 \right\|^2$$
$$= RSS + \left\| \mathcal{T}_2 \right\|^2.$$

Next we compute

$$\begin{split} \|\mathcal{T}_2\|^2 &= \mathcal{T}_2' \mathcal{T}_2 \\ &= \left[\mathbf{c} - A\widehat{\boldsymbol{\beta}}\right]' \left[A(X'X)^{-1}A'\right]^{-1} \underbrace{A(X'X)^{-1}\underbrace{X'X(X'X)^{-1}}_{I}A'}_{A(X'X)^{-1}A'} \underbrace{\left[A(X'X)^{-1}A'\right]^{-1}}_{I} \left[\mathbf{c} - A\widehat{\boldsymbol{\beta}}\right] \\ &= \left[\mathbf{c} - A\widehat{\boldsymbol{\beta}}\right]' \left[A(X'X)^{-1}A'\right]^{-1} \left[\mathbf{c} - A\widehat{\boldsymbol{\beta}}\right]. \end{split}$$

In other words,

$$RSS_{H_0} = RSS + \left[\boldsymbol{c} - A\widehat{\boldsymbol{\beta}} \right]' \left[A(X'X)^{-1}A' \right]^{-1} \left[\boldsymbol{c} - A\widehat{\boldsymbol{\beta}} \right]. \tag{4}$$

Moreover, the two terms on the right-hand side are independent because $\hat{\beta}$ and $Y - X\hat{\beta}$ —hence $\hat{\beta}$ and RSS = $\|Y - X\hat{\beta}\|^2$ —are independent. Now we know the distribution of RSS := $(n-p)S^2 \sim \sigma^2(n-p)\chi_{n-p}^2$. Therefore, it remains to find the distribution of the second term on the right-hand side of (4). But

$$A\widehat{\boldsymbol{\beta}} \sim N_q \left(A\boldsymbol{\beta}, \sigma^2 A(X'X)^{-1} A' \right) \stackrel{H_0}{=} N_q \left(\mathbf{c}, \sigma^2 \underbrace{A(X'X)^{-1} A'}_{:=\Sigma} \right).$$

Therefore, $Z := \sigma^{-1} \Sigma^{-1/2} (A \hat{\beta} - c) \sim N_q(0, I_{q \times q})$. Also, we can write the second term on the right-hand side of (4) as

$$\left[A\widehat{\boldsymbol{\beta}} - \mathbf{c} \right]' \left[A(X'X)^{-1}A' \right]^{-1} \left[A\widehat{\boldsymbol{\beta}} - \mathbf{c} \right] = \sigma^2 \mathbf{Z}' \mathbf{Z} = \sigma^2 \|\mathbf{Z}\|^2 \sim \sigma^2 \chi_q^2.$$

Let us summarize our efforts.

Theorem 3. Consider normal–error linear model $Y = X\beta + \varepsilon$. Suppose $A_{q \times p}$ and $c_{q \times 1}$ are known, and A has full rank $q \leq p$. Then under the null hypothesis $H_0: A\beta = c$, we can write

$$RSS_{H_0} = RSS + W,$$

provided that X has full rank, where RSS and W are independent, we recall that RSS $\sim \sigma^2(n-p)\chi_{n-p}^2$, and $W \sim \sigma^2\chi_q^2$. In particular,

$$\frac{(\text{RSS}_{H_0} - \text{RSS})/q}{\text{RSS}/(n-p)} \approx \frac{\chi_q^2/q}{\chi_{n-p}^2/(n-p)}$$
 [the two χ^2 's are independent]
= $F_{q,n-p}$.

See your textbook for the distribution of this test statistic under the alternative [this is useful for power computations]. The end result is a "noncentral ${\cal F}$ distribution."

4. Examples 69

4. Examples

1. A measurement-error model. For our first example, consider a random sample $Y_1, \ldots, Y_n \sim N(\mu, \sigma^2)$; equivalently,

$$Y_i = \mu + \varepsilon_i$$
 $(1 \le i \le n)$,

where $\boldsymbol{\varepsilon} \sim \mathrm{N}_n(\mathbf{0}, \sigma^2 \boldsymbol{I})$. This is a linear model with p = 1, $X := \mathbf{1}_{n \times 1}$, and $\boldsymbol{\beta} := \mu$. Recall that $(X'X)^{-1} = 1/n$ and hence $\hat{\boldsymbol{\beta}} = (X'X)^{-1}X'Y = \bar{Y}$.

If we test H_0 : $\mu = \mu_0$ for a μ_0 the is known, then A = 1 is a 1×1 matrix (q = 1) and $A\beta = c$ with $c = \mu_0$.

Given that H_0 is true, the least-squares estimator of μ $[\hat{\beta}_{H_0}]$ is

$$\hat{\boldsymbol{\beta}}_{H_0} := \hat{\boldsymbol{\mu}}_{H_0} = \hat{\boldsymbol{\beta}} + (X'X)^{-1}A' \left[A(X'X)^{-1}A' \right]^{-1} \left(\mathbf{c} - A\hat{\boldsymbol{\beta}} \right)$$

$$= \bar{Y} + \frac{1}{n} \cdot n \cdot (\mu_0 - \bar{Y}) = \mu_0.$$

[Is this sensible?] And

RSS =
$$\|\mathbf{Y} - X\hat{\boldsymbol{\beta}}\|^2 = \sum_{i=1}^n (Y_i - \bar{Y})^2 = ns_y^2$$
.

Therefore,

$$RSS_{H_0} - RSS = (\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{c})' \left[\mathbf{A}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{A}' \right]^{-1} \left(\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{c} \right)$$
$$= n(\bar{\mathbf{Y}} - \mu_0)^2.$$

And

$$\frac{({\rm RSS}_{H_0} - {\rm RSS})/q}{{\rm RSS}/(n-p)} = \frac{(\bar{Y} - \mu_0)^2}{s_y^2/(n-1)} \stackrel{H_0}{\sim} F_{1,n-1}.$$

But

$$\frac{\bar{Y}-\mu_0}{s_y/\sqrt{n-1}}\stackrel{H_0}{\sim}t_{n-1}.$$

Therefore, in particular, $t_k^2 = F_{1,k}$.

2. Simple linear regression. Here,

$$Y_i = \alpha + \beta x_i + \varepsilon_i$$
 $(1 \le i \le n)$.

Therefore, p = 2,

$$\boldsymbol{\beta} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
, and $\boldsymbol{X} = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$.

Recall that the least-squares estimates of α and β are

$$\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{x}, \qquad \hat{\beta} = \frac{rs_y}{s_x}.$$

Now consider testing the hypothesis,

$$H_0: \beta = 0, \ \alpha = \mu_0,$$

where μ_0 is known.

Let $c = (\mu_0, 0)'$ and $A = I_2$, so that q = 2. Then, H_0 is the same as $H_0: A\beta = c$. We have

$$\hat{\boldsymbol{\beta}}_{H_0} = \hat{\boldsymbol{\beta}} + (\boldsymbol{c} - \boldsymbol{A}\hat{\boldsymbol{\beta}}) = \boldsymbol{c} = \begin{pmatrix} \mu_0 \\ 0 \end{pmatrix}.$$

[Is this sensible?]

Now,

$$RSS_{H_0} - RSS = (\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{c})' \left[\mathbf{A}(X'X)^{-1} \mathbf{A}' \right]^{-1} (\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{c}) = (\hat{\boldsymbol{\beta}} - \mathbf{c})'(X'X)(\hat{\boldsymbol{\beta}} - \mathbf{c}).$$

Now,

$$X'X = n \begin{pmatrix} 1 & \bar{x} \\ \bar{x} & \bar{x^2} \end{pmatrix} \quad \Rightarrow \quad \hat{\boldsymbol{\beta}} - \boldsymbol{c} = \begin{pmatrix} \bar{Y} - \hat{\boldsymbol{\beta}}\bar{x} - \mu_0 \\ \hat{\boldsymbol{\beta}} \end{pmatrix}.$$

Therefore,

$$(\hat{\boldsymbol{\beta}} - \boldsymbol{c})'(X'X) = n(\bar{Y} - \mu_0)(1, \bar{x}),$$

whence

$$RSS_{H_0} - RSS = n(\bar{Y} - \mu_0)^2.$$

Next we compute

$$RSS = \|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2 = \sum_{i=1}^n \left[Y_i - (\mathbf{X}\hat{\boldsymbol{\beta}})_i \right]^2.$$

Since

$$X\hat{\boldsymbol{\beta}} = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \begin{pmatrix} \bar{Y} - \hat{\boldsymbol{\beta}}\bar{x} \\ \hat{\boldsymbol{\beta}} \end{pmatrix} = \left(\bar{Y} + \hat{\boldsymbol{\beta}}(x_i - \bar{x})\right)_{i=1}^n = \left(\bar{Y} + \frac{rs_y}{s_x}(x_i - \bar{x})\right)_{i=1}^n,$$

it follows that

$$\begin{aligned} & \text{RSS} = \sum_{i=1}^{n} \left[(Y_i - \bar{Y})^2 + \frac{r^2 s_y^2}{s_x^2} (x_i - \bar{x})^2 - 2 \frac{r s_y}{s_x} (Y_i - \bar{Y}) (x_i - \bar{x}) \right] \\ & = n s_y^2 + n r^2 s_y^2 - \frac{2n r s_y}{s_x} \sum_{i=1}^{n} (Y_i - \bar{Y}) (x_i - \bar{x}) \\ & = n s_y^2 + n r^2 s_y^2 - 2n r^2 s_y^2 \\ & = n s_y^2 (1 - r^2). \end{aligned}$$

Therefore,

$$rac{(ar{Y}-\mu_0)^2}{s_v^2(1-r^2)}\stackrel{H_0}{\sim} F_{2,n-2}.$$

4. Examples 71

3. Two-sample mean. Consider two populations: $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$ with equal variances. We wish to know if $\mu_1 = \mu_2$. Take two independent random samples,

$$y_{1,1}, \ldots, y_{1,n_1} \sim N(\mu_1, \sigma^2),$$

 $y_{2,1}, \ldots, y_{2,n_2} \sim N(\mu_2, \sigma^2).$

We have a linear model: p = 2, $n = n_1 + n_2$,

$$\mathbf{Y} = egin{pmatrix} y_{1,1} \ dots \ y_{1,n_1} \ y_{2,1} \ dots \ y_{2,n_2} \end{pmatrix}, \qquad \mathbf{X} = egin{pmatrix} 1 & 0 \ dots \ 1 \ 0 \ 0 & 1 \ dots \ dots \ 0 & 1 \end{pmatrix} = egin{pmatrix} \mathbf{1}_{n_1 imes 1} & \mathbf{0}_{n_1 imes 1} \ \mathbf{0}_{n_2 imes 1} & \mathbf{1}_{n_2 imes 1} \end{pmatrix}.$$

In particular,

$$X'X = \begin{pmatrix} n_1 & 0 \\ 0 & n_2 \end{pmatrix} \quad \Rightarrow \quad (X'X)^{-1} = \begin{pmatrix} n_1^{-1} & 0 \\ 0 & n_2^{-1} \end{pmatrix}.$$

So now consider

$$H_0: \mu_1 = \mu_2 \qquad \Longleftrightarrow \qquad H_0: \mu_1 = \mu_2 \qquad \Longleftrightarrow \qquad H_0: \underbrace{(1,-1)}_{\mu_2} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} = \mathbf{0}.$$

That is, q = 1, A := (1, -1), and c = 0. In this way we find that

$$\hat{\boldsymbol{\beta}} = (X'X)^{-1}X'Y = \begin{pmatrix} \bar{y}_{1,\bullet} \\ \bar{y}_{2,\bullet} \end{pmatrix}.$$

[Does this make intuitive sense?]

In order to find $\hat{\boldsymbol{\beta}}_{H_0}$, we first compute

$$A\hat{\boldsymbol{\beta}} = (1, -1) \begin{pmatrix} \bar{y}_{1, \bullet} \\ \bar{y}_{2, \bullet} \end{pmatrix} = \bar{y}_{1, \bullet} - \bar{y}_{2, \bullet}.$$

Also,

$$(X'X)^{-1}A' = \begin{pmatrix} n_1^{-1} & 0 \\ 0 & n_2^{-1} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} n_1^{-1} \\ -n_2^{-1} \end{pmatrix}$$
,

so that

$$A(X'X)^{-1}A' = \frac{1}{n_2} + \frac{1}{n_2} = \frac{n}{n_1n_2}.$$

Now we put things together:

$$\hat{\boldsymbol{\beta}}_{H_0} = \hat{\boldsymbol{\beta}} + \begin{pmatrix} n_1^{-1} \\ -n_2^{-1} \end{pmatrix} \frac{n_1 n_2}{n} \left(\bar{y}_{1,\bullet} - \bar{y}_{2,\bullet} \right)$$

$$= \hat{\boldsymbol{\beta}} + \begin{pmatrix} \frac{n_2}{2} \left(\bar{y}_{1,\bullet} - \bar{y}_{2,\bullet} \right) \\ -\frac{n_1}{n} \left(\bar{y}_{1,\bullet} - \bar{y}_{2,\bullet} \right) \end{pmatrix}$$

$$= \begin{pmatrix} \frac{n_1}{n} \bar{y}_{1,\bullet} + \frac{n_2}{n} \bar{y}_{2,\bullet} \\ \frac{n_1}{n} \bar{y}_{1,\bullet} + \frac{n_2}{n} \bar{y}_{2,\bullet} \end{pmatrix}.$$

Since $n_2\bar{y}_{2,\bullet} = \sum_{j=1}^{n_2} y_{j2,j}$ and $n_1\bar{y}_{1,\bullet} = \sum_{i=1}^{n_1} y_{1,j}$, it follows that

$$\hat{\boldsymbol{\beta}}_{H_0} = \begin{pmatrix} \bar{y}_{\bullet,\bullet} \\ \bar{y}_{\bullet,\bullet} \end{pmatrix}.$$

[Does this make sense?] Since

$$X\hat{\boldsymbol{\beta}} = \begin{pmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \bar{y}_{1,\bullet} \\ \bar{y}_{2,\bullet} \end{pmatrix} = \begin{pmatrix} \bar{y}_{1,\bullet} \\ \vdots \\ \bar{y}_{1,\bullet} \\ \bar{y}_{2,\bullet} \\ \vdots \\ \bar{y}_{2,\bullet} \end{pmatrix} = \begin{pmatrix} \bar{y}_{1,\bullet} \mathbf{1}_{n_1 \times 1} \\ \bar{y}_{2,\bullet} \mathbf{1}_{n_2 \times 1} \end{pmatrix},$$

we have

RSS =
$$\sum_{j=1}^{n_1} (y_{1,j} - \bar{y}_{1\bullet})^2 + \sum_{j=1}^{n_2} (y_{2,j} - \bar{y}_{2\bullet})^2$$

= $n_1 s_1^2 + n_2 s_2^2$.

I particular,

$$\frac{\text{RSS}}{n-p} = \frac{n_1}{n-2}s_1^2 + \frac{n_2}{n-2}s_2^2 := s_p^2$$

is the socalled "pooled variance."

Similarly,

$$RSS_{H_0} - RSS = \frac{n_1 n_2}{n} \left(\bar{y}_{1,\bullet} - \bar{y}_{2,\bullet} \right)^2.$$

Therefore,

$$\frac{\frac{n_1n_2}{n}\left(\bar{y}_{1,\bullet} - \bar{y}_{2,\bullet}\right)^2}{s_p^2} \stackrel{H_0}{\sim} F_{1,n-2} \quad \Rightarrow \quad \frac{\bar{y}_{1,\bullet} - \bar{y}_{2,\bullet}}{s_p\sqrt{\frac{n}{n_1n_2}}} \stackrel{H_0}{\sim} t_{n-2}.$$

4. Examples 73

4. ANOVA: One-way layout. Consider p populations that are respectively distributed as $N(\mu_1, \sigma^2), \ldots, N(\mu_p, \sigma^2)$. We wish to test

$$H_0: \mu_1 = \cdots = \mu_p.$$

We have seen that we are in the setting of linear models, so we can compute $\hat{\beta}_{H_0}$ etc. that way. I will leave this up to you and compute directly instead: Sample $y_{j,1}, \dots y_{j,n_k}$ i.i.d. $N(\mu_j, \sigma^2)$ [independent also as j varies]. Then we vectorize:

$$oldsymbol{Y} := egin{pmatrix} y_{1,1} \ dots \ y_{1,n_1} \ dots \ y_{p,1} \ dots \ y_{p,n_p} \end{pmatrix}; \qquad etc.$$

Instead we now find $\hat{\boldsymbol{\beta}}$ directly by solving

$$\min_{\mu} \sum_{i=1}^{p} \sum_{i=1}^{n_i} (y_{i,j} - \mu_i)^2.$$

That is, compute

$$\frac{\partial}{\partial \mu_i} \sum_{i=1}^p \sum_{j=1}^{n_i} (y_{i,j} - \mu_i)^2 = -\sum_{j=1}^{n_i} 2(y_{i,j} - \mu_i) \equiv 0 \implies \hat{\mu}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{i,j} = \bar{y}_{i,\bullet}.$$

This yields

$$\hat{oldsymbol{eta}} = egin{pmatrix} ar{ar{y}}_{1,ullet} \ draingledown \ ar{ar{y}}_{n,ullet} \end{pmatrix}.$$

What about $\hat{\beta}_{H_0}$? Under H_0 , $\mu_1 = \cdots = \mu_p \equiv \mu$ and so q = p - 1. So we have

$$\min_{\mu} \sum_{i=1}^{p} \sum_{j=1}^{n_i} (y_{i,j} - \mu)^2 \implies \hat{\boldsymbol{\beta}}_{H_0} = \begin{pmatrix} \bar{y}_{\bullet,\bullet} \\ \vdots \\ \bar{y}_{\bullet,\bullet} \end{pmatrix}.$$

Also,

$$RSS = \sum_{i=1}^{p} \sum_{i=1}^{n_i} (y_{i,j} - \bar{y}_{i,\bullet})^2,$$

and

$$RSS_{H_{0}} = \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} (y_{i,j} - \bar{y}_{\bullet,\bullet})^{2} = \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} (y_{i,j} - \bar{y}_{i,\bullet} + \bar{y}_{i,\bullet} - \bar{y}_{\bullet,\bullet})^{2}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} (y_{i,j} - \bar{y}_{i,\bullet})^{2} + 2 \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} (y_{i,j} - \bar{y}_{i,\bullet}) (\bar{y}_{i,\bullet} - \bar{y}_{\bullet,\bullet})$$

$$+ \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} (\bar{y}_{i,\bullet} - \bar{y}_{\bullet,\bullet})^{2}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} (y_{i,j} - \bar{y}_{i,\bullet})^{2} + \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} (\bar{y}_{i,\bullet} - \bar{y}_{\bullet,\bullet})^{2}$$

$$= RSS + \sum_{i=1}^{p} n_{i} (\bar{y}_{i,\bullet} - \bar{y}_{\bullet,\bullet})^{2}.$$

It follows from the general theory that

$$\frac{\sum_{i=1}^{p} n_i \left(\bar{y}_{i,\bullet} - \bar{y}_{\bullet,\bullet}\right)^2 / (p-1)}{\sum_{i=1}^{p} \sum_{j=1}^{n_i} \left(y_{i,j} - \bar{y}_{i,\bullet}\right)^2 / (n-p)} \stackrel{H_0}{\sim} F_{p-1,n-p}.$$

"Statistical interpretation":

$$\frac{\sum_{i=1}^{p} n_i \left(\bar{y}_{i,\bullet} - \bar{y}_{\bullet,\bullet}\right)^2}{p-1} = \text{The variation between the samples;}$$

whereas

$$\frac{\sum_{i=1}^{p}\sum_{j=1}^{n_{i}}\left(y_{i,j}-\bar{y}_{i,\bullet}\right)^{2}}{n-p}=\text{The variation within the samples}.$$

Therefore,

 RSS_{H_0} = Variation between + Variation within = Total variation.