Math 6010
 Partial solutions to homework 5

1. We have a linear model with $p=2$, parameter vector $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}\right)^{\prime}$ and design matrix,

$$
\boldsymbol{X}=\left(\begin{array}{cc}
a_{1} & b_{1} \\
\vdots & \vdots \\
a_{n} & b_{n}
\end{array}\right)
$$

Note that

$$
\boldsymbol{X}^{\prime} \boldsymbol{X}=\left(\begin{array}{cc}
\sum_{i=1}^{n} a_{i}^{2} & \sum_{i \overline{\bar{n}}^{1}}^{n} a_{i} b_{i} \\
\sum_{i=1}^{n} a_{i} b_{i} & \sum_{i=1}^{2} b_{i}^{2}
\end{array}\right)
$$

so that

$$
\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}=\frac{1}{\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}}\left(\begin{array}{cc}
\sum_{i=1}^{n} b_{i}^{2} & -\sum_{i=1}^{n} a_{i} b_{i} \\
-\sum_{i=1}^{n} a_{i} b_{i} & \sum_{i=1}^{n} a_{i}^{2}
\end{array}\right)
$$

provided that \boldsymbol{X} has full rank. ${ }^{1}$ Since

$$
\hat{\boldsymbol{\beta}} \sim \mathrm{N}_{2}\left(\boldsymbol{\beta}, \sigma^{2}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\right),
$$

we can read off the following:

$$
\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=-\frac{\sigma^{2} \sum_{i=1}^{n} a_{i} b_{i}}{\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}} .
$$

This is zero if and only if $\sum_{i=1}^{n} a_{i} b_{i}=0$. Because $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are jointly normal, they are independent if and only if they are uncorrelated; that is, if and only if $\sum_{i=1}^{n} a_{i} b_{i}=0$.
2. See page 65 of Lecture 9 in my lecture notes.
5. Since $\operatorname{Var}(\hat{\boldsymbol{Y}})=\boldsymbol{X} \operatorname{Var}(\hat{\boldsymbol{\beta}}) \boldsymbol{X}^{\prime}=\sigma^{2} \boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}$, the variance of \hat{Y}_{i} is the (i, i) th element of the preceding variance/covariance matrix; that is,

$$
\operatorname{Var}\left(\hat{Y}_{i}\right)=\sigma^{2} \sum_{j=1}^{p} \sum_{k=1}^{p} X_{i, j}\left[(\boldsymbol{X} \boldsymbol{X})^{-1}\right]_{j, k} X_{i, k}
$$

[^0]Because

$$
\sum_{i=1}^{n} X_{i, j} X_{i, k}=\left[\boldsymbol{X}^{\prime} \boldsymbol{X}\right]_{j, k},
$$

it follows that
$\sum_{i=1}^{n} \operatorname{Var}\left(\hat{Y}_{i}\right)=\sigma^{2} \sum_{j=1}^{p} \sum_{k=1}^{p}\left[(\boldsymbol{X} \boldsymbol{X})^{-1}\right]_{j, k}\left[\boldsymbol{X}^{\prime} \boldsymbol{X}\right]_{j, k}=\sigma^{2} \operatorname{tr}\left(\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)\right)$.
Because $\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)=\boldsymbol{I}_{p \times p}$, its trace is p; this does the job.

[^0]: ${ }^{1}$ In this case, this means that $\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) \neq\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}$. According to the Cauchy-Schwarz inequality, $\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) \geq\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}$. Therefore, \boldsymbol{X} has full rank if and only if the Cauchy-Schwarz inequality is a strict inequality. This turns out to mean that $z_{i}:=a_{i} b_{i}$ is not a linear function of i.

