Math 6010

 Solutions to homework 3

 Solutions to homework 3}

1, p. 31. Notice that

$$
\begin{aligned}
& Y_{1}=\rho Y_{0}+\varepsilon_{1} \\
& Y_{2}=\rho^{2} Y_{0}+\rho \varepsilon_{1}+\varepsilon_{2} \\
& Y_{3}=\rho^{3} Y_{0}+\rho^{2} \varepsilon_{1}+\rho \varepsilon_{2}+\varepsilon_{3}
\end{aligned}
$$

That is, if we set

$$
\varepsilon:=\left(\begin{array}{l}
Y_{0} \\
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3}
\end{array}\right) \quad \text { and } \quad \boldsymbol{A}:=\left(\begin{array}{cccc}
\rho & 1 & 0 & 0 \\
\rho^{2} & \rho & 1 & 0 \\
\rho^{3} & \rho^{2} & \rho & 1
\end{array}\right)
$$

than $\boldsymbol{Y}=\left(Y_{1}, Y_{2}, Y_{3}\right)^{\prime}$ satisfies

$$
\boldsymbol{Y}=\boldsymbol{A} \varepsilon
$$

(a) $\operatorname{Var}(\boldsymbol{Y})=\boldsymbol{A} \operatorname{Var}(\boldsymbol{\varepsilon}) \boldsymbol{A}^{\prime}$, and $\operatorname{Var}(\boldsymbol{\varepsilon})=\operatorname{diag}\left(\sigma_{0}^{2}, \sigma^{2}, \sigma^{2}, \sigma^{2}\right)$.
(b) Since $\boldsymbol{\varepsilon} \sim \mathrm{N}_{4}\left(\mathbf{0}, \operatorname{diag}\left[\sigma_{0}^{2}, \sigma^{2}, \sigma^{2}, \sigma^{2}\right]\right), \boldsymbol{Y}$ has a 4 -dimensional multivariate normal distribution with mean vector zero and variance matrix as in part (a).

2, p. 31. Implicitly, we are assuming that \boldsymbol{A} and \boldsymbol{B} are not random. In that case, $\left[\boldsymbol{X}^{\prime}, \boldsymbol{U}^{\prime}+\boldsymbol{V}^{\prime}\right]^{\prime}$ has a $2 n$-dimensional multivariate normal distribution. Indeed,

$$
\boldsymbol{W}:=\binom{\boldsymbol{X}^{\prime}}{\boldsymbol{U}^{\prime}+\boldsymbol{V}^{\prime}}=\binom{\boldsymbol{A}}{\boldsymbol{B}+\boldsymbol{C}} \boldsymbol{Y}
$$

Therefore, it suffices to prove that \boldsymbol{X} and $\boldsymbol{U}+\boldsymbol{V}$ are uncorrelated. But that follows because

$$
\operatorname{Cov}[\boldsymbol{X}, \boldsymbol{U}+\boldsymbol{V}]=\operatorname{Cov}[\boldsymbol{X}, \boldsymbol{U}]+\operatorname{Cov}[\boldsymbol{X}, \boldsymbol{V}] .
$$

3, p. 31. Let $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$ and note that

$$
\bar{Y}=\frac{1}{n} \mathbf{1}^{\prime} \boldsymbol{Y}
$$

where $\mathbf{1}$ is an n-vector of all ones. Also note that

$$
\sum_{i=1}^{n-1}\left(Y_{i}-Y_{i+1}\right)^{2}=\|\boldsymbol{D}\|^{2}
$$

where \boldsymbol{D} is the ($n-1$)-dimensional vector

$$
\boldsymbol{D}:=\left(\begin{array}{c}
Y_{1}-Y_{2} \\
Y_{2}-Y_{3} \\
\vdots \\
Y_{n-1}-Y_{n}
\end{array}\right)=\boldsymbol{A} \boldsymbol{Y}
$$

where

$$
\boldsymbol{A}:=\left(\begin{array}{ccccccc}
1 & -1 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & -1
\end{array}\right)
$$

In particular, all linear combinations of \bar{Y} and the coordindates of \boldsymbol{D} are normally distributed [they are linear combinations of Y_{1}, \ldots, Y_{n}]. Therefore, it suffices to prove that \boldsymbol{D} and \bar{Y} are uncorrelated. Because $\mathrm{E}[\boldsymbol{D}]=\mathbf{0}$,

$$
\operatorname{Cov}(\bar{Y}, \boldsymbol{D})=\operatorname{Cov}\left(\frac{1}{n} \mathbf{1}^{\prime} \boldsymbol{Y}, \boldsymbol{A} \boldsymbol{Y}\right)=\frac{1}{n^{2}} \mathbf{1}^{\prime} \operatorname{Var}(\boldsymbol{Y}) \boldsymbol{A}^{\prime}=\frac{\sigma^{2}}{n^{2}} \mathbf{1}^{\prime} \boldsymbol{A}^{\prime}=\mathbf{0}
$$

since the row-sums of \boldsymbol{A} are all zero.
4, p. 31. All linear combinations of the coordinates are normal. Specifically, for all nonrandom vectors \boldsymbol{t},

$$
\boldsymbol{t}^{\prime}[a \boldsymbol{X}+b \boldsymbol{Y}]=a \boldsymbol{t}^{\prime} \boldsymbol{X}+b \boldsymbol{t}^{\prime} \boldsymbol{Y}
$$

is a sum of two independent normal random variables: $a \boldsymbol{t}^{\prime} \boldsymbol{X}$ and $b \boldsymbol{t}^{\prime} \boldsymbol{Y}$.

